139acc78aSPoul-Henning Kamp /*- 264de3fddSPedro F. Giffuni * SPDX-License-Identifier: Beerware 364de3fddSPedro F. Giffuni * 491266b96SPoul-Henning Kamp * ---------------------------------------------------------------------------- 591266b96SPoul-Henning Kamp * "THE BEER-WARE LICENSE" (Revision 42): 691266b96SPoul-Henning Kamp * <phk@FreeBSD.ORG> wrote this file. As long as you retain this notice you 791266b96SPoul-Henning Kamp * can do whatever you want with this stuff. If we meet some day, and you think 891266b96SPoul-Henning Kamp * this stuff is worth it, you can buy me a beer in return. Poul-Henning Kamp 991266b96SPoul-Henning Kamp * ---------------------------------------------------------------------------- 10b0fdc837SLawrence Stewart * 1116808549SKonstantin Belousov * Copyright (c) 2011, 2015, 2016 The FreeBSD Foundation 12b0fdc837SLawrence Stewart * All rights reserved. 13b0fdc837SLawrence Stewart * 14b0fdc837SLawrence Stewart * Portions of this software were developed by Julien Ridoux at the University 15b0fdc837SLawrence Stewart * of Melbourne under sponsorship from the FreeBSD Foundation. 1616808549SKonstantin Belousov * 1716808549SKonstantin Belousov * Portions of this software were developed by Konstantin Belousov 1816808549SKonstantin Belousov * under sponsorship from the FreeBSD Foundation. 19df8bae1dSRodney W. Grimes */ 20df8bae1dSRodney W. Grimes 21677b542eSDavid E. O'Brien #include <sys/cdefs.h> 22677b542eSDavid E. O'Brien __FBSDID("$FreeBSD$"); 23677b542eSDavid E. O'Brien 2432c20357SPoul-Henning Kamp #include "opt_ntp.h" 25b0fdc837SLawrence Stewart #include "opt_ffclock.h" 2632c20357SPoul-Henning Kamp 27df8bae1dSRodney W. Grimes #include <sys/param.h> 2891266b96SPoul-Henning Kamp #include <sys/kernel.h> 295b999a6bSDavide Italiano #include <sys/limits.h> 30b0fdc837SLawrence Stewart #include <sys/lock.h> 31b0fdc837SLawrence Stewart #include <sys/mutex.h> 329dbdf2a1SEric van Gyzen #include <sys/proc.h> 3391d9eda2SIan Lepore #include <sys/sbuf.h> 349dbdf2a1SEric van Gyzen #include <sys/sleepqueue.h> 3591266b96SPoul-Henning Kamp #include <sys/sysctl.h> 364e74721cSPoul-Henning Kamp #include <sys/syslog.h> 3791266b96SPoul-Henning Kamp #include <sys/systm.h> 38b0fdc837SLawrence Stewart #include <sys/timeffc.h> 3932c20357SPoul-Henning Kamp #include <sys/timepps.h> 4048e5da55SPoul-Henning Kamp #include <sys/timetc.h> 4139acc78aSPoul-Henning Kamp #include <sys/timex.h> 42aea81038SKonstantin Belousov #include <sys/vdso.h> 4339acc78aSPoul-Henning Kamp 443bac064fSPoul-Henning Kamp /* 45c1cccd1eSWarner Losh * A large step happens on boot. This constant detects such steps. 46c1cccd1eSWarner Losh * It is relatively small so that ntp_update_second gets called enough 47c1cccd1eSWarner Losh * in the typical 'missed a couple of seconds' case, but doesn't loop 48c1cccd1eSWarner Losh * forever when the time step is large. 494f2073fbSWarner Losh */ 504f2073fbSWarner Losh #define LARGE_STEP 200 514f2073fbSWarner Losh 524f2073fbSWarner Losh /* 5362efba6aSPoul-Henning Kamp * Implement a dummy timecounter which we can use until we get a real one 5462efba6aSPoul-Henning Kamp * in the air. This allows the console and other early stuff to use 5562efba6aSPoul-Henning Kamp * time services. 563bac064fSPoul-Henning Kamp */ 573bac064fSPoul-Henning Kamp 586b00cf46SPoul-Henning Kamp static u_int 5962efba6aSPoul-Henning Kamp dummy_get_timecount(struct timecounter *tc) 6062efba6aSPoul-Henning Kamp { 616b00cf46SPoul-Henning Kamp static u_int now; 6262efba6aSPoul-Henning Kamp 6362efba6aSPoul-Henning Kamp return (++now); 6462efba6aSPoul-Henning Kamp } 6562efba6aSPoul-Henning Kamp 6662efba6aSPoul-Henning Kamp static struct timecounter dummy_timecounter = { 6778a49a45SPoul-Henning Kamp dummy_get_timecount, 0, ~0u, 1000000, "dummy", -1000000 6862efba6aSPoul-Henning Kamp }; 6962efba6aSPoul-Henning Kamp 7062efba6aSPoul-Henning Kamp struct timehands { 7162efba6aSPoul-Henning Kamp /* These fields must be initialized by the driver. */ 726b00cf46SPoul-Henning Kamp struct timecounter *th_counter; 736b00cf46SPoul-Henning Kamp int64_t th_adjustment; 7460ae52f7SEd Schouten uint64_t th_scale; 756cf2362eSKonstantin Belousov u_int th_large_delta; 766b00cf46SPoul-Henning Kamp u_int th_offset_count; 776b00cf46SPoul-Henning Kamp struct bintime th_offset; 7850c22263SKonstantin Belousov struct bintime th_bintime; 796b00cf46SPoul-Henning Kamp struct timeval th_microtime; 806b00cf46SPoul-Henning Kamp struct timespec th_nanotime; 815760b029SKonstantin Belousov struct bintime th_boottime; 8239acc78aSPoul-Henning Kamp /* Fields not to be copied in tc_windup start with th_generation. */ 832c6946dcSKonstantin Belousov u_int th_generation; 846b00cf46SPoul-Henning Kamp struct timehands *th_next; 8562efba6aSPoul-Henning Kamp }; 8662efba6aSPoul-Henning Kamp 874b23dec4SKonstantin Belousov static struct timehands ths[16] = { 884b23dec4SKonstantin Belousov [0] = { 89a83c016fSKonstantin Belousov .th_counter = &dummy_timecounter, 90a83c016fSKonstantin Belousov .th_scale = (uint64_t)-1 / 1000000, 916cf2362eSKonstantin Belousov .th_large_delta = 1000000, 92a83c016fSKonstantin Belousov .th_offset = { .sec = 1 }, 93a83c016fSKonstantin Belousov .th_generation = 1, 944b23dec4SKonstantin Belousov }, 95f5d157fbSPoul-Henning Kamp }; 9662efba6aSPoul-Henning Kamp 974b23dec4SKonstantin Belousov static struct timehands *volatile timehands = &ths[0]; 9862efba6aSPoul-Henning Kamp struct timecounter *timecounter = &dummy_timecounter; 9962efba6aSPoul-Henning Kamp static struct timecounter *timecounters = &dummy_timecounter; 1003bac064fSPoul-Henning Kamp 1010e189873SAlexander Motin int tc_min_ticktock_freq = 1; 1020e189873SAlexander Motin 103a8df530dSJohn Baldwin volatile time_t time_second = 1; 104a8df530dSJohn Baldwin volatile time_t time_uptime = 1; 105227ee8a1SPoul-Henning Kamp 106a7bc3102SPeter Wemm static int sysctl_kern_boottime(SYSCTL_HANDLER_ARGS); 107*7029da5cSPawel Biernacki SYSCTL_PROC(_kern, KERN_BOOTTIME, boottime, 108*7029da5cSPawel Biernacki CTLTYPE_STRUCT | CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, 0, 109*7029da5cSPawel Biernacki sysctl_kern_boottime, "S,timeval", 110*7029da5cSPawel Biernacki "System boottime"); 11137d38777SBruce Evans 112*7029da5cSPawel Biernacki SYSCTL_NODE(_kern, OID_AUTO, timecounter, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 113*7029da5cSPawel Biernacki ""); 114*7029da5cSPawel Biernacki static SYSCTL_NODE(_kern_timecounter, OID_AUTO, tc, 115*7029da5cSPawel Biernacki CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 116*7029da5cSPawel Biernacki ""); 11791266b96SPoul-Henning Kamp 1184e74721cSPoul-Henning Kamp static int timestepwarnings; 1194e74721cSPoul-Henning Kamp SYSCTL_INT(_kern_timecounter, OID_AUTO, stepwarnings, CTLFLAG_RW, 1202baa5cddSRebecca Cran ×tepwarnings, 0, "Log time steps"); 1214e74721cSPoul-Henning Kamp 1224b23dec4SKonstantin Belousov static int timehands_count = 2; 1236c46ce7eSKonstantin Belousov SYSCTL_INT(_kern_timecounter, OID_AUTO, timehands_count, 1246c46ce7eSKonstantin Belousov CTLFLAG_RDTUN | CTLFLAG_NOFETCH, 1254b23dec4SKonstantin Belousov &timehands_count, 0, "Count of timehands in rotation"); 1264b23dec4SKonstantin Belousov 1275b999a6bSDavide Italiano struct bintime bt_timethreshold; 1285b999a6bSDavide Italiano struct bintime bt_tickthreshold; 1295b999a6bSDavide Italiano sbintime_t sbt_timethreshold; 1305b999a6bSDavide Italiano sbintime_t sbt_tickthreshold; 1315b999a6bSDavide Italiano struct bintime tc_tick_bt; 1325b999a6bSDavide Italiano sbintime_t tc_tick_sbt; 1335b999a6bSDavide Italiano int tc_precexp; 1345b999a6bSDavide Italiano int tc_timepercentage = TC_DEFAULTPERC; 1355b999a6bSDavide Italiano static int sysctl_kern_timecounter_adjprecision(SYSCTL_HANDLER_ARGS); 1365b999a6bSDavide Italiano SYSCTL_PROC(_kern_timecounter, OID_AUTO, alloweddeviation, 137af3b2549SHans Petter Selasky CTLTYPE_INT | CTLFLAG_RWTUN | CTLFLAG_MPSAFE, 0, 0, 1385b999a6bSDavide Italiano sysctl_kern_timecounter_adjprecision, "I", 1395b999a6bSDavide Italiano "Allowed time interval deviation in percents"); 1405b999a6bSDavide Italiano 1419dbdf2a1SEric van Gyzen volatile int rtc_generation = 1; 1429dbdf2a1SEric van Gyzen 143e8bac3f2SIan Lepore static int tc_chosen; /* Non-zero if a specific tc was chosen via sysctl. */ 144e8bac3f2SIan Lepore 1455760b029SKonstantin Belousov static void tc_windup(struct bintime *new_boottimebin); 146e8444a7eSPoul-Henning Kamp static void cpu_tick_calibrate(int); 1479e1b5510SPoul-Henning Kamp 14857d025c3SGeorge V. Neville-Neil void dtrace_getnanotime(struct timespec *tsp); 14957d025c3SGeorge V. Neville-Neil 150a7bc3102SPeter Wemm static int 151a7bc3102SPeter Wemm sysctl_kern_boottime(SYSCTL_HANDLER_ARGS) 152a7bc3102SPeter Wemm { 153584b675eSKonstantin Belousov struct timeval boottime; 154584b675eSKonstantin Belousov 155584b675eSKonstantin Belousov getboottime(&boottime); 156584b675eSKonstantin Belousov 1577045ac43SOlivier Houchard /* i386 is the only arch which uses a 32bits time_t */ 1587045ac43SOlivier Houchard #ifdef __amd64__ 159a7bc3102SPeter Wemm #ifdef SCTL_MASK32 160a7bc3102SPeter Wemm int tv[2]; 161a7bc3102SPeter Wemm 162a7bc3102SPeter Wemm if (req->flags & SCTL_MASK32) { 163a7bc3102SPeter Wemm tv[0] = boottime.tv_sec; 164a7bc3102SPeter Wemm tv[1] = boottime.tv_usec; 165584b675eSKonstantin Belousov return (SYSCTL_OUT(req, tv, sizeof(tv))); 166584b675eSKonstantin Belousov } 167a7bc3102SPeter Wemm #endif 1689624d947SJuli Mallett #endif 169584b675eSKonstantin Belousov return (SYSCTL_OUT(req, &boottime, sizeof(boottime))); 170a7bc3102SPeter Wemm } 1715b1a8eb3SPoul-Henning Kamp 17293ef14a7SDavid Malone static int 17393ef14a7SDavid Malone sysctl_kern_timecounter_get(SYSCTL_HANDLER_ARGS) 17493ef14a7SDavid Malone { 17593ef14a7SDavid Malone u_int ncount; 17693ef14a7SDavid Malone struct timecounter *tc = arg1; 17793ef14a7SDavid Malone 17893ef14a7SDavid Malone ncount = tc->tc_get_timecount(tc); 1794d29106eSKonstantin Belousov return (sysctl_handle_int(oidp, &ncount, 0, req)); 18093ef14a7SDavid Malone } 18193ef14a7SDavid Malone 18293ef14a7SDavid Malone static int 18393ef14a7SDavid Malone sysctl_kern_timecounter_freq(SYSCTL_HANDLER_ARGS) 18493ef14a7SDavid Malone { 18560ae52f7SEd Schouten uint64_t freq; 18693ef14a7SDavid Malone struct timecounter *tc = arg1; 18793ef14a7SDavid Malone 18893ef14a7SDavid Malone freq = tc->tc_frequency; 1894d29106eSKonstantin Belousov return (sysctl_handle_64(oidp, &freq, 0, req)); 19093ef14a7SDavid Malone } 19193ef14a7SDavid Malone 19239acc78aSPoul-Henning Kamp /* 19339acc78aSPoul-Henning Kamp * Return the difference between the timehands' counter value now and what 19439acc78aSPoul-Henning Kamp * was when we copied it to the timehands' offset_count. 19539acc78aSPoul-Henning Kamp */ 1966b00cf46SPoul-Henning Kamp static __inline u_int 1976b00cf46SPoul-Henning Kamp tc_delta(struct timehands *th) 198e796e00dSPoul-Henning Kamp { 1996b00cf46SPoul-Henning Kamp struct timecounter *tc; 200e796e00dSPoul-Henning Kamp 2016b00cf46SPoul-Henning Kamp tc = th->th_counter; 2026b00cf46SPoul-Henning Kamp return ((tc->tc_get_timecount(tc) - th->th_offset_count) & 2036b00cf46SPoul-Henning Kamp tc->tc_counter_mask); 204e796e00dSPoul-Henning Kamp } 205a0502b19SPoul-Henning Kamp 20639acc78aSPoul-Henning Kamp /* 2076b00cf46SPoul-Henning Kamp * Functions for reading the time. We have to loop until we are sure that 20839acc78aSPoul-Henning Kamp * the timehands that we operated on was not updated under our feet. See 20939acc78aSPoul-Henning Kamp * the comment in <sys/time.h> for a description of these 12 functions. 2106b00cf46SPoul-Henning Kamp */ 2116b00cf46SPoul-Henning Kamp 2126cf2362eSKonstantin Belousov static __inline void 2136cf2362eSKonstantin Belousov bintime_off(struct bintime *bt, u_int off) 2149bce0f05SLawrence Stewart { 2159bce0f05SLawrence Stewart struct timehands *th; 2166cf2362eSKonstantin Belousov struct bintime *btp; 2176cf2362eSKonstantin Belousov uint64_t scale, x; 2186cf2362eSKonstantin Belousov u_int delta, gen, large_delta; 2199bce0f05SLawrence Stewart 2209bce0f05SLawrence Stewart do { 2219bce0f05SLawrence Stewart th = timehands; 222f4b5a972SKonstantin Belousov gen = atomic_load_acq_int(&th->th_generation); 2236cf2362eSKonstantin Belousov btp = (struct bintime *)((vm_offset_t)th + off); 2246cf2362eSKonstantin Belousov *bt = *btp; 2256cf2362eSKonstantin Belousov scale = th->th_scale; 2266cf2362eSKonstantin Belousov delta = tc_delta(th); 2276cf2362eSKonstantin Belousov large_delta = th->th_large_delta; 228f4b5a972SKonstantin Belousov atomic_thread_fence_acq(); 229f4b5a972SKonstantin Belousov } while (gen == 0 || gen != th->th_generation); 2306cf2362eSKonstantin Belousov 2316cf2362eSKonstantin Belousov if (__predict_false(delta >= large_delta)) { 2326cf2362eSKonstantin Belousov /* Avoid overflow for scale * delta. */ 2336cf2362eSKonstantin Belousov x = (scale >> 32) * delta; 2346cf2362eSKonstantin Belousov bt->sec += x >> 32; 2356cf2362eSKonstantin Belousov bintime_addx(bt, x << 32); 2366cf2362eSKonstantin Belousov bintime_addx(bt, (scale & 0xffffffff) * delta); 2376cf2362eSKonstantin Belousov } else { 2386cf2362eSKonstantin Belousov bintime_addx(bt, scale * delta); 2396cf2362eSKonstantin Belousov } 2406cf2362eSKonstantin Belousov } 2416cf2362eSKonstantin Belousov #define GETTHBINTIME(dst, member) \ 2426cf2362eSKonstantin Belousov do { \ 2436cf2362eSKonstantin Belousov _Static_assert(_Generic(((struct timehands *)NULL)->member, \ 2446cf2362eSKonstantin Belousov struct bintime: 1, default: 0) == 1, \ 2456cf2362eSKonstantin Belousov "struct timehands member is not of struct bintime type"); \ 2466cf2362eSKonstantin Belousov bintime_off(dst, __offsetof(struct timehands, member)); \ 2476cf2362eSKonstantin Belousov } while (0) 2486cf2362eSKonstantin Belousov 2496cf2362eSKonstantin Belousov static __inline void 2506cf2362eSKonstantin Belousov getthmember(void *out, size_t out_size, u_int off) 2516cf2362eSKonstantin Belousov { 2526cf2362eSKonstantin Belousov struct timehands *th; 2536cf2362eSKonstantin Belousov u_int gen; 2546cf2362eSKonstantin Belousov 2556cf2362eSKonstantin Belousov do { 2566cf2362eSKonstantin Belousov th = timehands; 2576cf2362eSKonstantin Belousov gen = atomic_load_acq_int(&th->th_generation); 2586cf2362eSKonstantin Belousov memcpy(out, (char *)th + off, out_size); 2596cf2362eSKonstantin Belousov atomic_thread_fence_acq(); 2606cf2362eSKonstantin Belousov } while (gen == 0 || gen != th->th_generation); 2616cf2362eSKonstantin Belousov } 2626cf2362eSKonstantin Belousov #define GETTHMEMBER(dst, member) \ 2636cf2362eSKonstantin Belousov do { \ 2646cf2362eSKonstantin Belousov _Static_assert(_Generic(*dst, \ 2656cf2362eSKonstantin Belousov __typeof(((struct timehands *)NULL)->member): 1, \ 2666cf2362eSKonstantin Belousov default: 0) == 1, \ 2676cf2362eSKonstantin Belousov "*dst and struct timehands member have different types"); \ 2686cf2362eSKonstantin Belousov getthmember(dst, sizeof(*dst), __offsetof(struct timehands, \ 2696cf2362eSKonstantin Belousov member)); \ 2706cf2362eSKonstantin Belousov } while (0) 2716cf2362eSKonstantin Belousov 2726cf2362eSKonstantin Belousov #ifdef FFCLOCK 2736cf2362eSKonstantin Belousov void 2746cf2362eSKonstantin Belousov fbclock_binuptime(struct bintime *bt) 2756cf2362eSKonstantin Belousov { 2766cf2362eSKonstantin Belousov 2776cf2362eSKonstantin Belousov GETTHBINTIME(bt, th_offset); 2789bce0f05SLawrence Stewart } 2799bce0f05SLawrence Stewart 280e977bac3SLawrence Stewart void 2819bce0f05SLawrence Stewart fbclock_nanouptime(struct timespec *tsp) 2829bce0f05SLawrence Stewart { 2839bce0f05SLawrence Stewart struct bintime bt; 2849bce0f05SLawrence Stewart 285c2a4ee99SLawrence Stewart fbclock_binuptime(&bt); 2869bce0f05SLawrence Stewart bintime2timespec(&bt, tsp); 2879bce0f05SLawrence Stewart } 2889bce0f05SLawrence Stewart 289e977bac3SLawrence Stewart void 2909bce0f05SLawrence Stewart fbclock_microuptime(struct timeval *tvp) 2919bce0f05SLawrence Stewart { 2929bce0f05SLawrence Stewart struct bintime bt; 2939bce0f05SLawrence Stewart 294c2a4ee99SLawrence Stewart fbclock_binuptime(&bt); 2959bce0f05SLawrence Stewart bintime2timeval(&bt, tvp); 2969bce0f05SLawrence Stewart } 2979bce0f05SLawrence Stewart 298e977bac3SLawrence Stewart void 2999bce0f05SLawrence Stewart fbclock_bintime(struct bintime *bt) 3009bce0f05SLawrence Stewart { 3019bce0f05SLawrence Stewart 3026cf2362eSKonstantin Belousov GETTHBINTIME(bt, th_bintime); 3039bce0f05SLawrence Stewart } 3049bce0f05SLawrence Stewart 305e977bac3SLawrence Stewart void 3069bce0f05SLawrence Stewart fbclock_nanotime(struct timespec *tsp) 3079bce0f05SLawrence Stewart { 3089bce0f05SLawrence Stewart struct bintime bt; 3099bce0f05SLawrence Stewart 310c2a4ee99SLawrence Stewart fbclock_bintime(&bt); 3119bce0f05SLawrence Stewart bintime2timespec(&bt, tsp); 3129bce0f05SLawrence Stewart } 3139bce0f05SLawrence Stewart 314e977bac3SLawrence Stewart void 3159bce0f05SLawrence Stewart fbclock_microtime(struct timeval *tvp) 3169bce0f05SLawrence Stewart { 3179bce0f05SLawrence Stewart struct bintime bt; 3189bce0f05SLawrence Stewart 319c2a4ee99SLawrence Stewart fbclock_bintime(&bt); 3209bce0f05SLawrence Stewart bintime2timeval(&bt, tvp); 3219bce0f05SLawrence Stewart } 3229bce0f05SLawrence Stewart 323e977bac3SLawrence Stewart void 3249bce0f05SLawrence Stewart fbclock_getbinuptime(struct bintime *bt) 3259bce0f05SLawrence Stewart { 3269bce0f05SLawrence Stewart 3276cf2362eSKonstantin Belousov GETTHMEMBER(bt, th_offset); 3289bce0f05SLawrence Stewart } 3299bce0f05SLawrence Stewart 330e977bac3SLawrence Stewart void 3319bce0f05SLawrence Stewart fbclock_getnanouptime(struct timespec *tsp) 3329bce0f05SLawrence Stewart { 3336cf2362eSKonstantin Belousov struct bintime bt; 3349bce0f05SLawrence Stewart 3356cf2362eSKonstantin Belousov GETTHMEMBER(&bt, th_offset); 3366cf2362eSKonstantin Belousov bintime2timespec(&bt, tsp); 3379bce0f05SLawrence Stewart } 3389bce0f05SLawrence Stewart 339e977bac3SLawrence Stewart void 3409bce0f05SLawrence Stewart fbclock_getmicrouptime(struct timeval *tvp) 3419bce0f05SLawrence Stewart { 3426cf2362eSKonstantin Belousov struct bintime bt; 3439bce0f05SLawrence Stewart 3446cf2362eSKonstantin Belousov GETTHMEMBER(&bt, th_offset); 3456cf2362eSKonstantin Belousov bintime2timeval(&bt, tvp); 3469bce0f05SLawrence Stewart } 3479bce0f05SLawrence Stewart 348e977bac3SLawrence Stewart void 3499bce0f05SLawrence Stewart fbclock_getbintime(struct bintime *bt) 3509bce0f05SLawrence Stewart { 3519bce0f05SLawrence Stewart 3526cf2362eSKonstantin Belousov GETTHMEMBER(bt, th_bintime); 3539bce0f05SLawrence Stewart } 3549bce0f05SLawrence Stewart 355e977bac3SLawrence Stewart void 3569bce0f05SLawrence Stewart fbclock_getnanotime(struct timespec *tsp) 3579bce0f05SLawrence Stewart { 3589bce0f05SLawrence Stewart 3596cf2362eSKonstantin Belousov GETTHMEMBER(tsp, th_nanotime); 3609bce0f05SLawrence Stewart } 3619bce0f05SLawrence Stewart 362e977bac3SLawrence Stewart void 3639bce0f05SLawrence Stewart fbclock_getmicrotime(struct timeval *tvp) 3649bce0f05SLawrence Stewart { 3659bce0f05SLawrence Stewart 3666cf2362eSKonstantin Belousov GETTHMEMBER(tvp, th_microtime); 3679bce0f05SLawrence Stewart } 3689bce0f05SLawrence Stewart #else /* !FFCLOCK */ 3696cf2362eSKonstantin Belousov 370a0502b19SPoul-Henning Kamp void 3712028c0cdSPoul-Henning Kamp binuptime(struct bintime *bt) 3722028c0cdSPoul-Henning Kamp { 3732028c0cdSPoul-Henning Kamp 3746cf2362eSKonstantin Belousov GETTHBINTIME(bt, th_offset); 3752028c0cdSPoul-Henning Kamp } 3762028c0cdSPoul-Henning Kamp 3772028c0cdSPoul-Henning Kamp void 37839acc78aSPoul-Henning Kamp nanouptime(struct timespec *tsp) 379056abcabSPoul-Henning Kamp { 380056abcabSPoul-Henning Kamp struct bintime bt; 381056abcabSPoul-Henning Kamp 382056abcabSPoul-Henning Kamp binuptime(&bt); 38339acc78aSPoul-Henning Kamp bintime2timespec(&bt, tsp); 384056abcabSPoul-Henning Kamp } 385056abcabSPoul-Henning Kamp 386056abcabSPoul-Henning Kamp void 38739acc78aSPoul-Henning Kamp microuptime(struct timeval *tvp) 388056abcabSPoul-Henning Kamp { 389056abcabSPoul-Henning Kamp struct bintime bt; 390056abcabSPoul-Henning Kamp 391056abcabSPoul-Henning Kamp binuptime(&bt); 39239acc78aSPoul-Henning Kamp bintime2timeval(&bt, tvp); 393056abcabSPoul-Henning Kamp } 394056abcabSPoul-Henning Kamp 395056abcabSPoul-Henning Kamp void 3962028c0cdSPoul-Henning Kamp bintime(struct bintime *bt) 3972028c0cdSPoul-Henning Kamp { 3982028c0cdSPoul-Henning Kamp 3996cf2362eSKonstantin Belousov GETTHBINTIME(bt, th_bintime); 4002028c0cdSPoul-Henning Kamp } 4012028c0cdSPoul-Henning Kamp 4022028c0cdSPoul-Henning Kamp void 40339acc78aSPoul-Henning Kamp nanotime(struct timespec *tsp) 40400af9731SPoul-Henning Kamp { 4052028c0cdSPoul-Henning Kamp struct bintime bt; 40600af9731SPoul-Henning Kamp 4072028c0cdSPoul-Henning Kamp bintime(&bt); 40839acc78aSPoul-Henning Kamp bintime2timespec(&bt, tsp); 40948115288SPoul-Henning Kamp } 41048115288SPoul-Henning Kamp 41148115288SPoul-Henning Kamp void 41239acc78aSPoul-Henning Kamp microtime(struct timeval *tvp) 413056abcabSPoul-Henning Kamp { 414056abcabSPoul-Henning Kamp struct bintime bt; 415056abcabSPoul-Henning Kamp 416056abcabSPoul-Henning Kamp bintime(&bt); 41739acc78aSPoul-Henning Kamp bintime2timeval(&bt, tvp); 418056abcabSPoul-Henning Kamp } 419056abcabSPoul-Henning Kamp 420056abcabSPoul-Henning Kamp void 421056abcabSPoul-Henning Kamp getbinuptime(struct bintime *bt) 42200af9731SPoul-Henning Kamp { 42300af9731SPoul-Henning Kamp 4246cf2362eSKonstantin Belousov GETTHMEMBER(bt, th_offset); 425a0502b19SPoul-Henning Kamp } 426a0502b19SPoul-Henning Kamp 427a0502b19SPoul-Henning Kamp void 428c21410e1SPoul-Henning Kamp getnanouptime(struct timespec *tsp) 429a0502b19SPoul-Henning Kamp { 4306cf2362eSKonstantin Belousov struct bintime bt; 431a0502b19SPoul-Henning Kamp 4326cf2362eSKonstantin Belousov GETTHMEMBER(&bt, th_offset); 4336cf2362eSKonstantin Belousov bintime2timespec(&bt, tsp); 434a0502b19SPoul-Henning Kamp } 435a0502b19SPoul-Henning Kamp 436c7c9a816SPoul-Henning Kamp void 437056abcabSPoul-Henning Kamp getmicrouptime(struct timeval *tvp) 438c7c9a816SPoul-Henning Kamp { 4396cf2362eSKonstantin Belousov struct bintime bt; 4407ec73f64SPoul-Henning Kamp 4416cf2362eSKonstantin Belousov GETTHMEMBER(&bt, th_offset); 4426cf2362eSKonstantin Belousov bintime2timeval(&bt, tvp); 4437ec73f64SPoul-Henning Kamp } 4447ec73f64SPoul-Henning Kamp 4457ec73f64SPoul-Henning Kamp void 446056abcabSPoul-Henning Kamp getbintime(struct bintime *bt) 4477ec73f64SPoul-Henning Kamp { 4487ec73f64SPoul-Henning Kamp 4496cf2362eSKonstantin Belousov GETTHMEMBER(bt, th_bintime); 450056abcabSPoul-Henning Kamp } 451056abcabSPoul-Henning Kamp 452056abcabSPoul-Henning Kamp void 453056abcabSPoul-Henning Kamp getnanotime(struct timespec *tsp) 454056abcabSPoul-Henning Kamp { 455056abcabSPoul-Henning Kamp 4566cf2362eSKonstantin Belousov GETTHMEMBER(tsp, th_nanotime); 457056abcabSPoul-Henning Kamp } 458056abcabSPoul-Henning Kamp 459056abcabSPoul-Henning Kamp void 460056abcabSPoul-Henning Kamp getmicrotime(struct timeval *tvp) 461056abcabSPoul-Henning Kamp { 462056abcabSPoul-Henning Kamp 4636cf2362eSKonstantin Belousov GETTHMEMBER(tvp, th_microtime); 4647ec73f64SPoul-Henning Kamp } 4659bce0f05SLawrence Stewart #endif /* FFCLOCK */ 4667ec73f64SPoul-Henning Kamp 467584b675eSKonstantin Belousov void 468584b675eSKonstantin Belousov getboottime(struct timeval *boottime) 469584b675eSKonstantin Belousov { 4705760b029SKonstantin Belousov struct bintime boottimebin; 471584b675eSKonstantin Belousov 4725760b029SKonstantin Belousov getboottimebin(&boottimebin); 4735760b029SKonstantin Belousov bintime2timeval(&boottimebin, boottime); 474584b675eSKonstantin Belousov } 475584b675eSKonstantin Belousov 476584b675eSKonstantin Belousov void 477584b675eSKonstantin Belousov getboottimebin(struct bintime *boottimebin) 478584b675eSKonstantin Belousov { 479584b675eSKonstantin Belousov 4806cf2362eSKonstantin Belousov GETTHMEMBER(boottimebin, th_boottime); 481584b675eSKonstantin Belousov } 482584b675eSKonstantin Belousov 483b0fdc837SLawrence Stewart #ifdef FFCLOCK 484b0fdc837SLawrence Stewart /* 485b0fdc837SLawrence Stewart * Support for feed-forward synchronization algorithms. This is heavily inspired 486b0fdc837SLawrence Stewart * by the timehands mechanism but kept independent from it. *_windup() functions 487b0fdc837SLawrence Stewart * have some connection to avoid accessing the timecounter hardware more than 488b0fdc837SLawrence Stewart * necessary. 489b0fdc837SLawrence Stewart */ 490b0fdc837SLawrence Stewart 491b0fdc837SLawrence Stewart /* Feed-forward clock estimates kept updated by the synchronization daemon. */ 492b0fdc837SLawrence Stewart struct ffclock_estimate ffclock_estimate; 493b0fdc837SLawrence Stewart struct bintime ffclock_boottime; /* Feed-forward boot time estimate. */ 494b0fdc837SLawrence Stewart uint32_t ffclock_status; /* Feed-forward clock status. */ 495b0fdc837SLawrence Stewart int8_t ffclock_updated; /* New estimates are available. */ 496b0fdc837SLawrence Stewart struct mtx ffclock_mtx; /* Mutex on ffclock_estimate. */ 497b0fdc837SLawrence Stewart 498b0fdc837SLawrence Stewart struct fftimehands { 499b0fdc837SLawrence Stewart struct ffclock_estimate cest; 500b0fdc837SLawrence Stewart struct bintime tick_time; 501b0fdc837SLawrence Stewart struct bintime tick_time_lerp; 502b0fdc837SLawrence Stewart ffcounter tick_ffcount; 503b0fdc837SLawrence Stewart uint64_t period_lerp; 504b0fdc837SLawrence Stewart volatile uint8_t gen; 505b0fdc837SLawrence Stewart struct fftimehands *next; 506b0fdc837SLawrence Stewart }; 507b0fdc837SLawrence Stewart 508b0fdc837SLawrence Stewart #define NUM_ELEMENTS(x) (sizeof(x) / sizeof(*x)) 509b0fdc837SLawrence Stewart 510b0fdc837SLawrence Stewart static struct fftimehands ffth[10]; 511b0fdc837SLawrence Stewart static struct fftimehands *volatile fftimehands = ffth; 512b0fdc837SLawrence Stewart 513b0fdc837SLawrence Stewart static void 514b0fdc837SLawrence Stewart ffclock_init(void) 515b0fdc837SLawrence Stewart { 516b0fdc837SLawrence Stewart struct fftimehands *cur; 517b0fdc837SLawrence Stewart struct fftimehands *last; 518b0fdc837SLawrence Stewart 519b0fdc837SLawrence Stewart memset(ffth, 0, sizeof(ffth)); 520b0fdc837SLawrence Stewart 521b0fdc837SLawrence Stewart last = ffth + NUM_ELEMENTS(ffth) - 1; 522b0fdc837SLawrence Stewart for (cur = ffth; cur < last; cur++) 523b0fdc837SLawrence Stewart cur->next = cur + 1; 524b0fdc837SLawrence Stewart last->next = ffth; 525b0fdc837SLawrence Stewart 526b0fdc837SLawrence Stewart ffclock_updated = 0; 527b0fdc837SLawrence Stewart ffclock_status = FFCLOCK_STA_UNSYNC; 528b0fdc837SLawrence Stewart mtx_init(&ffclock_mtx, "ffclock lock", NULL, MTX_DEF); 529b0fdc837SLawrence Stewart } 530b0fdc837SLawrence Stewart 531b0fdc837SLawrence Stewart /* 532b0fdc837SLawrence Stewart * Reset the feed-forward clock estimates. Called from inittodr() to get things 533b0fdc837SLawrence Stewart * kick started and uses the timecounter nominal frequency as a first period 534b0fdc837SLawrence Stewart * estimate. Note: this function may be called several time just after boot. 535b0fdc837SLawrence Stewart * Note: this is the only function that sets the value of boot time for the 536b0fdc837SLawrence Stewart * monotonic (i.e. uptime) version of the feed-forward clock. 537b0fdc837SLawrence Stewart */ 538b0fdc837SLawrence Stewart void 539b0fdc837SLawrence Stewart ffclock_reset_clock(struct timespec *ts) 540b0fdc837SLawrence Stewart { 541b0fdc837SLawrence Stewart struct timecounter *tc; 542b0fdc837SLawrence Stewart struct ffclock_estimate cest; 543b0fdc837SLawrence Stewart 544b0fdc837SLawrence Stewart tc = timehands->th_counter; 545b0fdc837SLawrence Stewart memset(&cest, 0, sizeof(struct ffclock_estimate)); 546b0fdc837SLawrence Stewart 547b0fdc837SLawrence Stewart timespec2bintime(ts, &ffclock_boottime); 548b0fdc837SLawrence Stewart timespec2bintime(ts, &(cest.update_time)); 549b0fdc837SLawrence Stewart ffclock_read_counter(&cest.update_ffcount); 550b0fdc837SLawrence Stewart cest.leapsec_next = 0; 551b0fdc837SLawrence Stewart cest.period = ((1ULL << 63) / tc->tc_frequency) << 1; 552b0fdc837SLawrence Stewart cest.errb_abs = 0; 553b0fdc837SLawrence Stewart cest.errb_rate = 0; 554b0fdc837SLawrence Stewart cest.status = FFCLOCK_STA_UNSYNC; 555b0fdc837SLawrence Stewart cest.leapsec_total = 0; 556b0fdc837SLawrence Stewart cest.leapsec = 0; 557b0fdc837SLawrence Stewart 558b0fdc837SLawrence Stewart mtx_lock(&ffclock_mtx); 559b0fdc837SLawrence Stewart bcopy(&cest, &ffclock_estimate, sizeof(struct ffclock_estimate)); 560b0fdc837SLawrence Stewart ffclock_updated = INT8_MAX; 561b0fdc837SLawrence Stewart mtx_unlock(&ffclock_mtx); 562b0fdc837SLawrence Stewart 563b0fdc837SLawrence Stewart printf("ffclock reset: %s (%llu Hz), time = %ld.%09lu\n", tc->tc_name, 564b0fdc837SLawrence Stewart (unsigned long long)tc->tc_frequency, (long)ts->tv_sec, 565b0fdc837SLawrence Stewart (unsigned long)ts->tv_nsec); 566b0fdc837SLawrence Stewart } 567b0fdc837SLawrence Stewart 568b0fdc837SLawrence Stewart /* 569b0fdc837SLawrence Stewart * Sub-routine to convert a time interval measured in RAW counter units to time 570b0fdc837SLawrence Stewart * in seconds stored in bintime format. 571b0fdc837SLawrence Stewart * NOTE: bintime_mul requires u_int, but the value of the ffcounter may be 572b0fdc837SLawrence Stewart * larger than the max value of u_int (on 32 bit architecture). Loop to consume 573b0fdc837SLawrence Stewart * extra cycles. 574b0fdc837SLawrence Stewart */ 575b0fdc837SLawrence Stewart static void 576b0fdc837SLawrence Stewart ffclock_convert_delta(ffcounter ffdelta, uint64_t period, struct bintime *bt) 577b0fdc837SLawrence Stewart { 578b0fdc837SLawrence Stewart struct bintime bt2; 579b0fdc837SLawrence Stewart ffcounter delta, delta_max; 580b0fdc837SLawrence Stewart 581b0fdc837SLawrence Stewart delta_max = (1ULL << (8 * sizeof(unsigned int))) - 1; 582b0fdc837SLawrence Stewart bintime_clear(bt); 583b0fdc837SLawrence Stewart do { 584b0fdc837SLawrence Stewart if (ffdelta > delta_max) 585b0fdc837SLawrence Stewart delta = delta_max; 586b0fdc837SLawrence Stewart else 587b0fdc837SLawrence Stewart delta = ffdelta; 588b0fdc837SLawrence Stewart bt2.sec = 0; 589b0fdc837SLawrence Stewart bt2.frac = period; 590b0fdc837SLawrence Stewart bintime_mul(&bt2, (unsigned int)delta); 591b0fdc837SLawrence Stewart bintime_add(bt, &bt2); 592b0fdc837SLawrence Stewart ffdelta -= delta; 593b0fdc837SLawrence Stewart } while (ffdelta > 0); 594b0fdc837SLawrence Stewart } 595b0fdc837SLawrence Stewart 596b0fdc837SLawrence Stewart /* 597b0fdc837SLawrence Stewart * Update the fftimehands. 598b0fdc837SLawrence Stewart * Push the tick ffcount and time(s) forward based on current clock estimate. 599b0fdc837SLawrence Stewart * The conversion from ffcounter to bintime relies on the difference clock 600b0fdc837SLawrence Stewart * principle, whose accuracy relies on computing small time intervals. If a new 601b0fdc837SLawrence Stewart * clock estimate has been passed by the synchronisation daemon, make it 602b0fdc837SLawrence Stewart * current, and compute the linear interpolation for monotonic time if needed. 603b0fdc837SLawrence Stewart */ 604b0fdc837SLawrence Stewart static void 605b0fdc837SLawrence Stewart ffclock_windup(unsigned int delta) 606b0fdc837SLawrence Stewart { 607b0fdc837SLawrence Stewart struct ffclock_estimate *cest; 608b0fdc837SLawrence Stewart struct fftimehands *ffth; 609b0fdc837SLawrence Stewart struct bintime bt, gap_lerp; 610b0fdc837SLawrence Stewart ffcounter ffdelta; 611b0fdc837SLawrence Stewart uint64_t frac; 612b0fdc837SLawrence Stewart unsigned int polling; 613b0fdc837SLawrence Stewart uint8_t forward_jump, ogen; 614b0fdc837SLawrence Stewart 615b0fdc837SLawrence Stewart /* 616b0fdc837SLawrence Stewart * Pick the next timehand, copy current ffclock estimates and move tick 617b0fdc837SLawrence Stewart * times and counter forward. 618b0fdc837SLawrence Stewart */ 619b0fdc837SLawrence Stewart forward_jump = 0; 620b0fdc837SLawrence Stewart ffth = fftimehands->next; 621b0fdc837SLawrence Stewart ogen = ffth->gen; 622b0fdc837SLawrence Stewart ffth->gen = 0; 623b0fdc837SLawrence Stewart cest = &ffth->cest; 624b0fdc837SLawrence Stewart bcopy(&fftimehands->cest, cest, sizeof(struct ffclock_estimate)); 625b0fdc837SLawrence Stewart ffdelta = (ffcounter)delta; 626b0fdc837SLawrence Stewart ffth->period_lerp = fftimehands->period_lerp; 627b0fdc837SLawrence Stewart 628b0fdc837SLawrence Stewart ffth->tick_time = fftimehands->tick_time; 629b0fdc837SLawrence Stewart ffclock_convert_delta(ffdelta, cest->period, &bt); 630b0fdc837SLawrence Stewart bintime_add(&ffth->tick_time, &bt); 631b0fdc837SLawrence Stewart 632b0fdc837SLawrence Stewart ffth->tick_time_lerp = fftimehands->tick_time_lerp; 633b0fdc837SLawrence Stewart ffclock_convert_delta(ffdelta, ffth->period_lerp, &bt); 634b0fdc837SLawrence Stewart bintime_add(&ffth->tick_time_lerp, &bt); 635b0fdc837SLawrence Stewart 636b0fdc837SLawrence Stewart ffth->tick_ffcount = fftimehands->tick_ffcount + ffdelta; 637b0fdc837SLawrence Stewart 638b0fdc837SLawrence Stewart /* 639b0fdc837SLawrence Stewart * Assess the status of the clock, if the last update is too old, it is 640b0fdc837SLawrence Stewart * likely the synchronisation daemon is dead and the clock is free 641b0fdc837SLawrence Stewart * running. 642b0fdc837SLawrence Stewart */ 643b0fdc837SLawrence Stewart if (ffclock_updated == 0) { 644b0fdc837SLawrence Stewart ffdelta = ffth->tick_ffcount - cest->update_ffcount; 645b0fdc837SLawrence Stewart ffclock_convert_delta(ffdelta, cest->period, &bt); 646b0fdc837SLawrence Stewart if (bt.sec > 2 * FFCLOCK_SKM_SCALE) 647b0fdc837SLawrence Stewart ffclock_status |= FFCLOCK_STA_UNSYNC; 648b0fdc837SLawrence Stewart } 649b0fdc837SLawrence Stewart 650b0fdc837SLawrence Stewart /* 651b0fdc837SLawrence Stewart * If available, grab updated clock estimates and make them current. 652b0fdc837SLawrence Stewart * Recompute time at this tick using the updated estimates. The clock 653b0fdc837SLawrence Stewart * estimates passed the feed-forward synchronisation daemon may result 654b0fdc837SLawrence Stewart * in time conversion that is not monotonically increasing (just after 655b0fdc837SLawrence Stewart * the update). time_lerp is a particular linear interpolation over the 656b0fdc837SLawrence Stewart * synchronisation algo polling period that ensures monotonicity for the 657b0fdc837SLawrence Stewart * clock ids requesting it. 658b0fdc837SLawrence Stewart */ 659b0fdc837SLawrence Stewart if (ffclock_updated > 0) { 660b0fdc837SLawrence Stewart bcopy(&ffclock_estimate, cest, sizeof(struct ffclock_estimate)); 661b0fdc837SLawrence Stewart ffdelta = ffth->tick_ffcount - cest->update_ffcount; 662b0fdc837SLawrence Stewart ffth->tick_time = cest->update_time; 663b0fdc837SLawrence Stewart ffclock_convert_delta(ffdelta, cest->period, &bt); 664b0fdc837SLawrence Stewart bintime_add(&ffth->tick_time, &bt); 665b0fdc837SLawrence Stewart 666b0fdc837SLawrence Stewart /* ffclock_reset sets ffclock_updated to INT8_MAX */ 667b0fdc837SLawrence Stewart if (ffclock_updated == INT8_MAX) 668b0fdc837SLawrence Stewart ffth->tick_time_lerp = ffth->tick_time; 669b0fdc837SLawrence Stewart 670b0fdc837SLawrence Stewart if (bintime_cmp(&ffth->tick_time, &ffth->tick_time_lerp, >)) 671b0fdc837SLawrence Stewart forward_jump = 1; 672b0fdc837SLawrence Stewart else 673b0fdc837SLawrence Stewart forward_jump = 0; 674b0fdc837SLawrence Stewart 675b0fdc837SLawrence Stewart bintime_clear(&gap_lerp); 676b0fdc837SLawrence Stewart if (forward_jump) { 677b0fdc837SLawrence Stewart gap_lerp = ffth->tick_time; 678b0fdc837SLawrence Stewart bintime_sub(&gap_lerp, &ffth->tick_time_lerp); 679b0fdc837SLawrence Stewart } else { 680b0fdc837SLawrence Stewart gap_lerp = ffth->tick_time_lerp; 681b0fdc837SLawrence Stewart bintime_sub(&gap_lerp, &ffth->tick_time); 682b0fdc837SLawrence Stewart } 683b0fdc837SLawrence Stewart 684b0fdc837SLawrence Stewart /* 685b0fdc837SLawrence Stewart * The reset from the RTC clock may be far from accurate, and 686b0fdc837SLawrence Stewart * reducing the gap between real time and interpolated time 687b0fdc837SLawrence Stewart * could take a very long time if the interpolated clock insists 688b0fdc837SLawrence Stewart * on strict monotonicity. The clock is reset under very strict 689b0fdc837SLawrence Stewart * conditions (kernel time is known to be wrong and 690b0fdc837SLawrence Stewart * synchronization daemon has been restarted recently. 691b0fdc837SLawrence Stewart * ffclock_boottime absorbs the jump to ensure boot time is 692b0fdc837SLawrence Stewart * correct and uptime functions stay consistent. 693b0fdc837SLawrence Stewart */ 694b0fdc837SLawrence Stewart if (((ffclock_status & FFCLOCK_STA_UNSYNC) == FFCLOCK_STA_UNSYNC) && 695b0fdc837SLawrence Stewart ((cest->status & FFCLOCK_STA_UNSYNC) == 0) && 696b0fdc837SLawrence Stewart ((cest->status & FFCLOCK_STA_WARMUP) == FFCLOCK_STA_WARMUP)) { 697b0fdc837SLawrence Stewart if (forward_jump) 698b0fdc837SLawrence Stewart bintime_add(&ffclock_boottime, &gap_lerp); 699b0fdc837SLawrence Stewart else 700b0fdc837SLawrence Stewart bintime_sub(&ffclock_boottime, &gap_lerp); 701b0fdc837SLawrence Stewart ffth->tick_time_lerp = ffth->tick_time; 702b0fdc837SLawrence Stewart bintime_clear(&gap_lerp); 703b0fdc837SLawrence Stewart } 704b0fdc837SLawrence Stewart 705b0fdc837SLawrence Stewart ffclock_status = cest->status; 706b0fdc837SLawrence Stewart ffth->period_lerp = cest->period; 707b0fdc837SLawrence Stewart 708b0fdc837SLawrence Stewart /* 709b0fdc837SLawrence Stewart * Compute corrected period used for the linear interpolation of 710b0fdc837SLawrence Stewart * time. The rate of linear interpolation is capped to 5000PPM 711b0fdc837SLawrence Stewart * (5ms/s). 712b0fdc837SLawrence Stewart */ 713b0fdc837SLawrence Stewart if (bintime_isset(&gap_lerp)) { 714b0fdc837SLawrence Stewart ffdelta = cest->update_ffcount; 715b0fdc837SLawrence Stewart ffdelta -= fftimehands->cest.update_ffcount; 716b0fdc837SLawrence Stewart ffclock_convert_delta(ffdelta, cest->period, &bt); 717b0fdc837SLawrence Stewart polling = bt.sec; 718b0fdc837SLawrence Stewart bt.sec = 0; 719b0fdc837SLawrence Stewart bt.frac = 5000000 * (uint64_t)18446744073LL; 720b0fdc837SLawrence Stewart bintime_mul(&bt, polling); 721b0fdc837SLawrence Stewart if (bintime_cmp(&gap_lerp, &bt, >)) 722b0fdc837SLawrence Stewart gap_lerp = bt; 723b0fdc837SLawrence Stewart 724b0fdc837SLawrence Stewart /* Approximate 1 sec by 1-(1/2^64) to ease arithmetic */ 725b0fdc837SLawrence Stewart frac = 0; 726b0fdc837SLawrence Stewart if (gap_lerp.sec > 0) { 727b0fdc837SLawrence Stewart frac -= 1; 728b0fdc837SLawrence Stewart frac /= ffdelta / gap_lerp.sec; 729b0fdc837SLawrence Stewart } 730b0fdc837SLawrence Stewart frac += gap_lerp.frac / ffdelta; 731b0fdc837SLawrence Stewart 732b0fdc837SLawrence Stewart if (forward_jump) 733b0fdc837SLawrence Stewart ffth->period_lerp += frac; 734b0fdc837SLawrence Stewart else 735b0fdc837SLawrence Stewart ffth->period_lerp -= frac; 736b0fdc837SLawrence Stewart } 737b0fdc837SLawrence Stewart 738b0fdc837SLawrence Stewart ffclock_updated = 0; 739b0fdc837SLawrence Stewart } 740b0fdc837SLawrence Stewart if (++ogen == 0) 741b0fdc837SLawrence Stewart ogen = 1; 742b0fdc837SLawrence Stewart ffth->gen = ogen; 743b0fdc837SLawrence Stewart fftimehands = ffth; 744b0fdc837SLawrence Stewart } 745b0fdc837SLawrence Stewart 746b0fdc837SLawrence Stewart /* 747b0fdc837SLawrence Stewart * Adjust the fftimehands when the timecounter is changed. Stating the obvious, 748b0fdc837SLawrence Stewart * the old and new hardware counter cannot be read simultaneously. tc_windup() 749b0fdc837SLawrence Stewart * does read the two counters 'back to back', but a few cycles are effectively 750b0fdc837SLawrence Stewart * lost, and not accumulated in tick_ffcount. This is a fairly radical 751b0fdc837SLawrence Stewart * operation for a feed-forward synchronization daemon, and it is its job to not 752b0fdc837SLawrence Stewart * pushing irrelevant data to the kernel. Because there is no locking here, 753b0fdc837SLawrence Stewart * simply force to ignore pending or next update to give daemon a chance to 754b0fdc837SLawrence Stewart * realize the counter has changed. 755b0fdc837SLawrence Stewart */ 756b0fdc837SLawrence Stewart static void 757b0fdc837SLawrence Stewart ffclock_change_tc(struct timehands *th) 758b0fdc837SLawrence Stewart { 759b0fdc837SLawrence Stewart struct fftimehands *ffth; 760b0fdc837SLawrence Stewart struct ffclock_estimate *cest; 761b0fdc837SLawrence Stewart struct timecounter *tc; 762b0fdc837SLawrence Stewart uint8_t ogen; 763b0fdc837SLawrence Stewart 764b0fdc837SLawrence Stewart tc = th->th_counter; 765b0fdc837SLawrence Stewart ffth = fftimehands->next; 766b0fdc837SLawrence Stewart ogen = ffth->gen; 767b0fdc837SLawrence Stewart ffth->gen = 0; 768b0fdc837SLawrence Stewart 769b0fdc837SLawrence Stewart cest = &ffth->cest; 770b0fdc837SLawrence Stewart bcopy(&(fftimehands->cest), cest, sizeof(struct ffclock_estimate)); 771b0fdc837SLawrence Stewart cest->period = ((1ULL << 63) / tc->tc_frequency ) << 1; 772b0fdc837SLawrence Stewart cest->errb_abs = 0; 773b0fdc837SLawrence Stewart cest->errb_rate = 0; 774b0fdc837SLawrence Stewart cest->status |= FFCLOCK_STA_UNSYNC; 775b0fdc837SLawrence Stewart 776b0fdc837SLawrence Stewart ffth->tick_ffcount = fftimehands->tick_ffcount; 777b0fdc837SLawrence Stewart ffth->tick_time_lerp = fftimehands->tick_time_lerp; 778b0fdc837SLawrence Stewart ffth->tick_time = fftimehands->tick_time; 779b0fdc837SLawrence Stewart ffth->period_lerp = cest->period; 780b0fdc837SLawrence Stewart 781b0fdc837SLawrence Stewart /* Do not lock but ignore next update from synchronization daemon. */ 782b0fdc837SLawrence Stewart ffclock_updated--; 783b0fdc837SLawrence Stewart 784b0fdc837SLawrence Stewart if (++ogen == 0) 785b0fdc837SLawrence Stewart ogen = 1; 786b0fdc837SLawrence Stewart ffth->gen = ogen; 787b0fdc837SLawrence Stewart fftimehands = ffth; 788b0fdc837SLawrence Stewart } 789b0fdc837SLawrence Stewart 790b0fdc837SLawrence Stewart /* 791b0fdc837SLawrence Stewart * Retrieve feed-forward counter and time of last kernel tick. 792b0fdc837SLawrence Stewart */ 793b0fdc837SLawrence Stewart void 794b0fdc837SLawrence Stewart ffclock_last_tick(ffcounter *ffcount, struct bintime *bt, uint32_t flags) 795b0fdc837SLawrence Stewart { 796b0fdc837SLawrence Stewart struct fftimehands *ffth; 797b0fdc837SLawrence Stewart uint8_t gen; 798b0fdc837SLawrence Stewart 799b0fdc837SLawrence Stewart /* 800b0fdc837SLawrence Stewart * No locking but check generation has not changed. Also need to make 801b0fdc837SLawrence Stewart * sure ffdelta is positive, i.e. ffcount > tick_ffcount. 802b0fdc837SLawrence Stewart */ 803b0fdc837SLawrence Stewart do { 804b0fdc837SLawrence Stewart ffth = fftimehands; 805b0fdc837SLawrence Stewart gen = ffth->gen; 806b0fdc837SLawrence Stewart if ((flags & FFCLOCK_LERP) == FFCLOCK_LERP) 807b0fdc837SLawrence Stewart *bt = ffth->tick_time_lerp; 808b0fdc837SLawrence Stewart else 809b0fdc837SLawrence Stewart *bt = ffth->tick_time; 810b0fdc837SLawrence Stewart *ffcount = ffth->tick_ffcount; 811b0fdc837SLawrence Stewart } while (gen == 0 || gen != ffth->gen); 812b0fdc837SLawrence Stewart } 813b0fdc837SLawrence Stewart 814b0fdc837SLawrence Stewart /* 815b0fdc837SLawrence Stewart * Absolute clock conversion. Low level function to convert ffcounter to 816b0fdc837SLawrence Stewart * bintime. The ffcounter is converted using the current ffclock period estimate 817b0fdc837SLawrence Stewart * or the "interpolated period" to ensure monotonicity. 818b0fdc837SLawrence Stewart * NOTE: this conversion may have been deferred, and the clock updated since the 819b0fdc837SLawrence Stewart * hardware counter has been read. 820b0fdc837SLawrence Stewart */ 821b0fdc837SLawrence Stewart void 822b0fdc837SLawrence Stewart ffclock_convert_abs(ffcounter ffcount, struct bintime *bt, uint32_t flags) 823b0fdc837SLawrence Stewart { 824b0fdc837SLawrence Stewart struct fftimehands *ffth; 825b0fdc837SLawrence Stewart struct bintime bt2; 826b0fdc837SLawrence Stewart ffcounter ffdelta; 827b0fdc837SLawrence Stewart uint8_t gen; 828b0fdc837SLawrence Stewart 829b0fdc837SLawrence Stewart /* 830b0fdc837SLawrence Stewart * No locking but check generation has not changed. Also need to make 831b0fdc837SLawrence Stewart * sure ffdelta is positive, i.e. ffcount > tick_ffcount. 832b0fdc837SLawrence Stewart */ 833b0fdc837SLawrence Stewart do { 834b0fdc837SLawrence Stewart ffth = fftimehands; 835b0fdc837SLawrence Stewart gen = ffth->gen; 836b0fdc837SLawrence Stewart if (ffcount > ffth->tick_ffcount) 837b0fdc837SLawrence Stewart ffdelta = ffcount - ffth->tick_ffcount; 838b0fdc837SLawrence Stewart else 839b0fdc837SLawrence Stewart ffdelta = ffth->tick_ffcount - ffcount; 840b0fdc837SLawrence Stewart 841b0fdc837SLawrence Stewart if ((flags & FFCLOCK_LERP) == FFCLOCK_LERP) { 842b0fdc837SLawrence Stewart *bt = ffth->tick_time_lerp; 843b0fdc837SLawrence Stewart ffclock_convert_delta(ffdelta, ffth->period_lerp, &bt2); 844b0fdc837SLawrence Stewart } else { 845b0fdc837SLawrence Stewart *bt = ffth->tick_time; 846b0fdc837SLawrence Stewart ffclock_convert_delta(ffdelta, ffth->cest.period, &bt2); 847b0fdc837SLawrence Stewart } 848b0fdc837SLawrence Stewart 849b0fdc837SLawrence Stewart if (ffcount > ffth->tick_ffcount) 850b0fdc837SLawrence Stewart bintime_add(bt, &bt2); 851b0fdc837SLawrence Stewart else 852b0fdc837SLawrence Stewart bintime_sub(bt, &bt2); 853b0fdc837SLawrence Stewart } while (gen == 0 || gen != ffth->gen); 854b0fdc837SLawrence Stewart } 855b0fdc837SLawrence Stewart 856b0fdc837SLawrence Stewart /* 857b0fdc837SLawrence Stewart * Difference clock conversion. 858b0fdc837SLawrence Stewart * Low level function to Convert a time interval measured in RAW counter units 859b0fdc837SLawrence Stewart * into bintime. The difference clock allows measuring small intervals much more 860b0fdc837SLawrence Stewart * reliably than the absolute clock. 861b0fdc837SLawrence Stewart */ 862b0fdc837SLawrence Stewart void 863b0fdc837SLawrence Stewart ffclock_convert_diff(ffcounter ffdelta, struct bintime *bt) 864b0fdc837SLawrence Stewart { 865b0fdc837SLawrence Stewart struct fftimehands *ffth; 866b0fdc837SLawrence Stewart uint8_t gen; 867b0fdc837SLawrence Stewart 868b0fdc837SLawrence Stewart /* No locking but check generation has not changed. */ 869b0fdc837SLawrence Stewart do { 870b0fdc837SLawrence Stewart ffth = fftimehands; 871b0fdc837SLawrence Stewart gen = ffth->gen; 872b0fdc837SLawrence Stewart ffclock_convert_delta(ffdelta, ffth->cest.period, bt); 873b0fdc837SLawrence Stewart } while (gen == 0 || gen != ffth->gen); 874b0fdc837SLawrence Stewart } 875b0fdc837SLawrence Stewart 876b0fdc837SLawrence Stewart /* 877b0fdc837SLawrence Stewart * Access to current ffcounter value. 878b0fdc837SLawrence Stewart */ 879b0fdc837SLawrence Stewart void 880b0fdc837SLawrence Stewart ffclock_read_counter(ffcounter *ffcount) 881b0fdc837SLawrence Stewart { 882b0fdc837SLawrence Stewart struct timehands *th; 883b0fdc837SLawrence Stewart struct fftimehands *ffth; 884b0fdc837SLawrence Stewart unsigned int gen, delta; 885b0fdc837SLawrence Stewart 886b0fdc837SLawrence Stewart /* 887b0fdc837SLawrence Stewart * ffclock_windup() called from tc_windup(), safe to rely on 888b0fdc837SLawrence Stewart * th->th_generation only, for correct delta and ffcounter. 889b0fdc837SLawrence Stewart */ 890b0fdc837SLawrence Stewart do { 891b0fdc837SLawrence Stewart th = timehands; 892f4b5a972SKonstantin Belousov gen = atomic_load_acq_int(&th->th_generation); 893b0fdc837SLawrence Stewart ffth = fftimehands; 894b0fdc837SLawrence Stewart delta = tc_delta(th); 895b0fdc837SLawrence Stewart *ffcount = ffth->tick_ffcount; 896f4b5a972SKonstantin Belousov atomic_thread_fence_acq(); 897f4b5a972SKonstantin Belousov } while (gen == 0 || gen != th->th_generation); 898b0fdc837SLawrence Stewart 899b0fdc837SLawrence Stewart *ffcount += delta; 900b0fdc837SLawrence Stewart } 9019bce0f05SLawrence Stewart 9029bce0f05SLawrence Stewart void 9039bce0f05SLawrence Stewart binuptime(struct bintime *bt) 9049bce0f05SLawrence Stewart { 9059bce0f05SLawrence Stewart 90688394fe4SLawrence Stewart binuptime_fromclock(bt, sysclock_active); 9079bce0f05SLawrence Stewart } 9089bce0f05SLawrence Stewart 9099bce0f05SLawrence Stewart void 9109bce0f05SLawrence Stewart nanouptime(struct timespec *tsp) 9119bce0f05SLawrence Stewart { 9129bce0f05SLawrence Stewart 91388394fe4SLawrence Stewart nanouptime_fromclock(tsp, sysclock_active); 9149bce0f05SLawrence Stewart } 9159bce0f05SLawrence Stewart 9169bce0f05SLawrence Stewart void 9179bce0f05SLawrence Stewart microuptime(struct timeval *tvp) 9189bce0f05SLawrence Stewart { 9199bce0f05SLawrence Stewart 92088394fe4SLawrence Stewart microuptime_fromclock(tvp, sysclock_active); 9219bce0f05SLawrence Stewart } 9229bce0f05SLawrence Stewart 9239bce0f05SLawrence Stewart void 9249bce0f05SLawrence Stewart bintime(struct bintime *bt) 9259bce0f05SLawrence Stewart { 9269bce0f05SLawrence Stewart 92788394fe4SLawrence Stewart bintime_fromclock(bt, sysclock_active); 9289bce0f05SLawrence Stewart } 9299bce0f05SLawrence Stewart 9309bce0f05SLawrence Stewart void 9319bce0f05SLawrence Stewart nanotime(struct timespec *tsp) 9329bce0f05SLawrence Stewart { 9339bce0f05SLawrence Stewart 93488394fe4SLawrence Stewart nanotime_fromclock(tsp, sysclock_active); 9359bce0f05SLawrence Stewart } 9369bce0f05SLawrence Stewart 9379bce0f05SLawrence Stewart void 9389bce0f05SLawrence Stewart microtime(struct timeval *tvp) 9399bce0f05SLawrence Stewart { 9409bce0f05SLawrence Stewart 94188394fe4SLawrence Stewart microtime_fromclock(tvp, sysclock_active); 9429bce0f05SLawrence Stewart } 9439bce0f05SLawrence Stewart 9449bce0f05SLawrence Stewart void 9459bce0f05SLawrence Stewart getbinuptime(struct bintime *bt) 9469bce0f05SLawrence Stewart { 9479bce0f05SLawrence Stewart 94888394fe4SLawrence Stewart getbinuptime_fromclock(bt, sysclock_active); 9499bce0f05SLawrence Stewart } 9509bce0f05SLawrence Stewart 9519bce0f05SLawrence Stewart void 9529bce0f05SLawrence Stewart getnanouptime(struct timespec *tsp) 9539bce0f05SLawrence Stewart { 9549bce0f05SLawrence Stewart 95588394fe4SLawrence Stewart getnanouptime_fromclock(tsp, sysclock_active); 9569bce0f05SLawrence Stewart } 9579bce0f05SLawrence Stewart 9589bce0f05SLawrence Stewart void 9599bce0f05SLawrence Stewart getmicrouptime(struct timeval *tvp) 9609bce0f05SLawrence Stewart { 9619bce0f05SLawrence Stewart 96288394fe4SLawrence Stewart getmicrouptime_fromclock(tvp, sysclock_active); 9639bce0f05SLawrence Stewart } 9649bce0f05SLawrence Stewart 9659bce0f05SLawrence Stewart void 9669bce0f05SLawrence Stewart getbintime(struct bintime *bt) 9679bce0f05SLawrence Stewart { 9689bce0f05SLawrence Stewart 96988394fe4SLawrence Stewart getbintime_fromclock(bt, sysclock_active); 9709bce0f05SLawrence Stewart } 9719bce0f05SLawrence Stewart 9729bce0f05SLawrence Stewart void 9739bce0f05SLawrence Stewart getnanotime(struct timespec *tsp) 9749bce0f05SLawrence Stewart { 9759bce0f05SLawrence Stewart 97688394fe4SLawrence Stewart getnanotime_fromclock(tsp, sysclock_active); 9779bce0f05SLawrence Stewart } 9789bce0f05SLawrence Stewart 9799bce0f05SLawrence Stewart void 9809bce0f05SLawrence Stewart getmicrotime(struct timeval *tvp) 9819bce0f05SLawrence Stewart { 9829bce0f05SLawrence Stewart 98388394fe4SLawrence Stewart getmicrouptime_fromclock(tvp, sysclock_active); 9849bce0f05SLawrence Stewart } 9856cedd609SLawrence Stewart 986b0fdc837SLawrence Stewart #endif /* FFCLOCK */ 987b0fdc837SLawrence Stewart 98839acc78aSPoul-Henning Kamp /* 98957d025c3SGeorge V. Neville-Neil * This is a clone of getnanotime and used for walltimestamps. 99057d025c3SGeorge V. Neville-Neil * The dtrace_ prefix prevents fbt from creating probes for 99157d025c3SGeorge V. Neville-Neil * it so walltimestamp can be safely used in all fbt probes. 99257d025c3SGeorge V. Neville-Neil */ 99357d025c3SGeorge V. Neville-Neil void 99457d025c3SGeorge V. Neville-Neil dtrace_getnanotime(struct timespec *tsp) 99557d025c3SGeorge V. Neville-Neil { 99657d025c3SGeorge V. Neville-Neil 9976cf2362eSKonstantin Belousov GETTHMEMBER(tsp, th_nanotime); 99857d025c3SGeorge V. Neville-Neil } 99957d025c3SGeorge V. Neville-Neil 100057d025c3SGeorge V. Neville-Neil /* 10016cedd609SLawrence Stewart * System clock currently providing time to the system. Modifiable via sysctl 10026cedd609SLawrence Stewart * when the FFCLOCK option is defined. 10036cedd609SLawrence Stewart */ 10046cedd609SLawrence Stewart int sysclock_active = SYSCLOCK_FBCK; 10056cedd609SLawrence Stewart 10066cedd609SLawrence Stewart /* Internal NTP status and error estimates. */ 10076cedd609SLawrence Stewart extern int time_status; 10086cedd609SLawrence Stewart extern long time_esterror; 10096cedd609SLawrence Stewart 10106cedd609SLawrence Stewart /* 10116cedd609SLawrence Stewart * Take a snapshot of sysclock data which can be used to compare system clocks 10126cedd609SLawrence Stewart * and generate timestamps after the fact. 10136cedd609SLawrence Stewart */ 10146cedd609SLawrence Stewart void 10156cedd609SLawrence Stewart sysclock_getsnapshot(struct sysclock_snap *clock_snap, int fast) 10166cedd609SLawrence Stewart { 10176cedd609SLawrence Stewart struct fbclock_info *fbi; 10186cedd609SLawrence Stewart struct timehands *th; 10196cedd609SLawrence Stewart struct bintime bt; 10206cedd609SLawrence Stewart unsigned int delta, gen; 10216cedd609SLawrence Stewart #ifdef FFCLOCK 10226cedd609SLawrence Stewart ffcounter ffcount; 10236cedd609SLawrence Stewart struct fftimehands *ffth; 10246cedd609SLawrence Stewart struct ffclock_info *ffi; 10256cedd609SLawrence Stewart struct ffclock_estimate cest; 10266cedd609SLawrence Stewart 10276cedd609SLawrence Stewart ffi = &clock_snap->ff_info; 10286cedd609SLawrence Stewart #endif 10296cedd609SLawrence Stewart 10306cedd609SLawrence Stewart fbi = &clock_snap->fb_info; 10316cedd609SLawrence Stewart delta = 0; 10326cedd609SLawrence Stewart 10336cedd609SLawrence Stewart do { 10346cedd609SLawrence Stewart th = timehands; 1035f4b5a972SKonstantin Belousov gen = atomic_load_acq_int(&th->th_generation); 10366cedd609SLawrence Stewart fbi->th_scale = th->th_scale; 10376cedd609SLawrence Stewart fbi->tick_time = th->th_offset; 10386cedd609SLawrence Stewart #ifdef FFCLOCK 10396cedd609SLawrence Stewart ffth = fftimehands; 10406cedd609SLawrence Stewart ffi->tick_time = ffth->tick_time_lerp; 10416cedd609SLawrence Stewart ffi->tick_time_lerp = ffth->tick_time_lerp; 10426cedd609SLawrence Stewart ffi->period = ffth->cest.period; 10436cedd609SLawrence Stewart ffi->period_lerp = ffth->period_lerp; 10446cedd609SLawrence Stewart clock_snap->ffcount = ffth->tick_ffcount; 10456cedd609SLawrence Stewart cest = ffth->cest; 10466cedd609SLawrence Stewart #endif 10476cedd609SLawrence Stewart if (!fast) 10486cedd609SLawrence Stewart delta = tc_delta(th); 1049f4b5a972SKonstantin Belousov atomic_thread_fence_acq(); 1050f4b5a972SKonstantin Belousov } while (gen == 0 || gen != th->th_generation); 10516cedd609SLawrence Stewart 10526cedd609SLawrence Stewart clock_snap->delta = delta; 10536cedd609SLawrence Stewart clock_snap->sysclock_active = sysclock_active; 10546cedd609SLawrence Stewart 10556cedd609SLawrence Stewart /* Record feedback clock status and error. */ 10566cedd609SLawrence Stewart clock_snap->fb_info.status = time_status; 10576cedd609SLawrence Stewart /* XXX: Very crude estimate of feedback clock error. */ 10586cedd609SLawrence Stewart bt.sec = time_esterror / 1000000; 10596cedd609SLawrence Stewart bt.frac = ((time_esterror - bt.sec) * 1000000) * 10606cedd609SLawrence Stewart (uint64_t)18446744073709ULL; 10616cedd609SLawrence Stewart clock_snap->fb_info.error = bt; 10626cedd609SLawrence Stewart 10636cedd609SLawrence Stewart #ifdef FFCLOCK 10646cedd609SLawrence Stewart if (!fast) 10656cedd609SLawrence Stewart clock_snap->ffcount += delta; 10666cedd609SLawrence Stewart 10676cedd609SLawrence Stewart /* Record feed-forward clock leap second adjustment. */ 10686cedd609SLawrence Stewart ffi->leapsec_adjustment = cest.leapsec_total; 10696cedd609SLawrence Stewart if (clock_snap->ffcount > cest.leapsec_next) 10706cedd609SLawrence Stewart ffi->leapsec_adjustment -= cest.leapsec; 10716cedd609SLawrence Stewart 10726cedd609SLawrence Stewart /* Record feed-forward clock status and error. */ 10736cedd609SLawrence Stewart clock_snap->ff_info.status = cest.status; 10746cedd609SLawrence Stewart ffcount = clock_snap->ffcount - cest.update_ffcount; 10756cedd609SLawrence Stewart ffclock_convert_delta(ffcount, cest.period, &bt); 10766cedd609SLawrence Stewart /* 18446744073709 = int(2^64/1e12), err_bound_rate in [ps/s]. */ 10776cedd609SLawrence Stewart bintime_mul(&bt, cest.errb_rate * (uint64_t)18446744073709ULL); 10786cedd609SLawrence Stewart /* 18446744073 = int(2^64 / 1e9), since err_abs in [ns]. */ 10796cedd609SLawrence Stewart bintime_addx(&bt, cest.errb_abs * (uint64_t)18446744073ULL); 10806cedd609SLawrence Stewart clock_snap->ff_info.error = bt; 10816cedd609SLawrence Stewart #endif 10826cedd609SLawrence Stewart } 10836cedd609SLawrence Stewart 10846cedd609SLawrence Stewart /* 10856cedd609SLawrence Stewart * Convert a sysclock snapshot into a struct bintime based on the specified 10866cedd609SLawrence Stewart * clock source and flags. 10876cedd609SLawrence Stewart */ 10886cedd609SLawrence Stewart int 10896cedd609SLawrence Stewart sysclock_snap2bintime(struct sysclock_snap *cs, struct bintime *bt, 10906cedd609SLawrence Stewart int whichclock, uint32_t flags) 10916cedd609SLawrence Stewart { 1092584b675eSKonstantin Belousov struct bintime boottimebin; 10936cedd609SLawrence Stewart #ifdef FFCLOCK 10946cedd609SLawrence Stewart struct bintime bt2; 10956cedd609SLawrence Stewart uint64_t period; 10966cedd609SLawrence Stewart #endif 10976cedd609SLawrence Stewart 10986cedd609SLawrence Stewart switch (whichclock) { 10996cedd609SLawrence Stewart case SYSCLOCK_FBCK: 11006cedd609SLawrence Stewart *bt = cs->fb_info.tick_time; 11016cedd609SLawrence Stewart 11026cedd609SLawrence Stewart /* If snapshot was created with !fast, delta will be >0. */ 11036cedd609SLawrence Stewart if (cs->delta > 0) 11046cedd609SLawrence Stewart bintime_addx(bt, cs->fb_info.th_scale * cs->delta); 11056cedd609SLawrence Stewart 1106584b675eSKonstantin Belousov if ((flags & FBCLOCK_UPTIME) == 0) { 1107584b675eSKonstantin Belousov getboottimebin(&boottimebin); 11086cedd609SLawrence Stewart bintime_add(bt, &boottimebin); 1109584b675eSKonstantin Belousov } 11106cedd609SLawrence Stewart break; 11116cedd609SLawrence Stewart #ifdef FFCLOCK 11126cedd609SLawrence Stewart case SYSCLOCK_FFWD: 11136cedd609SLawrence Stewart if (flags & FFCLOCK_LERP) { 11146cedd609SLawrence Stewart *bt = cs->ff_info.tick_time_lerp; 11156cedd609SLawrence Stewart period = cs->ff_info.period_lerp; 11166cedd609SLawrence Stewart } else { 11176cedd609SLawrence Stewart *bt = cs->ff_info.tick_time; 11186cedd609SLawrence Stewart period = cs->ff_info.period; 11196cedd609SLawrence Stewart } 11206cedd609SLawrence Stewart 11216cedd609SLawrence Stewart /* If snapshot was created with !fast, delta will be >0. */ 11226cedd609SLawrence Stewart if (cs->delta > 0) { 11236cedd609SLawrence Stewart ffclock_convert_delta(cs->delta, period, &bt2); 11246cedd609SLawrence Stewart bintime_add(bt, &bt2); 11256cedd609SLawrence Stewart } 11266cedd609SLawrence Stewart 11276cedd609SLawrence Stewart /* Leap second adjustment. */ 11286cedd609SLawrence Stewart if (flags & FFCLOCK_LEAPSEC) 11296cedd609SLawrence Stewart bt->sec -= cs->ff_info.leapsec_adjustment; 11306cedd609SLawrence Stewart 11316cedd609SLawrence Stewart /* Boot time adjustment, for uptime/monotonic clocks. */ 11326cedd609SLawrence Stewart if (flags & FFCLOCK_UPTIME) 11336cedd609SLawrence Stewart bintime_sub(bt, &ffclock_boottime); 1134de02885aSKevin Lo break; 11356cedd609SLawrence Stewart #endif 11366cedd609SLawrence Stewart default: 11376cedd609SLawrence Stewart return (EINVAL); 11386cedd609SLawrence Stewart break; 11396cedd609SLawrence Stewart } 11406cedd609SLawrence Stewart 11416cedd609SLawrence Stewart return (0); 11426cedd609SLawrence Stewart } 11436cedd609SLawrence Stewart 11446cedd609SLawrence Stewart /* 114578a49a45SPoul-Henning Kamp * Initialize a new timecounter and possibly use it. 11464e2befc0SPoul-Henning Kamp */ 11477ec73f64SPoul-Henning Kamp void 114891266b96SPoul-Henning Kamp tc_init(struct timecounter *tc) 11497ec73f64SPoul-Henning Kamp { 1150555a5de2SPoul-Henning Kamp u_int u; 115193ef14a7SDavid Malone struct sysctl_oid *tc_root; 11527ec73f64SPoul-Henning Kamp 1153c679c734SPoul-Henning Kamp u = tc->tc_frequency / tc->tc_counter_mask; 1154555a5de2SPoul-Henning Kamp /* XXX: We need some margin here, 10% is a guess */ 1155555a5de2SPoul-Henning Kamp u *= 11; 1156555a5de2SPoul-Henning Kamp u /= 10; 1157c679c734SPoul-Henning Kamp if (u > hz && tc->tc_quality >= 0) { 1158c679c734SPoul-Henning Kamp tc->tc_quality = -2000; 1159c679c734SPoul-Henning Kamp if (bootverbose) { 1160c679c734SPoul-Henning Kamp printf("Timecounter \"%s\" frequency %ju Hz", 1161555a5de2SPoul-Henning Kamp tc->tc_name, (uintmax_t)tc->tc_frequency); 1162c679c734SPoul-Henning Kamp printf(" -- Insufficient hz, needs at least %u\n", u); 1163c679c734SPoul-Henning Kamp } 1164c679c734SPoul-Henning Kamp } else if (tc->tc_quality >= 0 || bootverbose) { 1165555a5de2SPoul-Henning Kamp printf("Timecounter \"%s\" frequency %ju Hz quality %d\n", 1166555a5de2SPoul-Henning Kamp tc->tc_name, (uintmax_t)tc->tc_frequency, 116778a49a45SPoul-Henning Kamp tc->tc_quality); 1168e46eeb89SPoul-Henning Kamp } 1169c679c734SPoul-Henning Kamp 117062efba6aSPoul-Henning Kamp tc->tc_next = timecounters; 117162efba6aSPoul-Henning Kamp timecounters = tc; 1172555a5de2SPoul-Henning Kamp /* 117393ef14a7SDavid Malone * Set up sysctl tree for this counter. 117493ef14a7SDavid Malone */ 1175fd0f5970SEd Schouten tc_root = SYSCTL_ADD_NODE_WITH_LABEL(NULL, 117693ef14a7SDavid Malone SYSCTL_STATIC_CHILDREN(_kern_timecounter_tc), OID_AUTO, tc->tc_name, 1177*7029da5cSPawel Biernacki CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 1178*7029da5cSPawel Biernacki "timecounter description", "timecounter"); 117993ef14a7SDavid Malone SYSCTL_ADD_UINT(NULL, SYSCTL_CHILDREN(tc_root), OID_AUTO, 118093ef14a7SDavid Malone "mask", CTLFLAG_RD, &(tc->tc_counter_mask), 0, 118193ef14a7SDavid Malone "mask for implemented bits"); 118293ef14a7SDavid Malone SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(tc_root), OID_AUTO, 1183*7029da5cSPawel Biernacki "counter", CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_MPSAFE, tc, 1184*7029da5cSPawel Biernacki sizeof(*tc), sysctl_kern_timecounter_get, "IU", 1185*7029da5cSPawel Biernacki "current timecounter value"); 118693ef14a7SDavid Malone SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(tc_root), OID_AUTO, 1187*7029da5cSPawel Biernacki "frequency", CTLTYPE_U64 | CTLFLAG_RD | CTLFLAG_MPSAFE, tc, 1188*7029da5cSPawel Biernacki sizeof(*tc), sysctl_kern_timecounter_freq, "QU", 1189*7029da5cSPawel Biernacki "timecounter frequency"); 119093ef14a7SDavid Malone SYSCTL_ADD_INT(NULL, SYSCTL_CHILDREN(tc_root), OID_AUTO, 119193ef14a7SDavid Malone "quality", CTLFLAG_RD, &(tc->tc_quality), 0, 119293ef14a7SDavid Malone "goodness of time counter"); 119393ef14a7SDavid Malone /* 1194e8bac3f2SIan Lepore * Do not automatically switch if the current tc was specifically 1195e8bac3f2SIan Lepore * chosen. Never automatically use a timecounter with negative quality. 1196555a5de2SPoul-Henning Kamp * Even though we run on the dummy counter, switching here may be 1197e8bac3f2SIan Lepore * worse since this timecounter may not be monotonic. 1198555a5de2SPoul-Henning Kamp */ 1199e8bac3f2SIan Lepore if (tc_chosen) 1200e8bac3f2SIan Lepore return; 120178a49a45SPoul-Henning Kamp if (tc->tc_quality < 0) 120278a49a45SPoul-Henning Kamp return; 120378a49a45SPoul-Henning Kamp if (tc->tc_quality < timecounter->tc_quality) 120478a49a45SPoul-Henning Kamp return; 1205555a5de2SPoul-Henning Kamp if (tc->tc_quality == timecounter->tc_quality && 1206555a5de2SPoul-Henning Kamp tc->tc_frequency < timecounter->tc_frequency) 1207555a5de2SPoul-Henning Kamp return; 1208555a5de2SPoul-Henning Kamp (void)tc->tc_get_timecount(tc); 1209555a5de2SPoul-Henning Kamp (void)tc->tc_get_timecount(tc); 12107ec73f64SPoul-Henning Kamp timecounter = tc; 121162efba6aSPoul-Henning Kamp } 121262efba6aSPoul-Henning Kamp 121339acc78aSPoul-Henning Kamp /* Report the frequency of the current timecounter. */ 121460ae52f7SEd Schouten uint64_t 121562efba6aSPoul-Henning Kamp tc_getfrequency(void) 121662efba6aSPoul-Henning Kamp { 121762efba6aSPoul-Henning Kamp 12186b00cf46SPoul-Henning Kamp return (timehands->th_counter->tc_frequency); 12197ec73f64SPoul-Henning Kamp } 12207ec73f64SPoul-Henning Kamp 12219dbdf2a1SEric van Gyzen static bool 12229dbdf2a1SEric van Gyzen sleeping_on_old_rtc(struct thread *td) 12239dbdf2a1SEric van Gyzen { 12249dbdf2a1SEric van Gyzen 12258addc72bSEric van Gyzen /* 12268addc72bSEric van Gyzen * td_rtcgen is modified by curthread when it is running, 12278addc72bSEric van Gyzen * and by other threads in this function. By finding the thread 12288addc72bSEric van Gyzen * on a sleepqueue and holding the lock on the sleepqueue 12298addc72bSEric van Gyzen * chain, we guarantee that the thread is not running and that 12308addc72bSEric van Gyzen * modifying td_rtcgen is safe. Setting td_rtcgen to zero informs 12318addc72bSEric van Gyzen * the thread that it was woken due to a real-time clock adjustment. 12328addc72bSEric van Gyzen * (The declaration of td_rtcgen refers to this comment.) 12338addc72bSEric van Gyzen */ 12349dbdf2a1SEric van Gyzen if (td->td_rtcgen != 0 && td->td_rtcgen != rtc_generation) { 12359dbdf2a1SEric van Gyzen td->td_rtcgen = 0; 12369dbdf2a1SEric van Gyzen return (true); 12379dbdf2a1SEric van Gyzen } 12389dbdf2a1SEric van Gyzen return (false); 12399dbdf2a1SEric van Gyzen } 12409dbdf2a1SEric van Gyzen 12415760b029SKonstantin Belousov static struct mtx tc_setclock_mtx; 12425760b029SKonstantin Belousov MTX_SYSINIT(tc_setclock_init, &tc_setclock_mtx, "tcsetc", MTX_SPIN); 12435760b029SKonstantin Belousov 124439acc78aSPoul-Henning Kamp /* 12454e82e5f6SWarner Losh * Step our concept of UTC. This is done by modifying our estimate of 12464e74721cSPoul-Henning Kamp * when we booted. 12476b00cf46SPoul-Henning Kamp */ 12487ec73f64SPoul-Henning Kamp void 124991266b96SPoul-Henning Kamp tc_setclock(struct timespec *ts) 12507ec73f64SPoul-Henning Kamp { 12515b51d1deSPoul-Henning Kamp struct timespec tbef, taft; 12524e74721cSPoul-Henning Kamp struct bintime bt, bt2; 12537ec73f64SPoul-Henning Kamp 12544e74721cSPoul-Henning Kamp timespec2bintime(ts, &bt); 12555760b029SKonstantin Belousov nanotime(&tbef); 12565760b029SKonstantin Belousov mtx_lock_spin(&tc_setclock_mtx); 12575760b029SKonstantin Belousov cpu_tick_calibrate(1); 12585b51d1deSPoul-Henning Kamp binuptime(&bt2); 12594e74721cSPoul-Henning Kamp bintime_sub(&bt, &bt2); 126039acc78aSPoul-Henning Kamp 126139acc78aSPoul-Henning Kamp /* XXX fiddle all the little crinkly bits around the fiords... */ 12625760b029SKonstantin Belousov tc_windup(&bt); 12635760b029SKonstantin Belousov mtx_unlock_spin(&tc_setclock_mtx); 12648addc72bSEric van Gyzen 12659dbdf2a1SEric van Gyzen /* Avoid rtc_generation == 0, since td_rtcgen == 0 is special. */ 12669dbdf2a1SEric van Gyzen atomic_add_rel_int(&rtc_generation, 2); 12679dbdf2a1SEric van Gyzen sleepq_chains_remove_matching(sleeping_on_old_rtc); 12684e74721cSPoul-Henning Kamp if (timestepwarnings) { 12695760b029SKonstantin Belousov nanotime(&taft); 12705b51d1deSPoul-Henning Kamp log(LOG_INFO, 12715b51d1deSPoul-Henning Kamp "Time stepped from %jd.%09ld to %jd.%09ld (%jd.%09ld)\n", 12725b51d1deSPoul-Henning Kamp (intmax_t)tbef.tv_sec, tbef.tv_nsec, 12735b51d1deSPoul-Henning Kamp (intmax_t)taft.tv_sec, taft.tv_nsec, 1274ee57aeeaSPoul-Henning Kamp (intmax_t)ts->tv_sec, ts->tv_nsec); 12754e74721cSPoul-Henning Kamp } 12767ec73f64SPoul-Henning Kamp } 12777ec73f64SPoul-Henning Kamp 127839acc78aSPoul-Henning Kamp /* 127939acc78aSPoul-Henning Kamp * Initialize the next struct timehands in the ring and make 12806b00cf46SPoul-Henning Kamp * it the active timehands. Along the way we might switch to a different 12816b00cf46SPoul-Henning Kamp * timecounter and/or do seconds processing in NTP. Slightly magic. 12826b00cf46SPoul-Henning Kamp */ 12839e1b5510SPoul-Henning Kamp static void 12845760b029SKonstantin Belousov tc_windup(struct bintime *new_boottimebin) 12857ec73f64SPoul-Henning Kamp { 12862028c0cdSPoul-Henning Kamp struct bintime bt; 128739acc78aSPoul-Henning Kamp struct timehands *th, *tho; 128860ae52f7SEd Schouten uint64_t scale; 128939acc78aSPoul-Henning Kamp u_int delta, ncount, ogen; 129039acc78aSPoul-Henning Kamp int i; 12914f2073fbSWarner Losh time_t t; 12927ec73f64SPoul-Henning Kamp 129339acc78aSPoul-Henning Kamp /* 1294f4b5a972SKonstantin Belousov * Make the next timehands a copy of the current one, but do 1295f4b5a972SKonstantin Belousov * not overwrite the generation or next pointer. While we 1296f4b5a972SKonstantin Belousov * update the contents, the generation must be zero. We need 1297f4b5a972SKonstantin Belousov * to ensure that the zero generation is visible before the 1298f4b5a972SKonstantin Belousov * data updates become visible, which requires release fence. 1299f4b5a972SKonstantin Belousov * For similar reasons, re-reading of the generation after the 1300f4b5a972SKonstantin Belousov * data is read should use acquire fence. 13016b00cf46SPoul-Henning Kamp */ 13026b00cf46SPoul-Henning Kamp tho = timehands; 13036b00cf46SPoul-Henning Kamp th = tho->th_next; 13046b00cf46SPoul-Henning Kamp ogen = th->th_generation; 1305f4b5a972SKonstantin Belousov th->th_generation = 0; 1306f4b5a972SKonstantin Belousov atomic_thread_fence_rel(); 13075ec2c936SMateusz Guzik memcpy(th, tho, offsetof(struct timehands, th_generation)); 13085760b029SKonstantin Belousov if (new_boottimebin != NULL) 13095760b029SKonstantin Belousov th->th_boottime = *new_boottimebin; 13106b00cf46SPoul-Henning Kamp 131139acc78aSPoul-Henning Kamp /* 13126b00cf46SPoul-Henning Kamp * Capture a timecounter delta on the current timecounter and if 13136b00cf46SPoul-Henning Kamp * changing timecounters, a counter value from the new timecounter. 13146b00cf46SPoul-Henning Kamp * Update the offset fields accordingly. 13156b00cf46SPoul-Henning Kamp */ 13166b00cf46SPoul-Henning Kamp delta = tc_delta(th); 13176b00cf46SPoul-Henning Kamp if (th->th_counter != timecounter) 13186b00cf46SPoul-Henning Kamp ncount = timecounter->tc_get_timecount(timecounter); 131939acc78aSPoul-Henning Kamp else 132039acc78aSPoul-Henning Kamp ncount = 0; 1321b0fdc837SLawrence Stewart #ifdef FFCLOCK 1322b0fdc837SLawrence Stewart ffclock_windup(delta); 1323b0fdc837SLawrence Stewart #endif 13246b00cf46SPoul-Henning Kamp th->th_offset_count += delta; 13256b00cf46SPoul-Henning Kamp th->th_offset_count &= th->th_counter->tc_counter_mask; 1326aa519c0aSColin Percival while (delta > th->th_counter->tc_frequency) { 1327aa519c0aSColin Percival /* Eat complete unadjusted seconds. */ 1328aa519c0aSColin Percival delta -= th->th_counter->tc_frequency; 1329aa519c0aSColin Percival th->th_offset.sec++; 1330aa519c0aSColin Percival } 1331aa519c0aSColin Percival if ((delta > th->th_counter->tc_frequency / 2) && 1332772d1e42SColin Percival (th->th_scale * delta < ((uint64_t)1 << 63))) { 1333aa519c0aSColin Percival /* The product th_scale * delta just barely overflows. */ 1334aa519c0aSColin Percival th->th_offset.sec++; 1335aa519c0aSColin Percival } 13366b00cf46SPoul-Henning Kamp bintime_addx(&th->th_offset, th->th_scale * delta); 13376b00cf46SPoul-Henning Kamp 133839acc78aSPoul-Henning Kamp /* 13396b00cf46SPoul-Henning Kamp * Hardware latching timecounters may not generate interrupts on 13406b00cf46SPoul-Henning Kamp * PPS events, so instead we poll them. There is a finite risk that 13416b00cf46SPoul-Henning Kamp * the hardware might capture a count which is later than the one we 13426b00cf46SPoul-Henning Kamp * got above, and therefore possibly in the next NTP second which might 13436b00cf46SPoul-Henning Kamp * have a different rate than the current NTP second. It doesn't 13446b00cf46SPoul-Henning Kamp * matter in practice. 13456b00cf46SPoul-Henning Kamp */ 13466b00cf46SPoul-Henning Kamp if (tho->th_counter->tc_poll_pps) 13476b00cf46SPoul-Henning Kamp tho->th_counter->tc_poll_pps(tho->th_counter); 13486b00cf46SPoul-Henning Kamp 134939acc78aSPoul-Henning Kamp /* 1350c1cccd1eSWarner Losh * Deal with NTP second processing. The for loop normally 1351c1cccd1eSWarner Losh * iterates at most once, but in extreme situations it might 1352c1cccd1eSWarner Losh * keep NTP sane if timeouts are not run for several seconds. 1353c1cccd1eSWarner Losh * At boot, the time step can be large when the TOD hardware 1354c1cccd1eSWarner Losh * has been read, so on really large steps, we call 1355c1cccd1eSWarner Losh * ntp_update_second only twice. We need to call it twice in 1356c1cccd1eSWarner Losh * case we missed a leap second. 13574f2073fbSWarner Losh */ 13584f2073fbSWarner Losh bt = th->th_offset; 13595760b029SKonstantin Belousov bintime_add(&bt, &th->th_boottime); 136045cc9f5fSWarner Losh i = bt.sec - tho->th_microtime.tv_sec; 136145cc9f5fSWarner Losh if (i > LARGE_STEP) 136245cc9f5fSWarner Losh i = 2; 136345cc9f5fSWarner Losh for (; i > 0; i--) { 13644f2073fbSWarner Losh t = bt.sec; 13654f2073fbSWarner Losh ntp_update_second(&th->th_adjustment, &bt.sec); 13664f2073fbSWarner Losh if (bt.sec != t) 13675760b029SKonstantin Belousov th->th_boottime.sec += bt.sec - t; 13684f2073fbSWarner Losh } 1369c1cccd1eSWarner Losh /* Update the UTC timestamps used by the get*() functions. */ 137070e3b262SKonstantin Belousov th->th_bintime = bt; 1371c1cccd1eSWarner Losh bintime2timeval(&bt, &th->th_microtime); 1372c1cccd1eSWarner Losh bintime2timespec(&bt, &th->th_nanotime); 13736b00cf46SPoul-Henning Kamp 13746b00cf46SPoul-Henning Kamp /* Now is a good time to change timecounters. */ 13756b00cf46SPoul-Henning Kamp if (th->th_counter != timecounter) { 137608e1b4f4SJung-uk Kim #ifndef __arm__ 137792597e06SJohn Baldwin if ((timecounter->tc_flags & TC_FLAGS_C2STOP) != 0) 137892597e06SJohn Baldwin cpu_disable_c2_sleep++; 137992597e06SJohn Baldwin if ((th->th_counter->tc_flags & TC_FLAGS_C2STOP) != 0) 138092597e06SJohn Baldwin cpu_disable_c2_sleep--; 138108e1b4f4SJung-uk Kim #endif 13826b00cf46SPoul-Henning Kamp th->th_counter = timecounter; 13836b00cf46SPoul-Henning Kamp th->th_offset_count = ncount; 13840e189873SAlexander Motin tc_min_ticktock_freq = max(1, timecounter->tc_frequency / 13850e189873SAlexander Motin (((uint64_t)timecounter->tc_counter_mask + 1) / 3)); 1386b0fdc837SLawrence Stewart #ifdef FFCLOCK 1387b0fdc837SLawrence Stewart ffclock_change_tc(th); 1388b0fdc837SLawrence Stewart #endif 13897ec73f64SPoul-Henning Kamp } 13907ec73f64SPoul-Henning Kamp 13911a996ed1SEdward Tomasz Napierala /*- 13926b00cf46SPoul-Henning Kamp * Recalculate the scaling factor. We want the number of 1/2^64 13936b00cf46SPoul-Henning Kamp * fractions of a second per period of the hardware counter, taking 13946b00cf46SPoul-Henning Kamp * into account the th_adjustment factor which the NTP PLL/adjtime(2) 13956b00cf46SPoul-Henning Kamp * processing provides us with. 13966b00cf46SPoul-Henning Kamp * 13976b00cf46SPoul-Henning Kamp * The th_adjustment is nanoseconds per second with 32 bit binary 1398d94e3652SPoul-Henning Kamp * fraction and we want 64 bit binary fraction of second: 13996b00cf46SPoul-Henning Kamp * 14006b00cf46SPoul-Henning Kamp * x = a * 2^32 / 10^9 = a * 4.294967296 14016b00cf46SPoul-Henning Kamp * 14026b00cf46SPoul-Henning Kamp * The range of th_adjustment is +/- 5000PPM so inside a 64bit int 1403e8444a7eSPoul-Henning Kamp * we can only multiply by about 850 without overflowing, that 1404e8444a7eSPoul-Henning Kamp * leaves no suitably precise fractions for multiply before divide. 14056b00cf46SPoul-Henning Kamp * 14066b00cf46SPoul-Henning Kamp * Divide before multiply with a fraction of 2199/512 results in a 14076b00cf46SPoul-Henning Kamp * systematic undercompensation of 10PPM of th_adjustment. On a 14086b00cf46SPoul-Henning Kamp * 5000PPM adjustment this is a 0.05PPM error. This is acceptable. 14096b00cf46SPoul-Henning Kamp * 14106b00cf46SPoul-Henning Kamp * We happily sacrifice the lowest of the 64 bits of our result 14116b00cf46SPoul-Henning Kamp * to the goddess of code clarity. 141239acc78aSPoul-Henning Kamp * 14136b00cf46SPoul-Henning Kamp */ 141460ae52f7SEd Schouten scale = (uint64_t)1 << 63; 14156b00cf46SPoul-Henning Kamp scale += (th->th_adjustment / 1024) * 2199; 14166b00cf46SPoul-Henning Kamp scale /= th->th_counter->tc_frequency; 14176b00cf46SPoul-Henning Kamp th->th_scale = scale * 2; 14186cf2362eSKonstantin Belousov th->th_large_delta = MIN(((uint64_t)1 << 63) / scale, UINT_MAX); 14196b00cf46SPoul-Henning Kamp 142039acc78aSPoul-Henning Kamp /* 142139acc78aSPoul-Henning Kamp * Now that the struct timehands is again consistent, set the new 14226b00cf46SPoul-Henning Kamp * generation number, making sure to not make it zero. 14236b00cf46SPoul-Henning Kamp */ 14246b00cf46SPoul-Henning Kamp if (++ogen == 0) 142539acc78aSPoul-Henning Kamp ogen = 1; 1426f4b5a972SKonstantin Belousov atomic_store_rel_int(&th->th_generation, ogen); 14276b00cf46SPoul-Henning Kamp 142839acc78aSPoul-Henning Kamp /* Go live with the new struct timehands. */ 14299bce0f05SLawrence Stewart #ifdef FFCLOCK 14309bce0f05SLawrence Stewart switch (sysclock_active) { 14319bce0f05SLawrence Stewart case SYSCLOCK_FBCK: 14329bce0f05SLawrence Stewart #endif 14336b00cf46SPoul-Henning Kamp time_second = th->th_microtime.tv_sec; 143438b0884cSPoul-Henning Kamp time_uptime = th->th_offset.sec; 14359bce0f05SLawrence Stewart #ifdef FFCLOCK 14369bce0f05SLawrence Stewart break; 14379bce0f05SLawrence Stewart case SYSCLOCK_FFWD: 14389bce0f05SLawrence Stewart time_second = fftimehands->tick_time_lerp.sec; 14399bce0f05SLawrence Stewart time_uptime = fftimehands->tick_time_lerp.sec - ffclock_boottime.sec; 14409bce0f05SLawrence Stewart break; 14419bce0f05SLawrence Stewart } 14429bce0f05SLawrence Stewart #endif 14439bce0f05SLawrence Stewart 14446b00cf46SPoul-Henning Kamp timehands = th; 144521c295efSKonstantin Belousov timekeep_push_vdso(); 14466b00cf46SPoul-Henning Kamp } 14476b00cf46SPoul-Henning Kamp 144839acc78aSPoul-Henning Kamp /* Report or change the active timecounter hardware. */ 14496b6ef746SBruce Evans static int 145082d9ae4eSPoul-Henning Kamp sysctl_kern_timecounter_hardware(SYSCTL_HANDLER_ARGS) 14516b6ef746SBruce Evans { 14526b6ef746SBruce Evans char newname[32]; 14536b6ef746SBruce Evans struct timecounter *newtc, *tc; 14546b6ef746SBruce Evans int error; 14556b6ef746SBruce Evans 145662efba6aSPoul-Henning Kamp tc = timecounter; 1457e80fb434SRobert Drehmel strlcpy(newname, tc->tc_name, sizeof(newname)); 1458e80fb434SRobert Drehmel 14596b6ef746SBruce Evans error = sysctl_handle_string(oidp, &newname[0], sizeof(newname), req); 1460e8bac3f2SIan Lepore if (error != 0 || req->newptr == NULL) 146162efba6aSPoul-Henning Kamp return (error); 1462e8bac3f2SIan Lepore /* Record that the tc in use now was specifically chosen. */ 1463e8bac3f2SIan Lepore tc_chosen = 1; 1464e8bac3f2SIan Lepore if (strcmp(newname, tc->tc_name) == 0) 1465e8bac3f2SIan Lepore return (0); 146662efba6aSPoul-Henning Kamp for (newtc = timecounters; newtc != NULL; newtc = newtc->tc_next) { 146739acc78aSPoul-Henning Kamp if (strcmp(newname, newtc->tc_name) != 0) 146862efba6aSPoul-Henning Kamp continue; 146939acc78aSPoul-Henning Kamp 14706b6ef746SBruce Evans /* Warm up new timecounter. */ 14716b6ef746SBruce Evans (void)newtc->tc_get_timecount(newtc); 147262efba6aSPoul-Henning Kamp (void)newtc->tc_get_timecount(newtc); 147339acc78aSPoul-Henning Kamp 147462efba6aSPoul-Henning Kamp timecounter = newtc; 1475d1b1b600SNeel Natu 1476d1b1b600SNeel Natu /* 1477d1b1b600SNeel Natu * The vdso timehands update is deferred until the next 1478d1b1b600SNeel Natu * 'tc_windup()'. 1479d1b1b600SNeel Natu * 1480d1b1b600SNeel Natu * This is prudent given that 'timekeep_push_vdso()' does not 1481d1b1b600SNeel Natu * use any locking and that it can be called in hard interrupt 1482d1b1b600SNeel Natu * context via 'tc_windup()'. 1483d1b1b600SNeel Natu */ 14846b6ef746SBruce Evans return (0); 14856b6ef746SBruce Evans } 14866b6ef746SBruce Evans return (EINVAL); 14876b6ef746SBruce Evans } 14886b6ef746SBruce Evans 1489*7029da5cSPawel Biernacki SYSCTL_PROC(_kern_timecounter, OID_AUTO, hardware, 1490*7029da5cSPawel Biernacki CTLTYPE_STRING | CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 0, 1491*7029da5cSPawel Biernacki sysctl_kern_timecounter_hardware, "A", 1492b389be97SRebecca Cran "Timecounter hardware selected"); 14936b6ef746SBruce Evans 1494e8bac3f2SIan Lepore /* Report the available timecounter hardware. */ 149578a49a45SPoul-Henning Kamp static int 149678a49a45SPoul-Henning Kamp sysctl_kern_timecounter_choice(SYSCTL_HANDLER_ARGS) 149778a49a45SPoul-Henning Kamp { 149891d9eda2SIan Lepore struct sbuf sb; 149978a49a45SPoul-Henning Kamp struct timecounter *tc; 150078a49a45SPoul-Henning Kamp int error; 150178a49a45SPoul-Henning Kamp 150291d9eda2SIan Lepore sbuf_new_for_sysctl(&sb, NULL, 0, req); 150391d9eda2SIan Lepore for (tc = timecounters; tc != NULL; tc = tc->tc_next) { 150491d9eda2SIan Lepore if (tc != timecounters) 150591d9eda2SIan Lepore sbuf_putc(&sb, ' '); 150691d9eda2SIan Lepore sbuf_printf(&sb, "%s(%d)", tc->tc_name, tc->tc_quality); 150778a49a45SPoul-Henning Kamp } 150891d9eda2SIan Lepore error = sbuf_finish(&sb); 150991d9eda2SIan Lepore sbuf_delete(&sb); 151078a49a45SPoul-Henning Kamp return (error); 151178a49a45SPoul-Henning Kamp } 151278a49a45SPoul-Henning Kamp 1513*7029da5cSPawel Biernacki SYSCTL_PROC(_kern_timecounter, OID_AUTO, choice, 1514*7029da5cSPawel Biernacki CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 0, 1515*7029da5cSPawel Biernacki sysctl_kern_timecounter_choice, "A", 1516*7029da5cSPawel Biernacki "Timecounter hardware detected"); 151778a49a45SPoul-Henning Kamp 151839acc78aSPoul-Henning Kamp /* 15196b00cf46SPoul-Henning Kamp * RFC 2783 PPS-API implementation. 15206b00cf46SPoul-Henning Kamp */ 15217ec73f64SPoul-Henning Kamp 152228315e27SIan Lepore /* 152328315e27SIan Lepore * Return true if the driver is aware of the abi version extensions in the 152428315e27SIan Lepore * pps_state structure, and it supports at least the given abi version number. 152528315e27SIan Lepore */ 152628315e27SIan Lepore static inline int 152728315e27SIan Lepore abi_aware(struct pps_state *pps, int vers) 152828315e27SIan Lepore { 152928315e27SIan Lepore 153028315e27SIan Lepore return ((pps->kcmode & KCMODE_ABIFLAG) && pps->driver_abi >= vers); 153128315e27SIan Lepore } 153228315e27SIan Lepore 1533a1137de9SIan Lepore static int 1534a1137de9SIan Lepore pps_fetch(struct pps_fetch_args *fapi, struct pps_state *pps) 1535a1137de9SIan Lepore { 1536a1137de9SIan Lepore int err, timo; 1537a1137de9SIan Lepore pps_seq_t aseq, cseq; 1538a1137de9SIan Lepore struct timeval tv; 1539a1137de9SIan Lepore 1540a1137de9SIan Lepore if (fapi->tsformat && fapi->tsformat != PPS_TSFMT_TSPEC) 1541a1137de9SIan Lepore return (EINVAL); 1542a1137de9SIan Lepore 1543a1137de9SIan Lepore /* 1544a1137de9SIan Lepore * If no timeout is requested, immediately return whatever values were 1545a1137de9SIan Lepore * most recently captured. If timeout seconds is -1, that's a request 1546a1137de9SIan Lepore * to block without a timeout. WITNESS won't let us sleep forever 1547a1137de9SIan Lepore * without a lock (we really don't need a lock), so just repeatedly 1548a1137de9SIan Lepore * sleep a long time. 1549a1137de9SIan Lepore */ 1550a1137de9SIan Lepore if (fapi->timeout.tv_sec || fapi->timeout.tv_nsec) { 1551a1137de9SIan Lepore if (fapi->timeout.tv_sec == -1) 1552a1137de9SIan Lepore timo = 0x7fffffff; 1553a1137de9SIan Lepore else { 1554a1137de9SIan Lepore tv.tv_sec = fapi->timeout.tv_sec; 1555a1137de9SIan Lepore tv.tv_usec = fapi->timeout.tv_nsec / 1000; 1556a1137de9SIan Lepore timo = tvtohz(&tv); 1557a1137de9SIan Lepore } 15586f697994SKonstantin Belousov aseq = atomic_load_int(&pps->ppsinfo.assert_sequence); 15596f697994SKonstantin Belousov cseq = atomic_load_int(&pps->ppsinfo.clear_sequence); 15606f697994SKonstantin Belousov while (aseq == atomic_load_int(&pps->ppsinfo.assert_sequence) && 15616f697994SKonstantin Belousov cseq == atomic_load_int(&pps->ppsinfo.clear_sequence)) { 156228315e27SIan Lepore if (abi_aware(pps, 1) && pps->driver_mtx != NULL) { 156328315e27SIan Lepore if (pps->flags & PPSFLAG_MTX_SPIN) { 156428315e27SIan Lepore err = msleep_spin(pps, pps->driver_mtx, 156528315e27SIan Lepore "ppsfch", timo); 156628315e27SIan Lepore } else { 156728315e27SIan Lepore err = msleep(pps, pps->driver_mtx, PCATCH, 156828315e27SIan Lepore "ppsfch", timo); 156928315e27SIan Lepore } 157028315e27SIan Lepore } else { 1571a1137de9SIan Lepore err = tsleep(pps, PCATCH, "ppsfch", timo); 157228315e27SIan Lepore } 15736f7a9f7cSIan Lepore if (err == EWOULDBLOCK) { 15746f7a9f7cSIan Lepore if (fapi->timeout.tv_sec == -1) { 1575a1137de9SIan Lepore continue; 15766f7a9f7cSIan Lepore } else { 15776f7a9f7cSIan Lepore return (ETIMEDOUT); 15786f7a9f7cSIan Lepore } 1579a1137de9SIan Lepore } else if (err != 0) { 1580a1137de9SIan Lepore return (err); 1581a1137de9SIan Lepore } 1582a1137de9SIan Lepore } 1583a1137de9SIan Lepore } 1584a1137de9SIan Lepore 1585a1137de9SIan Lepore pps->ppsinfo.current_mode = pps->ppsparam.mode; 1586a1137de9SIan Lepore fapi->pps_info_buf = pps->ppsinfo; 1587a1137de9SIan Lepore 1588a1137de9SIan Lepore return (0); 1589a1137de9SIan Lepore } 1590a1137de9SIan Lepore 159132c20357SPoul-Henning Kamp int 159232c20357SPoul-Henning Kamp pps_ioctl(u_long cmd, caddr_t data, struct pps_state *pps) 159332c20357SPoul-Henning Kamp { 159432c20357SPoul-Henning Kamp pps_params_t *app; 1595b7424f2dSJohn Hay struct pps_fetch_args *fapi; 159665e359a1SLawrence Stewart #ifdef FFCLOCK 159765e359a1SLawrence Stewart struct pps_fetch_ffc_args *fapi_ffc; 159865e359a1SLawrence Stewart #endif 1599de3f8889SPeter Wemm #ifdef PPS_SYNC 1600b7424f2dSJohn Hay struct pps_kcbind_args *kapi; 1601de3f8889SPeter Wemm #endif 160232c20357SPoul-Henning Kamp 1603d8e8b675SPoul-Henning Kamp KASSERT(pps != NULL, ("NULL pps pointer in pps_ioctl")); 160432c20357SPoul-Henning Kamp switch (cmd) { 160532c20357SPoul-Henning Kamp case PPS_IOC_CREATE: 160632c20357SPoul-Henning Kamp return (0); 160732c20357SPoul-Henning Kamp case PPS_IOC_DESTROY: 160832c20357SPoul-Henning Kamp return (0); 160932c20357SPoul-Henning Kamp case PPS_IOC_SETPARAMS: 161032c20357SPoul-Henning Kamp app = (pps_params_t *)data; 161132c20357SPoul-Henning Kamp if (app->mode & ~pps->ppscap) 161232c20357SPoul-Henning Kamp return (EINVAL); 161365e359a1SLawrence Stewart #ifdef FFCLOCK 161465e359a1SLawrence Stewart /* Ensure only a single clock is selected for ffc timestamp. */ 161565e359a1SLawrence Stewart if ((app->mode & PPS_TSCLK_MASK) == PPS_TSCLK_MASK) 161665e359a1SLawrence Stewart return (EINVAL); 161765e359a1SLawrence Stewart #endif 161832c20357SPoul-Henning Kamp pps->ppsparam = *app; 161932c20357SPoul-Henning Kamp return (0); 162032c20357SPoul-Henning Kamp case PPS_IOC_GETPARAMS: 162132c20357SPoul-Henning Kamp app = (pps_params_t *)data; 162232c20357SPoul-Henning Kamp *app = pps->ppsparam; 1623b7424f2dSJohn Hay app->api_version = PPS_API_VERS_1; 162432c20357SPoul-Henning Kamp return (0); 162532c20357SPoul-Henning Kamp case PPS_IOC_GETCAP: 162632c20357SPoul-Henning Kamp *(int*)data = pps->ppscap; 162732c20357SPoul-Henning Kamp return (0); 162832c20357SPoul-Henning Kamp case PPS_IOC_FETCH: 1629b7424f2dSJohn Hay fapi = (struct pps_fetch_args *)data; 1630a1137de9SIan Lepore return (pps_fetch(fapi, pps)); 163165e359a1SLawrence Stewart #ifdef FFCLOCK 163265e359a1SLawrence Stewart case PPS_IOC_FETCH_FFCOUNTER: 163365e359a1SLawrence Stewart fapi_ffc = (struct pps_fetch_ffc_args *)data; 163465e359a1SLawrence Stewart if (fapi_ffc->tsformat && fapi_ffc->tsformat != 163565e359a1SLawrence Stewart PPS_TSFMT_TSPEC) 163665e359a1SLawrence Stewart return (EINVAL); 163765e359a1SLawrence Stewart if (fapi_ffc->timeout.tv_sec || fapi_ffc->timeout.tv_nsec) 163865e359a1SLawrence Stewart return (EOPNOTSUPP); 163965e359a1SLawrence Stewart pps->ppsinfo_ffc.current_mode = pps->ppsparam.mode; 164065e359a1SLawrence Stewart fapi_ffc->pps_info_buf_ffc = pps->ppsinfo_ffc; 164165e359a1SLawrence Stewart /* Overwrite timestamps if feedback clock selected. */ 164265e359a1SLawrence Stewart switch (pps->ppsparam.mode & PPS_TSCLK_MASK) { 164365e359a1SLawrence Stewart case PPS_TSCLK_FBCK: 164465e359a1SLawrence Stewart fapi_ffc->pps_info_buf_ffc.assert_timestamp = 164565e359a1SLawrence Stewart pps->ppsinfo.assert_timestamp; 164665e359a1SLawrence Stewart fapi_ffc->pps_info_buf_ffc.clear_timestamp = 164765e359a1SLawrence Stewart pps->ppsinfo.clear_timestamp; 164865e359a1SLawrence Stewart break; 164965e359a1SLawrence Stewart case PPS_TSCLK_FFWD: 165065e359a1SLawrence Stewart break; 165165e359a1SLawrence Stewart default: 165265e359a1SLawrence Stewart break; 165365e359a1SLawrence Stewart } 165465e359a1SLawrence Stewart return (0); 165565e359a1SLawrence Stewart #endif /* FFCLOCK */ 1656b7424f2dSJohn Hay case PPS_IOC_KCBIND: 1657b7424f2dSJohn Hay #ifdef PPS_SYNC 1658b7424f2dSJohn Hay kapi = (struct pps_kcbind_args *)data; 1659b7424f2dSJohn Hay /* XXX Only root should be able to do this */ 1660b7424f2dSJohn Hay if (kapi->tsformat && kapi->tsformat != PPS_TSFMT_TSPEC) 1661b7424f2dSJohn Hay return (EINVAL); 1662b7424f2dSJohn Hay if (kapi->kernel_consumer != PPS_KC_HARDPPS) 1663b7424f2dSJohn Hay return (EINVAL); 1664b7424f2dSJohn Hay if (kapi->edge & ~pps->ppscap) 1665b7424f2dSJohn Hay return (EINVAL); 166628315e27SIan Lepore pps->kcmode = (kapi->edge & KCMODE_EDGEMASK) | 166728315e27SIan Lepore (pps->kcmode & KCMODE_ABIFLAG); 1668b7424f2dSJohn Hay return (0); 1669b7424f2dSJohn Hay #else 1670b7424f2dSJohn Hay return (EOPNOTSUPP); 1671b7424f2dSJohn Hay #endif 167232c20357SPoul-Henning Kamp default: 1673f8385624SPoul-Henning Kamp return (ENOIOCTL); 167432c20357SPoul-Henning Kamp } 167532c20357SPoul-Henning Kamp } 167632c20357SPoul-Henning Kamp 167732c20357SPoul-Henning Kamp void 167832c20357SPoul-Henning Kamp pps_init(struct pps_state *pps) 167932c20357SPoul-Henning Kamp { 1680a1137de9SIan Lepore pps->ppscap |= PPS_TSFMT_TSPEC | PPS_CANWAIT; 168132c20357SPoul-Henning Kamp if (pps->ppscap & PPS_CAPTUREASSERT) 168232c20357SPoul-Henning Kamp pps->ppscap |= PPS_OFFSETASSERT; 168332c20357SPoul-Henning Kamp if (pps->ppscap & PPS_CAPTURECLEAR) 168432c20357SPoul-Henning Kamp pps->ppscap |= PPS_OFFSETCLEAR; 168565e359a1SLawrence Stewart #ifdef FFCLOCK 168665e359a1SLawrence Stewart pps->ppscap |= PPS_TSCLK_MASK; 168765e359a1SLawrence Stewart #endif 168828315e27SIan Lepore pps->kcmode &= ~KCMODE_ABIFLAG; 168928315e27SIan Lepore } 169028315e27SIan Lepore 169128315e27SIan Lepore void 169228315e27SIan Lepore pps_init_abi(struct pps_state *pps) 169328315e27SIan Lepore { 169428315e27SIan Lepore 169528315e27SIan Lepore pps_init(pps); 169628315e27SIan Lepore if (pps->driver_abi > 0) { 169728315e27SIan Lepore pps->kcmode |= KCMODE_ABIFLAG; 169828315e27SIan Lepore pps->kernel_abi = PPS_ABI_VERSION; 169928315e27SIan Lepore } 170032c20357SPoul-Henning Kamp } 170132c20357SPoul-Henning Kamp 170232c20357SPoul-Henning Kamp void 17037bf758bfSPoul-Henning Kamp pps_capture(struct pps_state *pps) 17047bf758bfSPoul-Henning Kamp { 17056b00cf46SPoul-Henning Kamp struct timehands *th; 17067bf758bfSPoul-Henning Kamp 1707d8e8b675SPoul-Henning Kamp KASSERT(pps != NULL, ("NULL pps pointer in pps_capture")); 17086b00cf46SPoul-Henning Kamp th = timehands; 1709f4b5a972SKonstantin Belousov pps->capgen = atomic_load_acq_int(&th->th_generation); 17106b00cf46SPoul-Henning Kamp pps->capth = th; 171165e359a1SLawrence Stewart #ifdef FFCLOCK 171265e359a1SLawrence Stewart pps->capffth = fftimehands; 171365e359a1SLawrence Stewart #endif 17146b00cf46SPoul-Henning Kamp pps->capcount = th->th_counter->tc_get_timecount(th->th_counter); 1715f4b5a972SKonstantin Belousov atomic_thread_fence_acq(); 1716f4b5a972SKonstantin Belousov if (pps->capgen != th->th_generation) 17176b00cf46SPoul-Henning Kamp pps->capgen = 0; 17187bf758bfSPoul-Henning Kamp } 17197bf758bfSPoul-Henning Kamp 17207bf758bfSPoul-Henning Kamp void 17217bf758bfSPoul-Henning Kamp pps_event(struct pps_state *pps, int event) 172232c20357SPoul-Henning Kamp { 172339acc78aSPoul-Henning Kamp struct bintime bt; 172432c20357SPoul-Henning Kamp struct timespec ts, *tsp, *osp; 17256b00cf46SPoul-Henning Kamp u_int tcount, *pcount; 1726aaca7045SEnji Cooper int foff; 172732c20357SPoul-Henning Kamp pps_seq_t *pseq; 172865e359a1SLawrence Stewart #ifdef FFCLOCK 172965e359a1SLawrence Stewart struct timespec *tsp_ffc; 173065e359a1SLawrence Stewart pps_seq_t *pseq_ffc; 173165e359a1SLawrence Stewart ffcounter *ffcount; 173265e359a1SLawrence Stewart #endif 1733aaca7045SEnji Cooper #ifdef PPS_SYNC 1734aaca7045SEnji Cooper int fhard; 1735aaca7045SEnji Cooper #endif 173632c20357SPoul-Henning Kamp 1737d8e8b675SPoul-Henning Kamp KASSERT(pps != NULL, ("NULL pps pointer in pps_event")); 1738721b5817SIan Lepore /* Nothing to do if not currently set to capture this event type. */ 1739721b5817SIan Lepore if ((event & pps->ppsparam.mode) == 0) 1740721b5817SIan Lepore return; 174139acc78aSPoul-Henning Kamp /* If the timecounter was wound up underneath us, bail out. */ 1742f4b5a972SKonstantin Belousov if (pps->capgen == 0 || pps->capgen != 1743f4b5a972SKonstantin Belousov atomic_load_acq_int(&pps->capth->th_generation)) 17447bf758bfSPoul-Henning Kamp return; 17457bf758bfSPoul-Henning Kamp 174639acc78aSPoul-Henning Kamp /* Things would be easier with arrays. */ 174732c20357SPoul-Henning Kamp if (event == PPS_CAPTUREASSERT) { 174832c20357SPoul-Henning Kamp tsp = &pps->ppsinfo.assert_timestamp; 174932c20357SPoul-Henning Kamp osp = &pps->ppsparam.assert_offset; 175032c20357SPoul-Henning Kamp foff = pps->ppsparam.mode & PPS_OFFSETASSERT; 1751aaca7045SEnji Cooper #ifdef PPS_SYNC 1752b7424f2dSJohn Hay fhard = pps->kcmode & PPS_CAPTUREASSERT; 1753aaca7045SEnji Cooper #endif 175432c20357SPoul-Henning Kamp pcount = &pps->ppscount[0]; 175532c20357SPoul-Henning Kamp pseq = &pps->ppsinfo.assert_sequence; 175665e359a1SLawrence Stewart #ifdef FFCLOCK 175765e359a1SLawrence Stewart ffcount = &pps->ppsinfo_ffc.assert_ffcount; 175865e359a1SLawrence Stewart tsp_ffc = &pps->ppsinfo_ffc.assert_timestamp; 175965e359a1SLawrence Stewart pseq_ffc = &pps->ppsinfo_ffc.assert_sequence; 176065e359a1SLawrence Stewart #endif 176132c20357SPoul-Henning Kamp } else { 176232c20357SPoul-Henning Kamp tsp = &pps->ppsinfo.clear_timestamp; 176332c20357SPoul-Henning Kamp osp = &pps->ppsparam.clear_offset; 176432c20357SPoul-Henning Kamp foff = pps->ppsparam.mode & PPS_OFFSETCLEAR; 1765aaca7045SEnji Cooper #ifdef PPS_SYNC 1766b7424f2dSJohn Hay fhard = pps->kcmode & PPS_CAPTURECLEAR; 1767aaca7045SEnji Cooper #endif 176832c20357SPoul-Henning Kamp pcount = &pps->ppscount[1]; 176932c20357SPoul-Henning Kamp pseq = &pps->ppsinfo.clear_sequence; 177065e359a1SLawrence Stewart #ifdef FFCLOCK 177165e359a1SLawrence Stewart ffcount = &pps->ppsinfo_ffc.clear_ffcount; 177265e359a1SLawrence Stewart tsp_ffc = &pps->ppsinfo_ffc.clear_timestamp; 177365e359a1SLawrence Stewart pseq_ffc = &pps->ppsinfo_ffc.clear_sequence; 177465e359a1SLawrence Stewart #endif 177532c20357SPoul-Henning Kamp } 177632c20357SPoul-Henning Kamp 177739acc78aSPoul-Henning Kamp /* 17786b00cf46SPoul-Henning Kamp * If the timecounter changed, we cannot compare the count values, so 17796b00cf46SPoul-Henning Kamp * we have to drop the rest of the PPS-stuff until the next event. 17806b00cf46SPoul-Henning Kamp */ 17816b00cf46SPoul-Henning Kamp if (pps->ppstc != pps->capth->th_counter) { 17826b00cf46SPoul-Henning Kamp pps->ppstc = pps->capth->th_counter; 17837bf758bfSPoul-Henning Kamp *pcount = pps->capcount; 17847bf758bfSPoul-Henning Kamp pps->ppscount[2] = pps->capcount; 178532c20357SPoul-Henning Kamp return; 178632c20357SPoul-Henning Kamp } 178732c20357SPoul-Henning Kamp 178839acc78aSPoul-Henning Kamp /* Convert the count to a timespec. */ 17896b00cf46SPoul-Henning Kamp tcount = pps->capcount - pps->capth->th_offset_count; 17906b00cf46SPoul-Henning Kamp tcount &= pps->capth->th_counter->tc_counter_mask; 179150c22263SKonstantin Belousov bt = pps->capth->th_bintime; 17926b00cf46SPoul-Henning Kamp bintime_addx(&bt, pps->capth->th_scale * tcount); 17932028c0cdSPoul-Henning Kamp bintime2timespec(&bt, &ts); 179432c20357SPoul-Henning Kamp 179539acc78aSPoul-Henning Kamp /* If the timecounter was wound up underneath us, bail out. */ 1796f4b5a972SKonstantin Belousov atomic_thread_fence_acq(); 1797f4b5a972SKonstantin Belousov if (pps->capgen != pps->capth->th_generation) 17987bf758bfSPoul-Henning Kamp return; 17997bf758bfSPoul-Henning Kamp 18007bf758bfSPoul-Henning Kamp *pcount = pps->capcount; 180132c20357SPoul-Henning Kamp (*pseq)++; 180232c20357SPoul-Henning Kamp *tsp = ts; 180332c20357SPoul-Henning Kamp 180432c20357SPoul-Henning Kamp if (foff) { 18056040822cSAlan Somers timespecadd(tsp, osp, tsp); 180632c20357SPoul-Henning Kamp if (tsp->tv_nsec < 0) { 180732c20357SPoul-Henning Kamp tsp->tv_nsec += 1000000000; 180832c20357SPoul-Henning Kamp tsp->tv_sec -= 1; 180932c20357SPoul-Henning Kamp } 181032c20357SPoul-Henning Kamp } 181165e359a1SLawrence Stewart 181265e359a1SLawrence Stewart #ifdef FFCLOCK 181365e359a1SLawrence Stewart *ffcount = pps->capffth->tick_ffcount + tcount; 181465e359a1SLawrence Stewart bt = pps->capffth->tick_time; 181565e359a1SLawrence Stewart ffclock_convert_delta(tcount, pps->capffth->cest.period, &bt); 181665e359a1SLawrence Stewart bintime_add(&bt, &pps->capffth->tick_time); 181765e359a1SLawrence Stewart bintime2timespec(&bt, &ts); 181865e359a1SLawrence Stewart (*pseq_ffc)++; 181965e359a1SLawrence Stewart *tsp_ffc = ts; 182065e359a1SLawrence Stewart #endif 182165e359a1SLawrence Stewart 182232c20357SPoul-Henning Kamp #ifdef PPS_SYNC 182332c20357SPoul-Henning Kamp if (fhard) { 182460ae52f7SEd Schouten uint64_t scale; 1825ce9fac00SPoul-Henning Kamp 182639acc78aSPoul-Henning Kamp /* 18276b00cf46SPoul-Henning Kamp * Feed the NTP PLL/FLL. 1828b1e7e201SJohn Hay * The FLL wants to know how many (hardware) nanoseconds 1829b1e7e201SJohn Hay * elapsed since the previous event. 18306b00cf46SPoul-Henning Kamp */ 18317bf758bfSPoul-Henning Kamp tcount = pps->capcount - pps->ppscount[2]; 18327bf758bfSPoul-Henning Kamp pps->ppscount[2] = pps->capcount; 18336b00cf46SPoul-Henning Kamp tcount &= pps->capth->th_counter->tc_counter_mask; 183460ae52f7SEd Schouten scale = (uint64_t)1 << 63; 1835b1e7e201SJohn Hay scale /= pps->capth->th_counter->tc_frequency; 1836b1e7e201SJohn Hay scale *= 2; 18372028c0cdSPoul-Henning Kamp bt.sec = 0; 18382028c0cdSPoul-Henning Kamp bt.frac = 0; 1839b1e7e201SJohn Hay bintime_addx(&bt, scale * tcount); 18402028c0cdSPoul-Henning Kamp bintime2timespec(&bt, &ts); 18412028c0cdSPoul-Henning Kamp hardpps(tsp, ts.tv_nsec + 1000000000 * ts.tv_sec); 184232c20357SPoul-Henning Kamp } 184332c20357SPoul-Henning Kamp #endif 1844a1137de9SIan Lepore 1845a1137de9SIan Lepore /* Wakeup anyone sleeping in pps_fetch(). */ 1846a1137de9SIan Lepore wakeup(pps); 184732c20357SPoul-Henning Kamp } 18489e1b5510SPoul-Henning Kamp 184939acc78aSPoul-Henning Kamp /* 18509e1b5510SPoul-Henning Kamp * Timecounters need to be updated every so often to prevent the hardware 18519e1b5510SPoul-Henning Kamp * counter from overflowing. Updating also recalculates the cached values 18529e1b5510SPoul-Henning Kamp * used by the get*() family of functions, so their precision depends on 18539e1b5510SPoul-Henning Kamp * the update frequency. 18549e1b5510SPoul-Henning Kamp */ 18559e1b5510SPoul-Henning Kamp 18569e1b5510SPoul-Henning Kamp static int tc_tick; 1857b389be97SRebecca Cran SYSCTL_INT(_kern_timecounter, OID_AUTO, tick, CTLFLAG_RD, &tc_tick, 0, 1858b389be97SRebecca Cran "Approximate number of hardclock ticks in a millisecond"); 18599e1b5510SPoul-Henning Kamp 1860e7fa55afSPoul-Henning Kamp void 18610e189873SAlexander Motin tc_ticktock(int cnt) 18629e1b5510SPoul-Henning Kamp { 1863e7fa55afSPoul-Henning Kamp static int count; 18649e1b5510SPoul-Henning Kamp 18655760b029SKonstantin Belousov if (mtx_trylock_spin(&tc_setclock_mtx)) { 18660e189873SAlexander Motin count += cnt; 18675760b029SKonstantin Belousov if (count >= tc_tick) { 1868e7fa55afSPoul-Henning Kamp count = 0; 18695760b029SKonstantin Belousov tc_windup(NULL); 18705760b029SKonstantin Belousov } 18715760b029SKonstantin Belousov mtx_unlock_spin(&tc_setclock_mtx); 18725760b029SKonstantin Belousov } 18739e1b5510SPoul-Henning Kamp } 18749e1b5510SPoul-Henning Kamp 18755b999a6bSDavide Italiano static void __inline 18765b999a6bSDavide Italiano tc_adjprecision(void) 18775b999a6bSDavide Italiano { 18785b999a6bSDavide Italiano int t; 18795b999a6bSDavide Italiano 18805b999a6bSDavide Italiano if (tc_timepercentage > 0) { 18815b999a6bSDavide Italiano t = (99 + tc_timepercentage) / tc_timepercentage; 18825b999a6bSDavide Italiano tc_precexp = fls(t + (t >> 1)) - 1; 18835b999a6bSDavide Italiano FREQ2BT(hz / tc_tick, &bt_timethreshold); 18845b999a6bSDavide Italiano FREQ2BT(hz, &bt_tickthreshold); 18855b999a6bSDavide Italiano bintime_shift(&bt_timethreshold, tc_precexp); 18865b999a6bSDavide Italiano bintime_shift(&bt_tickthreshold, tc_precexp); 18875b999a6bSDavide Italiano } else { 18885b999a6bSDavide Italiano tc_precexp = 31; 18895b999a6bSDavide Italiano bt_timethreshold.sec = INT_MAX; 18905b999a6bSDavide Italiano bt_timethreshold.frac = ~(uint64_t)0; 18915b999a6bSDavide Italiano bt_tickthreshold = bt_timethreshold; 18925b999a6bSDavide Italiano } 18935b999a6bSDavide Italiano sbt_timethreshold = bttosbt(bt_timethreshold); 18945b999a6bSDavide Italiano sbt_tickthreshold = bttosbt(bt_tickthreshold); 18955b999a6bSDavide Italiano } 18965b999a6bSDavide Italiano 18975b999a6bSDavide Italiano static int 18985b999a6bSDavide Italiano sysctl_kern_timecounter_adjprecision(SYSCTL_HANDLER_ARGS) 18995b999a6bSDavide Italiano { 19005b999a6bSDavide Italiano int error, val; 19015b999a6bSDavide Italiano 19025b999a6bSDavide Italiano val = tc_timepercentage; 19035b999a6bSDavide Italiano error = sysctl_handle_int(oidp, &val, 0, req); 19045b999a6bSDavide Italiano if (error != 0 || req->newptr == NULL) 19055b999a6bSDavide Italiano return (error); 19065b999a6bSDavide Italiano tc_timepercentage = val; 1907af3b2549SHans Petter Selasky if (cold) 1908af3b2549SHans Petter Selasky goto done; 19095b999a6bSDavide Italiano tc_adjprecision(); 1910af3b2549SHans Petter Selasky done: 19115b999a6bSDavide Italiano return (0); 19125b999a6bSDavide Italiano } 19135b999a6bSDavide Italiano 19146c46ce7eSKonstantin Belousov /* Set up the requested number of timehands. */ 19156c46ce7eSKonstantin Belousov static void 19166c46ce7eSKonstantin Belousov inittimehands(void *dummy) 19176c46ce7eSKonstantin Belousov { 19186c46ce7eSKonstantin Belousov struct timehands *thp; 19196c46ce7eSKonstantin Belousov int i; 19206c46ce7eSKonstantin Belousov 19216c46ce7eSKonstantin Belousov TUNABLE_INT_FETCH("kern.timecounter.timehands_count", 19226c46ce7eSKonstantin Belousov &timehands_count); 19236c46ce7eSKonstantin Belousov if (timehands_count < 1) 19246c46ce7eSKonstantin Belousov timehands_count = 1; 19256c46ce7eSKonstantin Belousov if (timehands_count > nitems(ths)) 19266c46ce7eSKonstantin Belousov timehands_count = nitems(ths); 19276c46ce7eSKonstantin Belousov for (i = 1, thp = &ths[0]; i < timehands_count; thp = &ths[i++]) 19286c46ce7eSKonstantin Belousov thp->th_next = &ths[i]; 19296c46ce7eSKonstantin Belousov thp->th_next = &ths[0]; 19306c46ce7eSKonstantin Belousov } 19316c46ce7eSKonstantin Belousov SYSINIT(timehands, SI_SUB_TUNABLES, SI_ORDER_ANY, inittimehands, NULL); 19326c46ce7eSKonstantin Belousov 19339e1b5510SPoul-Henning Kamp static void 19349e1b5510SPoul-Henning Kamp inittimecounter(void *dummy) 19359e1b5510SPoul-Henning Kamp { 19369e1b5510SPoul-Henning Kamp u_int p; 19376c46ce7eSKonstantin Belousov int tick_rate; 19389e1b5510SPoul-Henning Kamp 193939acc78aSPoul-Henning Kamp /* 194039acc78aSPoul-Henning Kamp * Set the initial timeout to 194139acc78aSPoul-Henning Kamp * max(1, <approx. number of hardclock ticks in a millisecond>). 194239acc78aSPoul-Henning Kamp * People should probably not use the sysctl to set the timeout 1943e3043798SPedro F. Giffuni * to smaller than its initial value, since that value is the 194439acc78aSPoul-Henning Kamp * smallest reasonable one. If they want better timestamps they 194539acc78aSPoul-Henning Kamp * should use the non-"get"* functions. 194639acc78aSPoul-Henning Kamp */ 19479e1b5510SPoul-Henning Kamp if (hz > 1000) 19489e1b5510SPoul-Henning Kamp tc_tick = (hz + 500) / 1000; 19499e1b5510SPoul-Henning Kamp else 19509e1b5510SPoul-Henning Kamp tc_tick = 1; 19515b999a6bSDavide Italiano tc_adjprecision(); 19525b999a6bSDavide Italiano FREQ2BT(hz, &tick_bt); 19535b999a6bSDavide Italiano tick_sbt = bttosbt(tick_bt); 19545b999a6bSDavide Italiano tick_rate = hz / tc_tick; 19555b999a6bSDavide Italiano FREQ2BT(tick_rate, &tc_tick_bt); 19565b999a6bSDavide Italiano tc_tick_sbt = bttosbt(tc_tick_bt); 19579e1b5510SPoul-Henning Kamp p = (tc_tick * 1000000) / hz; 19589e1b5510SPoul-Henning Kamp printf("Timecounters tick every %d.%03u msec\n", p / 1000, p % 1000); 195939acc78aSPoul-Henning Kamp 1960b0fdc837SLawrence Stewart #ifdef FFCLOCK 1961b0fdc837SLawrence Stewart ffclock_init(); 1962b0fdc837SLawrence Stewart #endif 19634b23dec4SKonstantin Belousov 196448e5da55SPoul-Henning Kamp /* warm up new timecounter (again) and get rolling. */ 196539acc78aSPoul-Henning Kamp (void)timecounter->tc_get_timecount(timecounter); 196639acc78aSPoul-Henning Kamp (void)timecounter->tc_get_timecount(timecounter); 19675760b029SKonstantin Belousov mtx_lock_spin(&tc_setclock_mtx); 19685760b029SKonstantin Belousov tc_windup(NULL); 19695760b029SKonstantin Belousov mtx_unlock_spin(&tc_setclock_mtx); 19709e1b5510SPoul-Henning Kamp } 19719e1b5510SPoul-Henning Kamp 1972237fdd78SRobert Watson SYSINIT(timecounter, SI_SUB_CLOCKS, SI_ORDER_SECOND, inittimecounter, NULL); 19735b1a8eb3SPoul-Henning Kamp 1974e8444a7eSPoul-Henning Kamp /* Cpu tick handling -------------------------------------------------*/ 1975e8444a7eSPoul-Henning Kamp 1976e8444a7eSPoul-Henning Kamp static int cpu_tick_variable; 1977e8444a7eSPoul-Henning Kamp static uint64_t cpu_tick_frequency; 1978e8444a7eSPoul-Henning Kamp 19792bf95012SAndrew Turner DPCPU_DEFINE_STATIC(uint64_t, tc_cpu_ticks_base); 19802bf95012SAndrew Turner DPCPU_DEFINE_STATIC(unsigned, tc_cpu_ticks_last); 1981b2557db6SKonstantin Belousov 198288ca07e7SJohn Baldwin static uint64_t 19835b1a8eb3SPoul-Henning Kamp tc_cpu_ticks(void) 19845b1a8eb3SPoul-Henning Kamp { 19855b1a8eb3SPoul-Henning Kamp struct timecounter *tc; 1986b2557db6SKonstantin Belousov uint64_t res, *base; 1987b2557db6SKonstantin Belousov unsigned u, *last; 19885b1a8eb3SPoul-Henning Kamp 1989b2557db6SKonstantin Belousov critical_enter(); 1990b2557db6SKonstantin Belousov base = DPCPU_PTR(tc_cpu_ticks_base); 1991b2557db6SKonstantin Belousov last = DPCPU_PTR(tc_cpu_ticks_last); 19925b1a8eb3SPoul-Henning Kamp tc = timehands->th_counter; 19935b1a8eb3SPoul-Henning Kamp u = tc->tc_get_timecount(tc) & tc->tc_counter_mask; 1994b2557db6SKonstantin Belousov if (u < *last) 1995b2557db6SKonstantin Belousov *base += (uint64_t)tc->tc_counter_mask + 1; 1996b2557db6SKonstantin Belousov *last = u; 1997b2557db6SKonstantin Belousov res = u + *base; 1998b2557db6SKonstantin Belousov critical_exit(); 1999b2557db6SKonstantin Belousov return (res); 20005b1a8eb3SPoul-Henning Kamp } 20015b1a8eb3SPoul-Henning Kamp 2002a157e425SAlexander Motin void 2003a157e425SAlexander Motin cpu_tick_calibration(void) 2004a157e425SAlexander Motin { 2005a157e425SAlexander Motin static time_t last_calib; 2006a157e425SAlexander Motin 2007a157e425SAlexander Motin if (time_uptime != last_calib && !(time_uptime & 0xf)) { 2008a157e425SAlexander Motin cpu_tick_calibrate(0); 2009a157e425SAlexander Motin last_calib = time_uptime; 2010a157e425SAlexander Motin } 2011a157e425SAlexander Motin } 2012a157e425SAlexander Motin 2013e8444a7eSPoul-Henning Kamp /* 20146b4d690cSWarner Losh * This function gets called every 16 seconds on only one designated 2015a157e425SAlexander Motin * CPU in the system from hardclock() via cpu_tick_calibration()(). 2016e8444a7eSPoul-Henning Kamp * 2017e8444a7eSPoul-Henning Kamp * Whenever the real time clock is stepped we get called with reset=1 2018e8444a7eSPoul-Henning Kamp * to make sure we handle suspend/resume and similar events correctly. 2019e8444a7eSPoul-Henning Kamp */ 2020e8444a7eSPoul-Henning Kamp 2021e8444a7eSPoul-Henning Kamp static void 2022e8444a7eSPoul-Henning Kamp cpu_tick_calibrate(int reset) 2023e8444a7eSPoul-Henning Kamp { 2024e8444a7eSPoul-Henning Kamp static uint64_t c_last; 2025e8444a7eSPoul-Henning Kamp uint64_t c_this, c_delta; 2026e8444a7eSPoul-Henning Kamp static struct bintime t_last; 2027e8444a7eSPoul-Henning Kamp struct bintime t_this, t_delta; 2028301af28aSPoul-Henning Kamp uint32_t divi; 2029e8444a7eSPoul-Henning Kamp 2030e8444a7eSPoul-Henning Kamp if (reset) { 2031e8444a7eSPoul-Henning Kamp /* The clock was stepped, abort & reset */ 2032e8444a7eSPoul-Henning Kamp t_last.sec = 0; 2033e8444a7eSPoul-Henning Kamp return; 2034e8444a7eSPoul-Henning Kamp } 2035e8444a7eSPoul-Henning Kamp 2036e8444a7eSPoul-Henning Kamp /* we don't calibrate fixed rate cputicks */ 2037e8444a7eSPoul-Henning Kamp if (!cpu_tick_variable) 2038e8444a7eSPoul-Henning Kamp return; 2039e8444a7eSPoul-Henning Kamp 2040e8444a7eSPoul-Henning Kamp getbinuptime(&t_this); 2041e8444a7eSPoul-Henning Kamp c_this = cpu_ticks(); 2042e8444a7eSPoul-Henning Kamp if (t_last.sec != 0) { 2043e8444a7eSPoul-Henning Kamp c_delta = c_this - c_last; 2044e8444a7eSPoul-Henning Kamp t_delta = t_this; 2045e8444a7eSPoul-Henning Kamp bintime_sub(&t_delta, &t_last); 2046e8444a7eSPoul-Henning Kamp /* 2047301af28aSPoul-Henning Kamp * Headroom: 2048301af28aSPoul-Henning Kamp * 2^(64-20) / 16[s] = 2049301af28aSPoul-Henning Kamp * 2^(44) / 16[s] = 2050301af28aSPoul-Henning Kamp * 17.592.186.044.416 / 16 = 2051301af28aSPoul-Henning Kamp * 1.099.511.627.776 [Hz] 2052301af28aSPoul-Henning Kamp */ 2053301af28aSPoul-Henning Kamp divi = t_delta.sec << 20; 2054301af28aSPoul-Henning Kamp divi |= t_delta.frac >> (64 - 20); 2055301af28aSPoul-Henning Kamp c_delta <<= 20; 2056301af28aSPoul-Henning Kamp c_delta /= divi; 2057e8444a7eSPoul-Henning Kamp if (c_delta > cpu_tick_frequency) { 205859048707SPoul-Henning Kamp if (0 && bootverbose) 2059fef527eeSPoul-Henning Kamp printf("cpu_tick increased to %ju Hz\n", 20606cda760fSPoul-Henning Kamp c_delta); 2061e8444a7eSPoul-Henning Kamp cpu_tick_frequency = c_delta; 2062e8444a7eSPoul-Henning Kamp } 2063e8444a7eSPoul-Henning Kamp } 2064e8444a7eSPoul-Henning Kamp c_last = c_this; 2065e8444a7eSPoul-Henning Kamp t_last = t_this; 2066e8444a7eSPoul-Henning Kamp } 2067e8444a7eSPoul-Henning Kamp 2068e8444a7eSPoul-Henning Kamp void 2069e8444a7eSPoul-Henning Kamp set_cputicker(cpu_tick_f *func, uint64_t freq, unsigned var) 2070e8444a7eSPoul-Henning Kamp { 2071e8444a7eSPoul-Henning Kamp 2072e8444a7eSPoul-Henning Kamp if (func == NULL) { 2073e8444a7eSPoul-Henning Kamp cpu_ticks = tc_cpu_ticks; 2074e8444a7eSPoul-Henning Kamp } else { 2075e8444a7eSPoul-Henning Kamp cpu_tick_frequency = freq; 2076e8444a7eSPoul-Henning Kamp cpu_tick_variable = var; 2077e8444a7eSPoul-Henning Kamp cpu_ticks = func; 2078e8444a7eSPoul-Henning Kamp } 2079e8444a7eSPoul-Henning Kamp } 2080e8444a7eSPoul-Henning Kamp 2081e8444a7eSPoul-Henning Kamp uint64_t 2082e8444a7eSPoul-Henning Kamp cpu_tickrate(void) 2083e8444a7eSPoul-Henning Kamp { 2084e8444a7eSPoul-Henning Kamp 2085e8444a7eSPoul-Henning Kamp if (cpu_ticks == tc_cpu_ticks) 2086e8444a7eSPoul-Henning Kamp return (tc_getfrequency()); 2087e8444a7eSPoul-Henning Kamp return (cpu_tick_frequency); 2088e8444a7eSPoul-Henning Kamp } 2089e8444a7eSPoul-Henning Kamp 2090e8444a7eSPoul-Henning Kamp /* 2091e8444a7eSPoul-Henning Kamp * We need to be slightly careful converting cputicks to microseconds. 2092e8444a7eSPoul-Henning Kamp * There is plenty of margin in 64 bits of microseconds (half a million 2093e8444a7eSPoul-Henning Kamp * years) and in 64 bits at 4 GHz (146 years), but if we do a multiply 2094e8444a7eSPoul-Henning Kamp * before divide conversion (to retain precision) we find that the 2095e8444a7eSPoul-Henning Kamp * margin shrinks to 1.5 hours (one millionth of 146y). 2096776fc0e9SYaroslav Tykhiy * With a three prong approach we never lose significant bits, no 2097e8444a7eSPoul-Henning Kamp * matter what the cputick rate and length of timeinterval is. 2098e8444a7eSPoul-Henning Kamp */ 2099e8444a7eSPoul-Henning Kamp 2100e8444a7eSPoul-Henning Kamp uint64_t 2101e8444a7eSPoul-Henning Kamp cputick2usec(uint64_t tick) 2102e8444a7eSPoul-Henning Kamp { 2103e8444a7eSPoul-Henning Kamp 2104e8444a7eSPoul-Henning Kamp if (tick > 18446744073709551LL) /* floor(2^64 / 1000) */ 2105e8444a7eSPoul-Henning Kamp return (tick / (cpu_tickrate() / 1000000LL)); 2106e8444a7eSPoul-Henning Kamp else if (tick > 18446744073709LL) /* floor(2^64 / 1000000) */ 2107e8444a7eSPoul-Henning Kamp return ((tick * 1000LL) / (cpu_tickrate() / 1000LL)); 2108e8444a7eSPoul-Henning Kamp else 2109e8444a7eSPoul-Henning Kamp return ((tick * 1000000LL) / cpu_tickrate()); 2110e8444a7eSPoul-Henning Kamp } 2111e8444a7eSPoul-Henning Kamp 2112e8444a7eSPoul-Henning Kamp cpu_tick_f *cpu_ticks = tc_cpu_ticks; 2113aea81038SKonstantin Belousov 2114aea81038SKonstantin Belousov static int vdso_th_enable = 1; 2115aea81038SKonstantin Belousov static int 2116aea81038SKonstantin Belousov sysctl_fast_gettime(SYSCTL_HANDLER_ARGS) 2117aea81038SKonstantin Belousov { 2118aea81038SKonstantin Belousov int old_vdso_th_enable, error; 2119aea81038SKonstantin Belousov 2120aea81038SKonstantin Belousov old_vdso_th_enable = vdso_th_enable; 2121aea81038SKonstantin Belousov error = sysctl_handle_int(oidp, &old_vdso_th_enable, 0, req); 2122aea81038SKonstantin Belousov if (error != 0) 2123aea81038SKonstantin Belousov return (error); 2124aea81038SKonstantin Belousov vdso_th_enable = old_vdso_th_enable; 2125aea81038SKonstantin Belousov return (0); 2126aea81038SKonstantin Belousov } 2127aea81038SKonstantin Belousov SYSCTL_PROC(_kern_timecounter, OID_AUTO, fast_gettime, 2128aea81038SKonstantin Belousov CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, 2129aea81038SKonstantin Belousov NULL, 0, sysctl_fast_gettime, "I", "Enable fast time of day"); 2130aea81038SKonstantin Belousov 2131aea81038SKonstantin Belousov uint32_t 2132aea81038SKonstantin Belousov tc_fill_vdso_timehands(struct vdso_timehands *vdso_th) 2133aea81038SKonstantin Belousov { 2134aea81038SKonstantin Belousov struct timehands *th; 2135aea81038SKonstantin Belousov uint32_t enabled; 2136aea81038SKonstantin Belousov 2137aea81038SKonstantin Belousov th = timehands; 2138aea81038SKonstantin Belousov vdso_th->th_scale = th->th_scale; 2139aea81038SKonstantin Belousov vdso_th->th_offset_count = th->th_offset_count; 2140aea81038SKonstantin Belousov vdso_th->th_counter_mask = th->th_counter->tc_counter_mask; 2141aea81038SKonstantin Belousov vdso_th->th_offset = th->th_offset; 21425760b029SKonstantin Belousov vdso_th->th_boottime = th->th_boottime; 214316808549SKonstantin Belousov if (th->th_counter->tc_fill_vdso_timehands != NULL) { 214416808549SKonstantin Belousov enabled = th->th_counter->tc_fill_vdso_timehands(vdso_th, 214516808549SKonstantin Belousov th->th_counter); 214616808549SKonstantin Belousov } else 214716808549SKonstantin Belousov enabled = 0; 2148aea81038SKonstantin Belousov if (!vdso_th_enable) 2149aea81038SKonstantin Belousov enabled = 0; 2150aea81038SKonstantin Belousov return (enabled); 2151aea81038SKonstantin Belousov } 2152aea81038SKonstantin Belousov 2153aea81038SKonstantin Belousov #ifdef COMPAT_FREEBSD32 2154aea81038SKonstantin Belousov uint32_t 2155aea81038SKonstantin Belousov tc_fill_vdso_timehands32(struct vdso_timehands32 *vdso_th32) 2156aea81038SKonstantin Belousov { 2157aea81038SKonstantin Belousov struct timehands *th; 2158aea81038SKonstantin Belousov uint32_t enabled; 2159aea81038SKonstantin Belousov 2160aea81038SKonstantin Belousov th = timehands; 2161aea81038SKonstantin Belousov *(uint64_t *)&vdso_th32->th_scale[0] = th->th_scale; 2162aea81038SKonstantin Belousov vdso_th32->th_offset_count = th->th_offset_count; 2163aea81038SKonstantin Belousov vdso_th32->th_counter_mask = th->th_counter->tc_counter_mask; 2164aea81038SKonstantin Belousov vdso_th32->th_offset.sec = th->th_offset.sec; 2165aea81038SKonstantin Belousov *(uint64_t *)&vdso_th32->th_offset.frac[0] = th->th_offset.frac; 21665760b029SKonstantin Belousov vdso_th32->th_boottime.sec = th->th_boottime.sec; 21675760b029SKonstantin Belousov *(uint64_t *)&vdso_th32->th_boottime.frac[0] = th->th_boottime.frac; 216816808549SKonstantin Belousov if (th->th_counter->tc_fill_vdso_timehands32 != NULL) { 216916808549SKonstantin Belousov enabled = th->th_counter->tc_fill_vdso_timehands32(vdso_th32, 217016808549SKonstantin Belousov th->th_counter); 217116808549SKonstantin Belousov } else 217216808549SKonstantin Belousov enabled = 0; 2173aea81038SKonstantin Belousov if (!vdso_th_enable) 2174aea81038SKonstantin Belousov enabled = 0; 2175aea81038SKonstantin Belousov return (enabled); 2176aea81038SKonstantin Belousov } 2177aea81038SKonstantin Belousov #endif 2178