xref: /freebsd/sys/kern/kern_synch.c (revision f9218d3d4fd34f082473b3a021c6d4d109fb47cf)
1 /*-
2  * Copyright (c) 1982, 1986, 1990, 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  * (c) UNIX System Laboratories, Inc.
5  * All or some portions of this file are derived from material licensed
6  * to the University of California by American Telephone and Telegraph
7  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8  * the permission of UNIX System Laboratories, Inc.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. All advertising materials mentioning features or use of this software
19  *    must display the following acknowledgement:
20  *	This product includes software developed by the University of
21  *	California, Berkeley and its contributors.
22  * 4. Neither the name of the University nor the names of its contributors
23  *    may be used to endorse or promote products derived from this software
24  *    without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36  * SUCH DAMAGE.
37  *
38  *	@(#)kern_synch.c	8.9 (Berkeley) 5/19/95
39  * $FreeBSD$
40  */
41 
42 #include "opt_ddb.h"
43 #include "opt_ktrace.h"
44 
45 #include <sys/param.h>
46 #include <sys/systm.h>
47 #include <sys/condvar.h>
48 #include <sys/kernel.h>
49 #include <sys/ktr.h>
50 #include <sys/lock.h>
51 #include <sys/mutex.h>
52 #include <sys/proc.h>
53 #include <sys/resourcevar.h>
54 #include <sys/sched.h>
55 #include <sys/signalvar.h>
56 #include <sys/smp.h>
57 #include <sys/sx.h>
58 #include <sys/sysctl.h>
59 #include <sys/sysproto.h>
60 #include <sys/vmmeter.h>
61 #ifdef DDB
62 #include <ddb/ddb.h>
63 #endif
64 #ifdef KTRACE
65 #include <sys/uio.h>
66 #include <sys/ktrace.h>
67 #endif
68 
69 #include <machine/cpu.h>
70 
71 static void sched_setup(void *dummy);
72 SYSINIT(sched_setup, SI_SUB_KICK_SCHEDULER, SI_ORDER_FIRST, sched_setup, NULL)
73 
74 int	hogticks;
75 int	lbolt;
76 
77 static struct callout loadav_callout;
78 static struct callout lbolt_callout;
79 
80 struct loadavg averunnable =
81 	{ {0, 0, 0}, FSCALE };	/* load average, of runnable procs */
82 /*
83  * Constants for averages over 1, 5, and 15 minutes
84  * when sampling at 5 second intervals.
85  */
86 static fixpt_t cexp[3] = {
87 	0.9200444146293232 * FSCALE,	/* exp(-1/12) */
88 	0.9834714538216174 * FSCALE,	/* exp(-1/60) */
89 	0.9944598480048967 * FSCALE,	/* exp(-1/180) */
90 };
91 
92 /* kernel uses `FSCALE', userland (SHOULD) use kern.fscale */
93 static int      fscale __unused = FSCALE;
94 SYSCTL_INT(_kern, OID_AUTO, fscale, CTLFLAG_RD, 0, FSCALE, "");
95 
96 static void	endtsleep(void *);
97 static void	loadav(void *arg);
98 static void	lboltcb(void *arg);
99 
100 /*
101  * We're only looking at 7 bits of the address; everything is
102  * aligned to 4, lots of things are aligned to greater powers
103  * of 2.  Shift right by 8, i.e. drop the bottom 256 worth.
104  */
105 #define TABLESIZE	128
106 static TAILQ_HEAD(slpquehead, thread) slpque[TABLESIZE];
107 #define LOOKUP(x)	(((intptr_t)(x) >> 8) & (TABLESIZE - 1))
108 
109 void
110 sleepinit(void)
111 {
112 	int i;
113 
114 	hogticks = (hz / 10) * 2;	/* Default only. */
115 	for (i = 0; i < TABLESIZE; i++)
116 		TAILQ_INIT(&slpque[i]);
117 }
118 
119 /*
120  * General sleep call.  Suspends the current process until a wakeup is
121  * performed on the specified identifier.  The process will then be made
122  * runnable with the specified priority.  Sleeps at most timo/hz seconds
123  * (0 means no timeout).  If pri includes PCATCH flag, signals are checked
124  * before and after sleeping, else signals are not checked.  Returns 0 if
125  * awakened, EWOULDBLOCK if the timeout expires.  If PCATCH is set and a
126  * signal needs to be delivered, ERESTART is returned if the current system
127  * call should be restarted if possible, and EINTR is returned if the system
128  * call should be interrupted by the signal (return EINTR).
129  *
130  * The mutex argument is exited before the caller is suspended, and
131  * entered before msleep returns.  If priority includes the PDROP
132  * flag the mutex is not entered before returning.
133  */
134 
135 int
136 msleep(ident, mtx, priority, wmesg, timo)
137 	void *ident;
138 	struct mtx *mtx;
139 	int priority, timo;
140 	const char *wmesg;
141 {
142 	struct thread *td = curthread;
143 	struct proc *p = td->td_proc;
144 	int sig, catch = priority & PCATCH;
145 	int rval = 0;
146 	WITNESS_SAVE_DECL(mtx);
147 
148 #ifdef KTRACE
149 	if (KTRPOINT(td, KTR_CSW))
150 		ktrcsw(1, 0);
151 #endif
152 	WITNESS_SLEEP(0, &mtx->mtx_object);
153 	KASSERT(timo != 0 || mtx_owned(&Giant) || mtx != NULL,
154 	    ("sleeping without a mutex"));
155 	/*
156 	 * If we are capable of async syscalls and there isn't already
157 	 * another one ready to return, start a new thread
158 	 * and queue it as ready to run. Note that there is danger here
159 	 * because we need to make sure that we don't sleep allocating
160 	 * the thread (recursion here might be bad).
161 	 * Hence the TDF_INMSLEEP flag.
162 	 */
163 	if (p->p_flag & P_THREADED) {
164 		/*
165 		 * Just don't bother if we are exiting
166 		 * and not the exiting thread or thread was marked as
167 		 * interrupted.
168 		 */
169 		if (catch &&
170 		    (((p->p_flag & P_WEXIT) && (p->p_singlethread != td)) ||
171 		     (td->td_flags & TDF_INTERRUPT))) {
172 			td->td_flags &= ~TDF_INTERRUPT;
173 			return (EINTR);
174 		}
175 	}
176 	mtx_lock_spin(&sched_lock);
177 	if (cold ) {
178 		/*
179 		 * During autoconfiguration, just give interrupts
180 		 * a chance, then just return.
181 		 * Don't run any other procs or panic below,
182 		 * in case this is the idle process and already asleep.
183 		 */
184 		if (mtx != NULL && priority & PDROP)
185 			mtx_unlock(mtx);
186 		mtx_unlock_spin(&sched_lock);
187 		return (0);
188 	}
189 
190 	DROP_GIANT();
191 
192 	if (mtx != NULL) {
193 		mtx_assert(mtx, MA_OWNED | MA_NOTRECURSED);
194 		WITNESS_SAVE(&mtx->mtx_object, mtx);
195 		mtx_unlock(mtx);
196 		if (priority & PDROP)
197 			mtx = NULL;
198 	}
199 
200 	KASSERT(p != NULL, ("msleep1"));
201 	KASSERT(ident != NULL && TD_IS_RUNNING(td), ("msleep"));
202 
203 	CTR5(KTR_PROC, "msleep: thread %p (pid %d, %s) on %s (%p)",
204 	    td, p->p_pid, p->p_comm, wmesg, ident);
205 
206 	td->td_wchan = ident;
207 	td->td_wmesg = wmesg;
208 	TAILQ_INSERT_TAIL(&slpque[LOOKUP(ident)], td, td_slpq);
209 	TD_SET_ON_SLEEPQ(td);
210 	if (timo)
211 		callout_reset(&td->td_slpcallout, timo, endtsleep, td);
212 	/*
213 	 * We put ourselves on the sleep queue and start our timeout
214 	 * before calling thread_suspend_check, as we could stop there, and
215 	 * a wakeup or a SIGCONT (or both) could occur while we were stopped.
216 	 * without resuming us, thus we must be ready for sleep
217 	 * when cursig is called.  If the wakeup happens while we're
218 	 * stopped, td->td_wchan will be 0 upon return from cursig.
219 	 */
220 	if (catch) {
221 		CTR3(KTR_PROC, "msleep caught: thread %p (pid %d, %s)", td,
222 		    p->p_pid, p->p_comm);
223 		td->td_flags |= TDF_SINTR;
224 		mtx_unlock_spin(&sched_lock);
225 		PROC_LOCK(p);
226 		sig = cursig(td);
227 		if (sig == 0 && thread_suspend_check(1))
228 			sig = SIGSTOP;
229 		mtx_lock_spin(&sched_lock);
230 		PROC_UNLOCK(p);
231 		if (sig != 0) {
232 			if (TD_ON_SLEEPQ(td))
233 				unsleep(td);
234 		} else if (!TD_ON_SLEEPQ(td))
235 			catch = 0;
236 	} else
237 		sig = 0;
238 
239 	/*
240 	 * Let the scheduler know we're about to voluntarily go to sleep.
241 	 */
242 	sched_sleep(td, priority & PRIMASK);
243 
244 	if (TD_ON_SLEEPQ(td)) {
245 		p->p_stats->p_ru.ru_nvcsw++;
246 		TD_SET_SLEEPING(td);
247 		mi_switch();
248 	}
249 	/*
250 	 * We're awake from voluntary sleep.
251 	 */
252 	CTR3(KTR_PROC, "msleep resume: thread %p (pid %d, %s)", td, p->p_pid,
253 	    p->p_comm);
254 	KASSERT(TD_IS_RUNNING(td), ("running but not TDS_RUNNING"));
255 	td->td_flags &= ~TDF_SINTR;
256 	if (td->td_flags & TDF_TIMEOUT) {
257 		td->td_flags &= ~TDF_TIMEOUT;
258 		if (sig == 0)
259 			rval = EWOULDBLOCK;
260 	} else if (td->td_flags & TDF_TIMOFAIL) {
261 		td->td_flags &= ~TDF_TIMOFAIL;
262 	} else if (timo && callout_stop(&td->td_slpcallout) == 0) {
263 		/*
264 		 * This isn't supposed to be pretty.  If we are here, then
265 		 * the endtsleep() callout is currently executing on another
266 		 * CPU and is either spinning on the sched_lock or will be
267 		 * soon.  If we don't synchronize here, there is a chance
268 		 * that this process may msleep() again before the callout
269 		 * has a chance to run and the callout may end up waking up
270 		 * the wrong msleep().  Yuck.
271 		 */
272 		TD_SET_SLEEPING(td);
273 		p->p_stats->p_ru.ru_nivcsw++;
274 		mi_switch();
275 		td->td_flags &= ~TDF_TIMOFAIL;
276 	}
277 	if ((td->td_flags & TDF_INTERRUPT) && (priority & PCATCH) &&
278 	    (rval == 0)) {
279 		td->td_flags &= ~TDF_INTERRUPT;
280 		rval = EINTR;
281 	}
282 	mtx_unlock_spin(&sched_lock);
283 
284 	if (rval == 0 && catch) {
285 		PROC_LOCK(p);
286 		/* XXX: shouldn't we always be calling cursig() */
287 		if (sig != 0 || (sig = cursig(td))) {
288 			if (SIGISMEMBER(p->p_sigacts->ps_sigintr, sig))
289 				rval = EINTR;
290 			else
291 				rval = ERESTART;
292 		}
293 		PROC_UNLOCK(p);
294 	}
295 #ifdef KTRACE
296 	if (KTRPOINT(td, KTR_CSW))
297 		ktrcsw(0, 0);
298 #endif
299 	PICKUP_GIANT();
300 	if (mtx != NULL) {
301 		mtx_lock(mtx);
302 		WITNESS_RESTORE(&mtx->mtx_object, mtx);
303 	}
304 	return (rval);
305 }
306 
307 /*
308  * Implement timeout for msleep()
309  *
310  * If process hasn't been awakened (wchan non-zero),
311  * set timeout flag and undo the sleep.  If proc
312  * is stopped, just unsleep so it will remain stopped.
313  * MP-safe, called without the Giant mutex.
314  */
315 static void
316 endtsleep(arg)
317 	void *arg;
318 {
319 	register struct thread *td = arg;
320 
321 	CTR3(KTR_PROC, "endtsleep: thread %p (pid %d, %s)",
322 	    td, td->td_proc->p_pid, td->td_proc->p_comm);
323 	mtx_lock_spin(&sched_lock);
324 	/*
325 	 * This is the other half of the synchronization with msleep()
326 	 * described above.  If the TDS_TIMEOUT flag is set, we lost the
327 	 * race and just need to put the process back on the runqueue.
328 	 */
329 	if (TD_ON_SLEEPQ(td)) {
330 		TAILQ_REMOVE(&slpque[LOOKUP(td->td_wchan)], td, td_slpq);
331 		TD_CLR_ON_SLEEPQ(td);
332 		td->td_flags |= TDF_TIMEOUT;
333 		td->td_wmesg = NULL;
334 	} else {
335 		td->td_flags |= TDF_TIMOFAIL;
336 	}
337 	TD_CLR_SLEEPING(td);
338 	setrunnable(td);
339 	mtx_unlock_spin(&sched_lock);
340 }
341 
342 /*
343  * Abort a thread, as if an interrupt had occured.  Only abort
344  * interruptable waits (unfortunatly it isn't only safe to abort others).
345  * This is about identical to cv_abort().
346  * Think about merging them?
347  * Also, whatever the signal code does...
348  */
349 void
350 abortsleep(struct thread *td)
351 {
352 
353 	mtx_assert(&sched_lock, MA_OWNED);
354 	/*
355 	 * If the TDF_TIMEOUT flag is set, just leave. A
356 	 * timeout is scheduled anyhow.
357 	 */
358 	if ((td->td_flags & (TDF_TIMEOUT | TDF_SINTR)) == TDF_SINTR) {
359 		if (TD_ON_SLEEPQ(td)) {
360 			unsleep(td);
361 			TD_CLR_SLEEPING(td);
362 			setrunnable(td);
363 		}
364 	}
365 }
366 
367 /*
368  * Remove a process from its wait queue
369  */
370 void
371 unsleep(struct thread *td)
372 {
373 
374 	mtx_lock_spin(&sched_lock);
375 	if (TD_ON_SLEEPQ(td)) {
376 		TAILQ_REMOVE(&slpque[LOOKUP(td->td_wchan)], td, td_slpq);
377 		TD_CLR_ON_SLEEPQ(td);
378 		td->td_wmesg = NULL;
379 	}
380 	mtx_unlock_spin(&sched_lock);
381 }
382 
383 /*
384  * Make all processes sleeping on the specified identifier runnable.
385  */
386 void
387 wakeup(ident)
388 	register void *ident;
389 {
390 	register struct slpquehead *qp;
391 	register struct thread *td;
392 	struct thread *ntd;
393 	struct proc *p;
394 
395 	mtx_lock_spin(&sched_lock);
396 	qp = &slpque[LOOKUP(ident)];
397 restart:
398 	for (td = TAILQ_FIRST(qp); td != NULL; td = ntd) {
399 		ntd = TAILQ_NEXT(td, td_slpq);
400 		if (td->td_wchan == ident) {
401 			unsleep(td);
402 			TD_CLR_SLEEPING(td);
403 			setrunnable(td);
404 			p = td->td_proc;
405 			CTR3(KTR_PROC,"wakeup: thread %p (pid %d, %s)",
406 			    td, p->p_pid, p->p_comm);
407 			goto restart;
408 		}
409 	}
410 	mtx_unlock_spin(&sched_lock);
411 }
412 
413 /*
414  * Make a process sleeping on the specified identifier runnable.
415  * May wake more than one process if a target process is currently
416  * swapped out.
417  */
418 void
419 wakeup_one(ident)
420 	register void *ident;
421 {
422 	register struct slpquehead *qp;
423 	register struct thread *td;
424 	register struct proc *p;
425 	struct thread *ntd;
426 
427 	mtx_lock_spin(&sched_lock);
428 	qp = &slpque[LOOKUP(ident)];
429 	for (td = TAILQ_FIRST(qp); td != NULL; td = ntd) {
430 		ntd = TAILQ_NEXT(td, td_slpq);
431 		if (td->td_wchan == ident) {
432 			unsleep(td);
433 			TD_CLR_SLEEPING(td);
434 			setrunnable(td);
435 			p = td->td_proc;
436 			CTR3(KTR_PROC,"wakeup1: thread %p (pid %d, %s)",
437 			    td, p->p_pid, p->p_comm);
438 			break;
439 		}
440 	}
441 	mtx_unlock_spin(&sched_lock);
442 }
443 
444 /*
445  * The machine independent parts of mi_switch().
446  */
447 void
448 mi_switch(void)
449 {
450 	struct bintime new_switchtime;
451 	struct thread *td = curthread;	/* XXX */
452 	struct proc *p = td->td_proc;	/* XXX */
453 	u_int sched_nest;
454 
455 	mtx_assert(&sched_lock, MA_OWNED | MA_NOTRECURSED);
456 
457 	KASSERT(!TD_ON_RUNQ(td), ("mi_switch: called by old code"));
458 #ifdef INVARIANTS
459 	if (!TD_ON_LOCK(td) &&
460 	    !TD_ON_RUNQ(td) &&
461 	    !TD_IS_RUNNING(td))
462 		mtx_assert(&Giant, MA_NOTOWNED);
463 #endif
464 	KASSERT(td->td_critnest == 1,
465 	    ("mi_switch: switch in a critical section"));
466 
467 	/*
468 	 * Compute the amount of time during which the current
469 	 * process was running, and add that to its total so far.
470 	 */
471 	binuptime(&new_switchtime);
472 	bintime_add(&p->p_runtime, &new_switchtime);
473 	bintime_sub(&p->p_runtime, PCPU_PTR(switchtime));
474 
475 #ifdef DDB
476 	/*
477 	 * Don't perform context switches from the debugger.
478 	 */
479 	if (db_active) {
480 		mtx_unlock_spin(&sched_lock);
481 		db_print_backtrace();
482 		db_error("Context switches not allowed in the debugger.");
483 	}
484 #endif
485 
486 	/*
487 	 * Check if the process exceeds its cpu resource allocation.  If
488 	 * over max, arrange to kill the process in ast().
489 	 */
490 	if (p->p_cpulimit != RLIM_INFINITY &&
491 	    p->p_runtime.sec > p->p_cpulimit) {
492 		p->p_sflag |= PS_XCPU;
493 		td->td_flags |= TDF_ASTPENDING;
494 	}
495 
496 	/*
497 	 * Finish up stats for outgoing thread.
498 	 */
499 	cnt.v_swtch++;
500 	PCPU_SET(switchtime, new_switchtime);
501 	CTR3(KTR_PROC, "mi_switch: old thread %p (pid %d, %s)", td, p->p_pid,
502 	    p->p_comm);
503 
504 	sched_nest = sched_lock.mtx_recurse;
505 	sched_switchout(td);
506 
507 	cpu_switch();		/* SHAZAM!!*/
508 
509 	sched_lock.mtx_recurse = sched_nest;
510 	sched_lock.mtx_lock = (uintptr_t)td;
511 	sched_switchin(td);
512 
513 	/*
514 	 * Start setting up stats etc. for the incoming thread.
515 	 * Similar code in fork_exit() is returned to by cpu_switch()
516 	 * in the case of a new thread/process.
517 	 */
518 	CTR3(KTR_PROC, "mi_switch: new thread %p (pid %d, %s)", td, p->p_pid,
519 	    p->p_comm);
520 	if (PCPU_GET(switchtime.sec) == 0)
521 		binuptime(PCPU_PTR(switchtime));
522 	PCPU_SET(switchticks, ticks);
523 
524 	/*
525 	 * Call the switchin function while still holding the scheduler lock
526 	 * (used by the idlezero code and the general page-zeroing code)
527 	 */
528 	if (td->td_switchin)
529 		td->td_switchin();
530 
531 	/*
532 	 * If the last thread was exiting, finish cleaning it up.
533 	 */
534 	if ((td = PCPU_GET(deadthread))) {
535 		PCPU_SET(deadthread, NULL);
536 		thread_stash(td);
537 	}
538 }
539 
540 /*
541  * Change process state to be runnable,
542  * placing it on the run queue if it is in memory,
543  * and awakening the swapper if it isn't in memory.
544  */
545 void
546 setrunnable(struct thread *td)
547 {
548 	struct proc *p = td->td_proc;
549 
550 	mtx_assert(&sched_lock, MA_OWNED);
551 	switch (p->p_state) {
552 	case PRS_ZOMBIE:
553 		panic("setrunnable(1)");
554 	default:
555 		break;
556 	}
557 	switch (td->td_state) {
558 	case TDS_RUNNING:
559 	case TDS_RUNQ:
560 		return;
561 	case TDS_INHIBITED:
562 		/*
563 		 * If we are only inhibited because we are swapped out
564 		 * then arange to swap in this process. Otherwise just return.
565 		 */
566 		if (td->td_inhibitors != TDI_SWAPPED)
567 			return;
568 	case TDS_CAN_RUN:
569 		break;
570 	default:
571 		printf("state is 0x%x", td->td_state);
572 		panic("setrunnable(2)");
573 	}
574 	if ((p->p_sflag & PS_INMEM) == 0) {
575 		if ((p->p_sflag & PS_SWAPPINGIN) == 0) {
576 			p->p_sflag |= PS_SWAPINREQ;
577 			wakeup(&proc0);
578 		}
579 	} else
580 		sched_wakeup(td);
581 }
582 
583 /*
584  * Compute a tenex style load average of a quantity on
585  * 1, 5 and 15 minute intervals.
586  * XXXKSE   Needs complete rewrite when correct info is available.
587  * Completely Bogus.. only works with 1:1 (but compiles ok now :-)
588  */
589 static void
590 loadav(void *arg)
591 {
592 	int i, nrun;
593 	struct loadavg *avg;
594 	struct proc *p;
595 	struct thread *td;
596 
597 	avg = &averunnable;
598 	sx_slock(&allproc_lock);
599 	nrun = 0;
600 	FOREACH_PROC_IN_SYSTEM(p) {
601 		FOREACH_THREAD_IN_PROC(p, td) {
602 			switch (td->td_state) {
603 			case TDS_RUNQ:
604 			case TDS_RUNNING:
605 				if ((p->p_flag & P_NOLOAD) != 0)
606 					goto nextproc;
607 				nrun++; /* XXXKSE */
608 			default:
609 				break;
610 			}
611 nextproc:
612 			continue;
613 		}
614 	}
615 	sx_sunlock(&allproc_lock);
616 	for (i = 0; i < 3; i++)
617 		avg->ldavg[i] = (cexp[i] * avg->ldavg[i] +
618 		    nrun * FSCALE * (FSCALE - cexp[i])) >> FSHIFT;
619 
620 	/*
621 	 * Schedule the next update to occur after 5 seconds, but add a
622 	 * random variation to avoid synchronisation with processes that
623 	 * run at regular intervals.
624 	 */
625 	callout_reset(&loadav_callout, hz * 4 + (int)(random() % (hz * 2 + 1)),
626 	    loadav, NULL);
627 }
628 
629 static void
630 lboltcb(void *arg)
631 {
632 	wakeup(&lbolt);
633 	callout_reset(&lbolt_callout, hz, lboltcb, NULL);
634 }
635 
636 /* ARGSUSED */
637 static void
638 sched_setup(dummy)
639 	void *dummy;
640 {
641 	callout_init(&loadav_callout, 0);
642 	callout_init(&lbolt_callout, 1);
643 
644 	/* Kick off timeout driven events by calling first time. */
645 	loadav(NULL);
646 	lboltcb(NULL);
647 }
648 
649 /*
650  * General purpose yield system call
651  */
652 int
653 yield(struct thread *td, struct yield_args *uap)
654 {
655 	struct ksegrp *kg = td->td_ksegrp;
656 
657 	mtx_assert(&Giant, MA_NOTOWNED);
658 	mtx_lock_spin(&sched_lock);
659 	kg->kg_proc->p_stats->p_ru.ru_nvcsw++;
660 	sched_prio(td, PRI_MAX_TIMESHARE);
661 	mi_switch();
662 	mtx_unlock_spin(&sched_lock);
663 	td->td_retval[0] = 0;
664 
665 	return (0);
666 }
667 
668