xref: /freebsd/sys/kern/kern_synch.c (revision f6a4109212fd8fbabc731f07b2dd5c7e07fbec33)
1 /*-
2  * Copyright (c) 1982, 1986, 1990, 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  * (c) UNIX System Laboratories, Inc.
5  * All or some portions of this file are derived from material licensed
6  * to the University of California by American Telephone and Telegraph
7  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8  * the permission of UNIX System Laboratories, Inc.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. All advertising materials mentioning features or use of this software
19  *    must display the following acknowledgement:
20  *	This product includes software developed by the University of
21  *	California, Berkeley and its contributors.
22  * 4. Neither the name of the University nor the names of its contributors
23  *    may be used to endorse or promote products derived from this software
24  *    without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36  * SUCH DAMAGE.
37  *
38  *	@(#)kern_synch.c	8.9 (Berkeley) 5/19/95
39  */
40 
41 #include <sys/cdefs.h>
42 __FBSDID("$FreeBSD$");
43 
44 #include "opt_ddb.h"
45 #include "opt_ktrace.h"
46 
47 #include <sys/param.h>
48 #include <sys/systm.h>
49 #include <sys/condvar.h>
50 #include <sys/kernel.h>
51 #include <sys/ktr.h>
52 #include <sys/lock.h>
53 #include <sys/mutex.h>
54 #include <sys/proc.h>
55 #include <sys/resourcevar.h>
56 #include <sys/sched.h>
57 #include <sys/signalvar.h>
58 #include <sys/smp.h>
59 #include <sys/sx.h>
60 #include <sys/sysctl.h>
61 #include <sys/sysproto.h>
62 #include <sys/vmmeter.h>
63 #ifdef DDB
64 #include <ddb/ddb.h>
65 #endif
66 #ifdef KTRACE
67 #include <sys/uio.h>
68 #include <sys/ktrace.h>
69 #endif
70 
71 #include <machine/cpu.h>
72 
73 static void synch_setup(void *dummy);
74 SYSINIT(synch_setup, SI_SUB_KICK_SCHEDULER, SI_ORDER_FIRST, synch_setup, NULL)
75 
76 int	hogticks;
77 int	lbolt;
78 
79 static struct callout loadav_callout;
80 static struct callout lbolt_callout;
81 
82 struct loadavg averunnable =
83 	{ {0, 0, 0}, FSCALE };	/* load average, of runnable procs */
84 /*
85  * Constants for averages over 1, 5, and 15 minutes
86  * when sampling at 5 second intervals.
87  */
88 static fixpt_t cexp[3] = {
89 	0.9200444146293232 * FSCALE,	/* exp(-1/12) */
90 	0.9834714538216174 * FSCALE,	/* exp(-1/60) */
91 	0.9944598480048967 * FSCALE,	/* exp(-1/180) */
92 };
93 
94 /* kernel uses `FSCALE', userland (SHOULD) use kern.fscale */
95 static int      fscale __unused = FSCALE;
96 SYSCTL_INT(_kern, OID_AUTO, fscale, CTLFLAG_RD, 0, FSCALE, "");
97 
98 static void	endtsleep(void *);
99 static void	loadav(void *arg);
100 static void	lboltcb(void *arg);
101 
102 /*
103  * We're only looking at 7 bits of the address; everything is
104  * aligned to 4, lots of things are aligned to greater powers
105  * of 2.  Shift right by 8, i.e. drop the bottom 256 worth.
106  */
107 #define TABLESIZE	128
108 static TAILQ_HEAD(slpquehead, thread) slpque[TABLESIZE];
109 #define LOOKUP(x)	(((intptr_t)(x) >> 8) & (TABLESIZE - 1))
110 
111 void
112 sleepinit(void)
113 {
114 	int i;
115 
116 	hogticks = (hz / 10) * 2;	/* Default only. */
117 	for (i = 0; i < TABLESIZE; i++)
118 		TAILQ_INIT(&slpque[i]);
119 }
120 
121 /*
122  * General sleep call.  Suspends the current process until a wakeup is
123  * performed on the specified identifier.  The process will then be made
124  * runnable with the specified priority.  Sleeps at most timo/hz seconds
125  * (0 means no timeout).  If pri includes PCATCH flag, signals are checked
126  * before and after sleeping, else signals are not checked.  Returns 0 if
127  * awakened, EWOULDBLOCK if the timeout expires.  If PCATCH is set and a
128  * signal needs to be delivered, ERESTART is returned if the current system
129  * call should be restarted if possible, and EINTR is returned if the system
130  * call should be interrupted by the signal (return EINTR).
131  *
132  * The mutex argument is exited before the caller is suspended, and
133  * entered before msleep returns.  If priority includes the PDROP
134  * flag the mutex is not entered before returning.
135  */
136 
137 int
138 msleep(ident, mtx, priority, wmesg, timo)
139 	void *ident;
140 	struct mtx *mtx;
141 	int priority, timo;
142 	const char *wmesg;
143 {
144 	struct thread *td = curthread;
145 	struct proc *p = td->td_proc;
146 	int sig, catch = priority & PCATCH;
147 	int rval = 0;
148 	WITNESS_SAVE_DECL(mtx);
149 
150 #ifdef KTRACE
151 	if (KTRPOINT(td, KTR_CSW))
152 		ktrcsw(1, 0);
153 #endif
154 	/* XXX: mtx == NULL ?? */
155 	WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, &mtx->mtx_object,
156 	    "Sleeping on \"%s\"", wmesg);
157 	KASSERT(timo != 0 || mtx_owned(&Giant) || mtx != NULL,
158 	    ("sleeping without a mutex"));
159 	/*
160 	 * If we are capable of async syscalls and there isn't already
161 	 * another one ready to return, start a new thread
162 	 * and queue it as ready to run. Note that there is danger here
163 	 * because we need to make sure that we don't sleep allocating
164 	 * the thread (recursion here might be bad).
165 	 */
166 	mtx_lock_spin(&sched_lock);
167 	if (p->p_flag & P_SA || p->p_numthreads > 1) {
168 		/*
169 		 * Just don't bother if we are exiting
170 		 * and not the exiting thread or thread was marked as
171 		 * interrupted.
172 		 */
173 		if (catch) {
174 			if ((p->p_flag & P_WEXIT) && p->p_singlethread != td) {
175 				mtx_unlock_spin(&sched_lock);
176 				return (EINTR);
177 			}
178 			if (td->td_flags & TDF_INTERRUPT) {
179 				mtx_unlock_spin(&sched_lock);
180 				return (td->td_intrval);
181 			}
182 		}
183 	}
184 	if (cold ) {
185 		/*
186 		 * During autoconfiguration, just return;
187 		 * don't run any other procs or panic below,
188 		 * in case this is the idle process and already asleep.
189 		 * XXX: this used to do "s = splhigh(); splx(safepri);
190 		 * splx(s);" to give interrupts a chance, but there is
191 		 * no way to give interrupts a chance now.
192 		 */
193 		if (mtx != NULL && priority & PDROP)
194 			mtx_unlock(mtx);
195 		mtx_unlock_spin(&sched_lock);
196 		return (0);
197 	}
198 	DROP_GIANT();
199 	if (mtx != NULL) {
200 		mtx_assert(mtx, MA_OWNED | MA_NOTRECURSED);
201 		WITNESS_SAVE(&mtx->mtx_object, mtx);
202 		mtx_unlock(mtx);
203 		if (priority & PDROP)
204 			mtx = NULL;
205 	}
206 	KASSERT(p != NULL, ("msleep1"));
207 	KASSERT(ident != NULL && TD_IS_RUNNING(td), ("msleep"));
208 
209 	CTR5(KTR_PROC, "msleep: thread %p (pid %d, %s) on %s (%p)",
210 	    td, p->p_pid, p->p_comm, wmesg, ident);
211 
212 	td->td_wchan = ident;
213 	td->td_wmesg = wmesg;
214 	TAILQ_INSERT_TAIL(&slpque[LOOKUP(ident)], td, td_slpq);
215 	TD_SET_ON_SLEEPQ(td);
216 	if (timo)
217 		callout_reset(&td->td_slpcallout, timo, endtsleep, td);
218 	/*
219 	 * We put ourselves on the sleep queue and start our timeout
220 	 * before calling thread_suspend_check, as we could stop there, and
221 	 * a wakeup or a SIGCONT (or both) could occur while we were stopped.
222 	 * without resuming us, thus we must be ready for sleep
223 	 * when cursig is called.  If the wakeup happens while we're
224 	 * stopped, td->td_wchan will be 0 upon return from cursig.
225 	 */
226 	if (catch) {
227 		CTR3(KTR_PROC, "msleep caught: thread %p (pid %d, %s)", td,
228 		    p->p_pid, p->p_comm);
229 		td->td_flags |= TDF_SINTR;
230 		mtx_unlock_spin(&sched_lock);
231 		PROC_LOCK(p);
232 		mtx_lock(&p->p_sigacts->ps_mtx);
233 		sig = cursig(td);
234 		mtx_unlock(&p->p_sigacts->ps_mtx);
235 		if (sig == 0 && thread_suspend_check(1))
236 			sig = SIGSTOP;
237 		mtx_lock_spin(&sched_lock);
238 		PROC_UNLOCK(p);
239 		if (sig != 0) {
240 			if (TD_ON_SLEEPQ(td))
241 				unsleep(td);
242 		} else if (!TD_ON_SLEEPQ(td))
243 			catch = 0;
244 	} else
245 		sig = 0;
246 
247 	/*
248 	 * Let the scheduler know we're about to voluntarily go to sleep.
249 	 */
250 	sched_sleep(td, priority & PRIMASK);
251 
252 	if (TD_ON_SLEEPQ(td)) {
253 		TD_SET_SLEEPING(td);
254 		mi_switch(SW_VOL);
255 	}
256 	/*
257 	 * We're awake from voluntary sleep.
258 	 */
259 	CTR3(KTR_PROC, "msleep resume: thread %p (pid %d, %s)", td, p->p_pid,
260 	    p->p_comm);
261 	KASSERT(TD_IS_RUNNING(td), ("running but not TDS_RUNNING"));
262 	td->td_flags &= ~TDF_SINTR;
263 	if (td->td_flags & TDF_TIMEOUT) {
264 		td->td_flags &= ~TDF_TIMEOUT;
265 		if (sig == 0)
266 			rval = EWOULDBLOCK;
267 	} else if (td->td_flags & TDF_TIMOFAIL) {
268 		td->td_flags &= ~TDF_TIMOFAIL;
269 	} else if (timo && callout_stop(&td->td_slpcallout) == 0) {
270 		/*
271 		 * This isn't supposed to be pretty.  If we are here, then
272 		 * the endtsleep() callout is currently executing on another
273 		 * CPU and is either spinning on the sched_lock or will be
274 		 * soon.  If we don't synchronize here, there is a chance
275 		 * that this process may msleep() again before the callout
276 		 * has a chance to run and the callout may end up waking up
277 		 * the wrong msleep().  Yuck.
278 		 */
279 		TD_SET_SLEEPING(td);
280 		mi_switch(SW_INVOL);
281 		td->td_flags &= ~TDF_TIMOFAIL;
282 	}
283 	if ((td->td_flags & TDF_INTERRUPT) && (priority & PCATCH) &&
284 	    (rval == 0)) {
285 		rval = td->td_intrval;
286 	}
287 	mtx_unlock_spin(&sched_lock);
288 	if (rval == 0 && catch) {
289 		PROC_LOCK(p);
290 		/* XXX: shouldn't we always be calling cursig()? */
291 		mtx_lock(&p->p_sigacts->ps_mtx);
292 		if (sig != 0 || (sig = cursig(td))) {
293 			if (SIGISMEMBER(p->p_sigacts->ps_sigintr, sig))
294 				rval = EINTR;
295 			else
296 				rval = ERESTART;
297 		}
298 		mtx_unlock(&p->p_sigacts->ps_mtx);
299 		PROC_UNLOCK(p);
300 	}
301 #ifdef KTRACE
302 	if (KTRPOINT(td, KTR_CSW))
303 		ktrcsw(0, 0);
304 #endif
305 	PICKUP_GIANT();
306 	if (mtx != NULL) {
307 		mtx_lock(mtx);
308 		WITNESS_RESTORE(&mtx->mtx_object, mtx);
309 	}
310 	return (rval);
311 }
312 
313 /*
314  * Implement timeout for msleep().
315  *
316  * If process hasn't been awakened (wchan non-zero),
317  * set timeout flag and undo the sleep.  If proc
318  * is stopped, just unsleep so it will remain stopped.
319  * MP-safe, called without the Giant mutex.
320  */
321 static void
322 endtsleep(arg)
323 	void *arg;
324 {
325 	register struct thread *td;
326 
327 	td = (struct thread *)arg;
328 	CTR3(KTR_PROC, "endtsleep: thread %p (pid %d, %s)",
329 	    td, td->td_proc->p_pid, td->td_proc->p_comm);
330 	mtx_lock_spin(&sched_lock);
331 	/*
332 	 * This is the other half of the synchronization with msleep()
333 	 * described above.  If the TDS_TIMEOUT flag is set, we lost the
334 	 * race and just need to put the process back on the runqueue.
335 	 */
336 	if (TD_ON_SLEEPQ(td)) {
337 		TAILQ_REMOVE(&slpque[LOOKUP(td->td_wchan)], td, td_slpq);
338 		TD_CLR_ON_SLEEPQ(td);
339 		td->td_flags |= TDF_TIMEOUT;
340 		td->td_wmesg = NULL;
341 	} else
342 		td->td_flags |= TDF_TIMOFAIL;
343 	TD_CLR_SLEEPING(td);
344 	setrunnable(td);
345 	mtx_unlock_spin(&sched_lock);
346 }
347 
348 /*
349  * Abort a thread, as if an interrupt had occured.  Only abort
350  * interruptable waits (unfortunatly it isn't only safe to abort others).
351  * This is about identical to cv_abort().
352  * Think about merging them?
353  * Also, whatever the signal code does...
354  */
355 void
356 abortsleep(struct thread *td)
357 {
358 
359 	mtx_assert(&sched_lock, MA_OWNED);
360 	/*
361 	 * If the TDF_TIMEOUT flag is set, just leave. A
362 	 * timeout is scheduled anyhow.
363 	 */
364 	if ((td->td_flags & (TDF_TIMEOUT | TDF_SINTR)) == TDF_SINTR) {
365 		if (TD_ON_SLEEPQ(td)) {
366 			unsleep(td);
367 			TD_CLR_SLEEPING(td);
368 			setrunnable(td);
369 		}
370 	}
371 }
372 
373 /*
374  * Remove a process from its wait queue
375  */
376 void
377 unsleep(struct thread *td)
378 {
379 
380 	mtx_lock_spin(&sched_lock);
381 	if (TD_ON_SLEEPQ(td)) {
382 		TAILQ_REMOVE(&slpque[LOOKUP(td->td_wchan)], td, td_slpq);
383 		TD_CLR_ON_SLEEPQ(td);
384 		td->td_wmesg = NULL;
385 	}
386 	mtx_unlock_spin(&sched_lock);
387 }
388 
389 /*
390  * Make all processes sleeping on the specified identifier runnable.
391  */
392 void
393 wakeup(ident)
394 	register void *ident;
395 {
396 	register struct slpquehead *qp;
397 	register struct thread *td;
398 	struct thread *ntd;
399 	struct proc *p;
400 
401 	mtx_lock_spin(&sched_lock);
402 	qp = &slpque[LOOKUP(ident)];
403 restart:
404 	for (td = TAILQ_FIRST(qp); td != NULL; td = ntd) {
405 		ntd = TAILQ_NEXT(td, td_slpq);
406 		if (td->td_wchan == ident) {
407 			unsleep(td);
408 			TD_CLR_SLEEPING(td);
409 			setrunnable(td);
410 			p = td->td_proc;
411 			CTR3(KTR_PROC,"wakeup: thread %p (pid %d, %s)",
412 			    td, p->p_pid, p->p_comm);
413 			goto restart;
414 		}
415 	}
416 	mtx_unlock_spin(&sched_lock);
417 }
418 
419 /*
420  * Make a process sleeping on the specified identifier runnable.
421  * May wake more than one process if a target process is currently
422  * swapped out.
423  */
424 void
425 wakeup_one(ident)
426 	register void *ident;
427 {
428 	register struct proc *p;
429 	register struct slpquehead *qp;
430 	register struct thread *td;
431 	struct thread *ntd;
432 
433 	mtx_lock_spin(&sched_lock);
434 	qp = &slpque[LOOKUP(ident)];
435 	for (td = TAILQ_FIRST(qp); td != NULL; td = ntd) {
436 		ntd = TAILQ_NEXT(td, td_slpq);
437 		if (td->td_wchan == ident) {
438 			unsleep(td);
439 			TD_CLR_SLEEPING(td);
440 			setrunnable(td);
441 			p = td->td_proc;
442 			CTR3(KTR_PROC,"wakeup1: thread %p (pid %d, %s)",
443 			    td, p->p_pid, p->p_comm);
444 			break;
445 		}
446 	}
447 	mtx_unlock_spin(&sched_lock);
448 }
449 
450 /*
451  * The machine independent parts of mi_switch().
452  */
453 void
454 mi_switch(int flags)
455 {
456 	struct bintime new_switchtime;
457 	struct thread *td;
458 	struct proc *p;
459 
460 	mtx_assert(&sched_lock, MA_OWNED | MA_NOTRECURSED);
461 	td = curthread;			/* XXX */
462 	p = td->td_proc;		/* XXX */
463 	KASSERT(!TD_ON_RUNQ(td), ("mi_switch: called by old code"));
464 #ifdef INVARIANTS
465 	if (!TD_ON_LOCK(td) && !TD_IS_RUNNING(td))
466 		mtx_assert(&Giant, MA_NOTOWNED);
467 #endif
468 	KASSERT(td->td_critnest == 1,
469 	    ("mi_switch: switch in a critical section"));
470 	KASSERT((flags & (SW_INVOL | SW_VOL)) != 0,
471 	    ("mi_switch: switch must be voluntary or involuntary"));
472 
473 	if (flags & SW_VOL)
474 		p->p_stats->p_ru.ru_nvcsw++;
475 	else
476 		p->p_stats->p_ru.ru_nivcsw++;
477 	/*
478 	 * Compute the amount of time during which the current
479 	 * process was running, and add that to its total so far.
480 	 */
481 	binuptime(&new_switchtime);
482 	bintime_add(&p->p_runtime, &new_switchtime);
483 	bintime_sub(&p->p_runtime, PCPU_PTR(switchtime));
484 
485 	td->td_generation++;	/* bump preempt-detect counter */
486 
487 #ifdef DDB
488 	/*
489 	 * Don't perform context switches from the debugger.
490 	 */
491 	if (db_active) {
492 		mtx_unlock_spin(&sched_lock);
493 		db_print_backtrace();
494 		db_error("Context switches not allowed in the debugger");
495 	}
496 #endif
497 
498 	/*
499 	 * Check if the process exceeds its cpu resource allocation.  If
500 	 * over max, arrange to kill the process in ast().
501 	 */
502 	if (p->p_cpulimit != RLIM_INFINITY &&
503 	    p->p_runtime.sec > p->p_cpulimit) {
504 		p->p_sflag |= PS_XCPU;
505 		td->td_flags |= TDF_ASTPENDING;
506 	}
507 
508 	/*
509 	 * Finish up stats for outgoing thread.
510 	 */
511 	cnt.v_swtch++;
512 	PCPU_SET(switchtime, new_switchtime);
513 	PCPU_SET(switchticks, ticks);
514 	CTR3(KTR_PROC, "mi_switch: old thread %p (pid %d, %s)", td, p->p_pid,
515 	    p->p_comm);
516 	if (td->td_proc->p_flag & P_SA)
517 		thread_switchout(td);
518 	sched_switch(td);
519 
520 	CTR3(KTR_PROC, "mi_switch: new thread %p (pid %d, %s)", td, p->p_pid,
521 	    p->p_comm);
522 
523 	/*
524 	 * If the last thread was exiting, finish cleaning it up.
525 	 */
526 	if ((td = PCPU_GET(deadthread))) {
527 		PCPU_SET(deadthread, NULL);
528 		thread_stash(td);
529 	}
530 }
531 
532 /*
533  * Change process state to be runnable,
534  * placing it on the run queue if it is in memory,
535  * and awakening the swapper if it isn't in memory.
536  */
537 void
538 setrunnable(struct thread *td)
539 {
540 	struct proc *p;
541 
542 	p = td->td_proc;
543 	mtx_assert(&sched_lock, MA_OWNED);
544 	switch (p->p_state) {
545 	case PRS_ZOMBIE:
546 		panic("setrunnable(1)");
547 	default:
548 		break;
549 	}
550 	switch (td->td_state) {
551 	case TDS_RUNNING:
552 	case TDS_RUNQ:
553 		return;
554 	case TDS_INHIBITED:
555 		/*
556 		 * If we are only inhibited because we are swapped out
557 		 * then arange to swap in this process. Otherwise just return.
558 		 */
559 		if (td->td_inhibitors != TDI_SWAPPED)
560 			return;
561 		/* XXX: intentional fall-through ? */
562 	case TDS_CAN_RUN:
563 		break;
564 	default:
565 		printf("state is 0x%x", td->td_state);
566 		panic("setrunnable(2)");
567 	}
568 	if ((p->p_sflag & PS_INMEM) == 0) {
569 		if ((p->p_sflag & PS_SWAPPINGIN) == 0) {
570 			p->p_sflag |= PS_SWAPINREQ;
571 			wakeup(&proc0);
572 		}
573 	} else
574 		sched_wakeup(td);
575 }
576 
577 /*
578  * Compute a tenex style load average of a quantity on
579  * 1, 5 and 15 minute intervals.
580  * XXXKSE   Needs complete rewrite when correct info is available.
581  * Completely Bogus.. only works with 1:1 (but compiles ok now :-)
582  */
583 static void
584 loadav(void *arg)
585 {
586 	int i, nrun;
587 	struct loadavg *avg;
588 
589 	nrun = sched_load();
590 	avg = &averunnable;
591 
592 	for (i = 0; i < 3; i++)
593 		avg->ldavg[i] = (cexp[i] * avg->ldavg[i] +
594 		    nrun * FSCALE * (FSCALE - cexp[i])) >> FSHIFT;
595 
596 	/*
597 	 * Schedule the next update to occur after 5 seconds, but add a
598 	 * random variation to avoid synchronisation with processes that
599 	 * run at regular intervals.
600 	 */
601 	callout_reset(&loadav_callout, hz * 4 + (int)(random() % (hz * 2 + 1)),
602 	    loadav, NULL);
603 }
604 
605 static void
606 lboltcb(void *arg)
607 {
608 	wakeup(&lbolt);
609 	callout_reset(&lbolt_callout, hz, lboltcb, NULL);
610 }
611 
612 /* ARGSUSED */
613 static void
614 synch_setup(dummy)
615 	void *dummy;
616 {
617 	callout_init(&loadav_callout, 0);
618 	callout_init(&lbolt_callout, CALLOUT_MPSAFE);
619 
620 	/* Kick off timeout driven events by calling first time. */
621 	loadav(NULL);
622 	lboltcb(NULL);
623 }
624 
625 /*
626  * General purpose yield system call
627  */
628 int
629 yield(struct thread *td, struct yield_args *uap)
630 {
631 	struct ksegrp *kg;
632 
633 	kg = td->td_ksegrp;
634 	mtx_assert(&Giant, MA_NOTOWNED);
635 	mtx_lock_spin(&sched_lock);
636 	sched_prio(td, PRI_MAX_TIMESHARE);
637 	mi_switch(SW_VOL);
638 	mtx_unlock_spin(&sched_lock);
639 	td->td_retval[0] = 0;
640 	return (0);
641 }
642