xref: /freebsd/sys/kern/kern_synch.c (revision f1f890804985a1043da42a5def13c79dc005f5e9)
1 /*-
2  * Copyright (c) 1982, 1986, 1990, 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  * (c) UNIX System Laboratories, Inc.
5  * All or some portions of this file are derived from material licensed
6  * to the University of California by American Telephone and Telegraph
7  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8  * the permission of UNIX System Laboratories, Inc.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 4. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  *	@(#)kern_synch.c	8.9 (Berkeley) 5/19/95
35  */
36 
37 #include <sys/cdefs.h>
38 __FBSDID("$FreeBSD$");
39 
40 #include "opt_kdtrace.h"
41 #include "opt_ktrace.h"
42 #include "opt_sched.h"
43 
44 #include <sys/param.h>
45 #include <sys/systm.h>
46 #include <sys/condvar.h>
47 #include <sys/kdb.h>
48 #include <sys/kernel.h>
49 #include <sys/ktr.h>
50 #include <sys/lock.h>
51 #include <sys/mutex.h>
52 #include <sys/proc.h>
53 #include <sys/resourcevar.h>
54 #include <sys/sched.h>
55 #include <sys/sdt.h>
56 #include <sys/signalvar.h>
57 #include <sys/sleepqueue.h>
58 #include <sys/smp.h>
59 #include <sys/sx.h>
60 #include <sys/sysctl.h>
61 #include <sys/sysproto.h>
62 #include <sys/vmmeter.h>
63 #ifdef KTRACE
64 #include <sys/uio.h>
65 #include <sys/ktrace.h>
66 #endif
67 
68 #include <machine/cpu.h>
69 
70 #ifdef XEN
71 #include <vm/vm.h>
72 #include <vm/vm_param.h>
73 #include <vm/pmap.h>
74 #endif
75 
76 #define	KTDSTATE(td)							\
77 	(((td)->td_inhibitors & TDI_SLEEPING) != 0 ? "sleep"  :		\
78 	((td)->td_inhibitors & TDI_SUSPENDED) != 0 ? "suspended" :	\
79 	((td)->td_inhibitors & TDI_SWAPPED) != 0 ? "swapped" :		\
80 	((td)->td_inhibitors & TDI_LOCK) != 0 ? "blocked" :		\
81 	((td)->td_inhibitors & TDI_IWAIT) != 0 ? "iwait" : "yielding")
82 
83 static void synch_setup(void *dummy);
84 SYSINIT(synch_setup, SI_SUB_KICK_SCHEDULER, SI_ORDER_FIRST, synch_setup,
85     NULL);
86 
87 int	hogticks;
88 static uint8_t pause_wchan[MAXCPU];
89 
90 static struct callout loadav_callout;
91 
92 struct loadavg averunnable =
93 	{ {0, 0, 0}, FSCALE };	/* load average, of runnable procs */
94 /*
95  * Constants for averages over 1, 5, and 15 minutes
96  * when sampling at 5 second intervals.
97  */
98 static fixpt_t cexp[3] = {
99 	0.9200444146293232 * FSCALE,	/* exp(-1/12) */
100 	0.9834714538216174 * FSCALE,	/* exp(-1/60) */
101 	0.9944598480048967 * FSCALE,	/* exp(-1/180) */
102 };
103 
104 /* kernel uses `FSCALE', userland (SHOULD) use kern.fscale */
105 static int      fscale __unused = FSCALE;
106 SYSCTL_INT(_kern, OID_AUTO, fscale, CTLFLAG_RD, 0, FSCALE, "");
107 
108 static void	loadav(void *arg);
109 
110 SDT_PROVIDER_DECLARE(sched);
111 SDT_PROBE_DEFINE(sched, , , preempt, preempt);
112 
113 /*
114  * These probes reference Solaris features that are not implemented in FreeBSD.
115  * Create the probes anyway for compatibility with existing D scripts; they'll
116  * just never fire.
117  */
118 SDT_PROBE_DEFINE(sched, , , cpucaps_sleep, cpucaps-sleep);
119 SDT_PROBE_DEFINE(sched, , , cpucaps_wakeup, cpucaps-wakeup);
120 SDT_PROBE_DEFINE(sched, , , schedctl_nopreempt, schedctl-nopreempt);
121 SDT_PROBE_DEFINE(sched, , , schedctl_preempt, schedctl-preempt);
122 SDT_PROBE_DEFINE(sched, , , schedctl_yield, schedctl-yield);
123 
124 void
125 sleepinit(void)
126 {
127 
128 	hogticks = (hz / 10) * 2;	/* Default only. */
129 	init_sleepqueues();
130 }
131 
132 /*
133  * General sleep call.  Suspends the current thread until a wakeup is
134  * performed on the specified identifier.  The thread will then be made
135  * runnable with the specified priority.  Sleeps at most timo/hz seconds
136  * (0 means no timeout).  If pri includes the PCATCH flag, let signals
137  * interrupt the sleep, otherwise ignore them while sleeping.  Returns 0 if
138  * awakened, EWOULDBLOCK if the timeout expires.  If PCATCH is set and a
139  * signal becomes pending, ERESTART is returned if the current system
140  * call should be restarted if possible, and EINTR is returned if the system
141  * call should be interrupted by the signal (return EINTR).
142  *
143  * The lock argument is unlocked before the caller is suspended, and
144  * re-locked before _sleep() returns.  If priority includes the PDROP
145  * flag the lock is not re-locked before returning.
146  */
147 int
148 _sleep(void *ident, struct lock_object *lock, int priority,
149     const char *wmesg, sbintime_t sbt, sbintime_t pr, int flags)
150 {
151 	struct thread *td;
152 	struct proc *p;
153 	struct lock_class *class;
154 	int catch, lock_state, pri, rval, sleepq_flags;
155 	WITNESS_SAVE_DECL(lock_witness);
156 
157 	td = curthread;
158 	p = td->td_proc;
159 #ifdef KTRACE
160 	if (KTRPOINT(td, KTR_CSW))
161 		ktrcsw(1, 0, wmesg);
162 #endif
163 	WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, lock,
164 	    "Sleeping on \"%s\"", wmesg);
165 	KASSERT(sbt != 0 || mtx_owned(&Giant) || lock != NULL,
166 	    ("sleeping without a lock"));
167 	KASSERT(p != NULL, ("msleep1"));
168 	KASSERT(ident != NULL && TD_IS_RUNNING(td), ("msleep"));
169 	if (priority & PDROP)
170 		KASSERT(lock != NULL && lock != &Giant.lock_object,
171 		    ("PDROP requires a non-Giant lock"));
172 	if (lock != NULL)
173 		class = LOCK_CLASS(lock);
174 	else
175 		class = NULL;
176 
177 	if (cold || SCHEDULER_STOPPED()) {
178 		/*
179 		 * During autoconfiguration, just return;
180 		 * don't run any other threads or panic below,
181 		 * in case this is the idle thread and already asleep.
182 		 * XXX: this used to do "s = splhigh(); splx(safepri);
183 		 * splx(s);" to give interrupts a chance, but there is
184 		 * no way to give interrupts a chance now.
185 		 */
186 		if (lock != NULL && priority & PDROP)
187 			class->lc_unlock(lock);
188 		return (0);
189 	}
190 	catch = priority & PCATCH;
191 	pri = priority & PRIMASK;
192 
193 	/*
194 	 * If we are already on a sleep queue, then remove us from that
195 	 * sleep queue first.  We have to do this to handle recursive
196 	 * sleeps.
197 	 */
198 	if (TD_ON_SLEEPQ(td))
199 		sleepq_remove(td, td->td_wchan);
200 
201 	if ((uint8_t *)ident >= &pause_wchan[0] &&
202 	    (uint8_t *)ident <= &pause_wchan[MAXCPU - 1])
203 		sleepq_flags = SLEEPQ_PAUSE;
204 	else
205 		sleepq_flags = SLEEPQ_SLEEP;
206 	if (catch)
207 		sleepq_flags |= SLEEPQ_INTERRUPTIBLE;
208 	if (priority & PBDRY)
209 		sleepq_flags |= SLEEPQ_STOP_ON_BDRY;
210 
211 	sleepq_lock(ident);
212 	CTR5(KTR_PROC, "sleep: thread %ld (pid %ld, %s) on %s (%p)",
213 	    td->td_tid, p->p_pid, td->td_name, wmesg, ident);
214 
215 	if (lock == &Giant.lock_object)
216 		mtx_assert(&Giant, MA_OWNED);
217 	DROP_GIANT();
218 	if (lock != NULL && lock != &Giant.lock_object &&
219 	    !(class->lc_flags & LC_SLEEPABLE)) {
220 		WITNESS_SAVE(lock, lock_witness);
221 		lock_state = class->lc_unlock(lock);
222 	} else
223 		/* GCC needs to follow the Yellow Brick Road */
224 		lock_state = -1;
225 
226 	/*
227 	 * We put ourselves on the sleep queue and start our timeout
228 	 * before calling thread_suspend_check, as we could stop there,
229 	 * and a wakeup or a SIGCONT (or both) could occur while we were
230 	 * stopped without resuming us.  Thus, we must be ready for sleep
231 	 * when cursig() is called.  If the wakeup happens while we're
232 	 * stopped, then td will no longer be on a sleep queue upon
233 	 * return from cursig().
234 	 */
235 	sleepq_add(ident, lock, wmesg, sleepq_flags, 0);
236 	if (sbt != 0)
237 		sleepq_set_timeout_sbt(ident, sbt, pr, flags);
238 	if (lock != NULL && class->lc_flags & LC_SLEEPABLE) {
239 		sleepq_release(ident);
240 		WITNESS_SAVE(lock, lock_witness);
241 		lock_state = class->lc_unlock(lock);
242 		sleepq_lock(ident);
243 	}
244 	if (sbt != 0 && catch)
245 		rval = sleepq_timedwait_sig(ident, pri);
246 	else if (sbt != 0)
247 		rval = sleepq_timedwait(ident, pri);
248 	else if (catch)
249 		rval = sleepq_wait_sig(ident, pri);
250 	else {
251 		sleepq_wait(ident, pri);
252 		rval = 0;
253 	}
254 #ifdef KTRACE
255 	if (KTRPOINT(td, KTR_CSW))
256 		ktrcsw(0, 0, wmesg);
257 #endif
258 	PICKUP_GIANT();
259 	if (lock != NULL && lock != &Giant.lock_object && !(priority & PDROP)) {
260 		class->lc_lock(lock, lock_state);
261 		WITNESS_RESTORE(lock, lock_witness);
262 	}
263 	return (rval);
264 }
265 
266 int
267 msleep_spin_sbt(void *ident, struct mtx *mtx, const char *wmesg,
268     sbintime_t sbt, sbintime_t pr, int flags)
269 {
270 	struct thread *td;
271 	struct proc *p;
272 	int rval;
273 	WITNESS_SAVE_DECL(mtx);
274 
275 	td = curthread;
276 	p = td->td_proc;
277 	KASSERT(mtx != NULL, ("sleeping without a mutex"));
278 	KASSERT(p != NULL, ("msleep1"));
279 	KASSERT(ident != NULL && TD_IS_RUNNING(td), ("msleep"));
280 
281 	if (cold || SCHEDULER_STOPPED()) {
282 		/*
283 		 * During autoconfiguration, just return;
284 		 * don't run any other threads or panic below,
285 		 * in case this is the idle thread and already asleep.
286 		 * XXX: this used to do "s = splhigh(); splx(safepri);
287 		 * splx(s);" to give interrupts a chance, but there is
288 		 * no way to give interrupts a chance now.
289 		 */
290 		return (0);
291 	}
292 
293 	sleepq_lock(ident);
294 	CTR5(KTR_PROC, "msleep_spin: thread %ld (pid %ld, %s) on %s (%p)",
295 	    td->td_tid, p->p_pid, td->td_name, wmesg, ident);
296 
297 	DROP_GIANT();
298 	mtx_assert(mtx, MA_OWNED | MA_NOTRECURSED);
299 	WITNESS_SAVE(&mtx->lock_object, mtx);
300 	mtx_unlock_spin(mtx);
301 
302 	/*
303 	 * We put ourselves on the sleep queue and start our timeout.
304 	 */
305 	sleepq_add(ident, &mtx->lock_object, wmesg, SLEEPQ_SLEEP, 0);
306 	if (sbt != 0)
307 		sleepq_set_timeout_sbt(ident, sbt, pr, flags);
308 
309 	/*
310 	 * Can't call ktrace with any spin locks held so it can lock the
311 	 * ktrace_mtx lock, and WITNESS_WARN considers it an error to hold
312 	 * any spin lock.  Thus, we have to drop the sleepq spin lock while
313 	 * we handle those requests.  This is safe since we have placed our
314 	 * thread on the sleep queue already.
315 	 */
316 #ifdef KTRACE
317 	if (KTRPOINT(td, KTR_CSW)) {
318 		sleepq_release(ident);
319 		ktrcsw(1, 0, wmesg);
320 		sleepq_lock(ident);
321 	}
322 #endif
323 #ifdef WITNESS
324 	sleepq_release(ident);
325 	WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, "Sleeping on \"%s\"",
326 	    wmesg);
327 	sleepq_lock(ident);
328 #endif
329 	if (sbt != 0)
330 		rval = sleepq_timedwait(ident, 0);
331 	else {
332 		sleepq_wait(ident, 0);
333 		rval = 0;
334 	}
335 #ifdef KTRACE
336 	if (KTRPOINT(td, KTR_CSW))
337 		ktrcsw(0, 0, wmesg);
338 #endif
339 	PICKUP_GIANT();
340 	mtx_lock_spin(mtx);
341 	WITNESS_RESTORE(&mtx->lock_object, mtx);
342 	return (rval);
343 }
344 
345 /*
346  * pause() delays the calling thread by the given number of system ticks.
347  * During cold bootup, pause() uses the DELAY() function instead of
348  * the tsleep() function to do the waiting. The "timo" argument must be
349  * greater than or equal to zero. A "timo" value of zero is equivalent
350  * to a "timo" value of one.
351  */
352 int
353 pause_sbt(const char *wmesg, sbintime_t sbt, sbintime_t pr, int flags)
354 {
355 	int sbt_sec;
356 
357 	sbt_sec = sbintime_getsec(sbt);
358 	KASSERT(sbt_sec >= 0, ("pause: timo must be >= 0"));
359 
360 	/* silently convert invalid timeouts */
361 	if (sbt == 0)
362 		sbt = tick_sbt;
363 
364 	if (cold) {
365 		/*
366 		 * We delay one second at a time to avoid overflowing the
367 		 * system specific DELAY() function(s):
368 		 */
369 		while (sbt_sec > 0) {
370 			DELAY(1000000);
371 			sbt_sec--;
372 		}
373 		DELAY((sbt & 0xffffffff) / SBT_1US);
374 		return (0);
375 	}
376 	return (_sleep(&pause_wchan[curcpu], NULL, 0, wmesg, sbt, pr, flags));
377 }
378 
379 /*
380  * Make all threads sleeping on the specified identifier runnable.
381  */
382 void
383 wakeup(void *ident)
384 {
385 	int wakeup_swapper;
386 
387 	sleepq_lock(ident);
388 	wakeup_swapper = sleepq_broadcast(ident, SLEEPQ_SLEEP, 0, 0);
389 	sleepq_release(ident);
390 	if (wakeup_swapper) {
391 		KASSERT(ident != &proc0,
392 		    ("wakeup and wakeup_swapper and proc0"));
393 		kick_proc0();
394 	}
395 }
396 
397 /*
398  * Make a thread sleeping on the specified identifier runnable.
399  * May wake more than one thread if a target thread is currently
400  * swapped out.
401  */
402 void
403 wakeup_one(void *ident)
404 {
405 	int wakeup_swapper;
406 
407 	sleepq_lock(ident);
408 	wakeup_swapper = sleepq_signal(ident, SLEEPQ_SLEEP, 0, 0);
409 	sleepq_release(ident);
410 	if (wakeup_swapper)
411 		kick_proc0();
412 }
413 
414 static void
415 kdb_switch(void)
416 {
417 	thread_unlock(curthread);
418 	kdb_backtrace();
419 	kdb_reenter();
420 	panic("%s: did not reenter debugger", __func__);
421 }
422 
423 /*
424  * The machine independent parts of context switching.
425  */
426 void
427 mi_switch(int flags, struct thread *newtd)
428 {
429 	uint64_t runtime, new_switchtime;
430 	struct thread *td;
431 	struct proc *p;
432 
433 	td = curthread;			/* XXX */
434 	THREAD_LOCK_ASSERT(td, MA_OWNED | MA_NOTRECURSED);
435 	p = td->td_proc;		/* XXX */
436 	KASSERT(!TD_ON_RUNQ(td), ("mi_switch: called by old code"));
437 #ifdef INVARIANTS
438 	if (!TD_ON_LOCK(td) && !TD_IS_RUNNING(td))
439 		mtx_assert(&Giant, MA_NOTOWNED);
440 #endif
441 	KASSERT(td->td_critnest == 1 || panicstr,
442 	    ("mi_switch: switch in a critical section"));
443 	KASSERT((flags & (SW_INVOL | SW_VOL)) != 0,
444 	    ("mi_switch: switch must be voluntary or involuntary"));
445 	KASSERT(newtd != curthread, ("mi_switch: preempting back to ourself"));
446 
447 	/*
448 	 * Don't perform context switches from the debugger.
449 	 */
450 	if (kdb_active)
451 		kdb_switch();
452 	if (SCHEDULER_STOPPED())
453 		return;
454 	if (flags & SW_VOL) {
455 		td->td_ru.ru_nvcsw++;
456 		td->td_swvoltick = ticks;
457 	} else
458 		td->td_ru.ru_nivcsw++;
459 #ifdef SCHED_STATS
460 	SCHED_STAT_INC(sched_switch_stats[flags & SW_TYPE_MASK]);
461 #endif
462 	/*
463 	 * Compute the amount of time during which the current
464 	 * thread was running, and add that to its total so far.
465 	 */
466 	new_switchtime = cpu_ticks();
467 	runtime = new_switchtime - PCPU_GET(switchtime);
468 	td->td_runtime += runtime;
469 	td->td_incruntime += runtime;
470 	PCPU_SET(switchtime, new_switchtime);
471 	td->td_generation++;	/* bump preempt-detect counter */
472 	PCPU_INC(cnt.v_swtch);
473 	PCPU_SET(switchticks, ticks);
474 	CTR4(KTR_PROC, "mi_switch: old thread %ld (td_sched %p, pid %ld, %s)",
475 	    td->td_tid, td->td_sched, p->p_pid, td->td_name);
476 #if (KTR_COMPILE & KTR_SCHED) != 0
477 	if (TD_IS_IDLETHREAD(td))
478 		KTR_STATE1(KTR_SCHED, "thread", sched_tdname(td), "idle",
479 		    "prio:%d", td->td_priority);
480 	else
481 		KTR_STATE3(KTR_SCHED, "thread", sched_tdname(td), KTDSTATE(td),
482 		    "prio:%d", td->td_priority, "wmesg:\"%s\"", td->td_wmesg,
483 		    "lockname:\"%s\"", td->td_lockname);
484 #endif
485 	SDT_PROBE0(sched, , , preempt);
486 #ifdef XEN
487 	PT_UPDATES_FLUSH();
488 #endif
489 	sched_switch(td, newtd, flags);
490 	KTR_STATE1(KTR_SCHED, "thread", sched_tdname(td), "running",
491 	    "prio:%d", td->td_priority);
492 
493 	CTR4(KTR_PROC, "mi_switch: new thread %ld (td_sched %p, pid %ld, %s)",
494 	    td->td_tid, td->td_sched, p->p_pid, td->td_name);
495 
496 	/*
497 	 * If the last thread was exiting, finish cleaning it up.
498 	 */
499 	if ((td = PCPU_GET(deadthread))) {
500 		PCPU_SET(deadthread, NULL);
501 		thread_stash(td);
502 	}
503 }
504 
505 /*
506  * Change thread state to be runnable, placing it on the run queue if
507  * it is in memory.  If it is swapped out, return true so our caller
508  * will know to awaken the swapper.
509  */
510 int
511 setrunnable(struct thread *td)
512 {
513 
514 	THREAD_LOCK_ASSERT(td, MA_OWNED);
515 	KASSERT(td->td_proc->p_state != PRS_ZOMBIE,
516 	    ("setrunnable: pid %d is a zombie", td->td_proc->p_pid));
517 	switch (td->td_state) {
518 	case TDS_RUNNING:
519 	case TDS_RUNQ:
520 		return (0);
521 	case TDS_INHIBITED:
522 		/*
523 		 * If we are only inhibited because we are swapped out
524 		 * then arange to swap in this process. Otherwise just return.
525 		 */
526 		if (td->td_inhibitors != TDI_SWAPPED)
527 			return (0);
528 		/* FALLTHROUGH */
529 	case TDS_CAN_RUN:
530 		break;
531 	default:
532 		printf("state is 0x%x", td->td_state);
533 		panic("setrunnable(2)");
534 	}
535 	if ((td->td_flags & TDF_INMEM) == 0) {
536 		if ((td->td_flags & TDF_SWAPINREQ) == 0) {
537 			td->td_flags |= TDF_SWAPINREQ;
538 			return (1);
539 		}
540 	} else
541 		sched_wakeup(td);
542 	return (0);
543 }
544 
545 /*
546  * Compute a tenex style load average of a quantity on
547  * 1, 5 and 15 minute intervals.
548  */
549 static void
550 loadav(void *arg)
551 {
552 	int i, nrun;
553 	struct loadavg *avg;
554 
555 	nrun = sched_load();
556 	avg = &averunnable;
557 
558 	for (i = 0; i < 3; i++)
559 		avg->ldavg[i] = (cexp[i] * avg->ldavg[i] +
560 		    nrun * FSCALE * (FSCALE - cexp[i])) >> FSHIFT;
561 
562 	/*
563 	 * Schedule the next update to occur after 5 seconds, but add a
564 	 * random variation to avoid synchronisation with processes that
565 	 * run at regular intervals.
566 	 */
567 	callout_reset_sbt(&loadav_callout,
568 	    tick_sbt * (hz * 4 + (int)(random() % (hz * 2 + 1))), 0,
569 	    loadav, NULL, C_DIRECT_EXEC | C_HARDCLOCK);
570 }
571 
572 /* ARGSUSED */
573 static void
574 synch_setup(void *dummy)
575 {
576 	callout_init(&loadav_callout, CALLOUT_MPSAFE);
577 
578 	/* Kick off timeout driven events by calling first time. */
579 	loadav(NULL);
580 }
581 
582 int
583 should_yield(void)
584 {
585 
586 	return (ticks - curthread->td_swvoltick >= hogticks);
587 }
588 
589 void
590 maybe_yield(void)
591 {
592 
593 	if (should_yield())
594 		kern_yield(PRI_USER);
595 }
596 
597 void
598 kern_yield(int prio)
599 {
600 	struct thread *td;
601 
602 	td = curthread;
603 	DROP_GIANT();
604 	thread_lock(td);
605 	if (prio == PRI_USER)
606 		prio = td->td_user_pri;
607 	if (prio >= 0)
608 		sched_prio(td, prio);
609 	mi_switch(SW_VOL | SWT_RELINQUISH, NULL);
610 	thread_unlock(td);
611 	PICKUP_GIANT();
612 }
613 
614 /*
615  * General purpose yield system call.
616  */
617 int
618 sys_yield(struct thread *td, struct yield_args *uap)
619 {
620 
621 	thread_lock(td);
622 	if (PRI_BASE(td->td_pri_class) == PRI_TIMESHARE)
623 		sched_prio(td, PRI_MAX_TIMESHARE);
624 	mi_switch(SW_VOL | SWT_RELINQUISH, NULL);
625 	thread_unlock(td);
626 	td->td_retval[0] = 0;
627 	return (0);
628 }
629