xref: /freebsd/sys/kern/kern_synch.c (revision eb9da1ada8b6b2c74378a5c17029ec5a7fb199e6)
1 /*-
2  * Copyright (c) 1982, 1986, 1990, 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  * (c) UNIX System Laboratories, Inc.
5  * All or some portions of this file are derived from material licensed
6  * to the University of California by American Telephone and Telegraph
7  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8  * the permission of UNIX System Laboratories, Inc.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 4. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  *	@(#)kern_synch.c	8.9 (Berkeley) 5/19/95
35  */
36 
37 #include <sys/cdefs.h>
38 __FBSDID("$FreeBSD$");
39 
40 #include "opt_ktrace.h"
41 #include "opt_sched.h"
42 
43 #include <sys/param.h>
44 #include <sys/systm.h>
45 #include <sys/condvar.h>
46 #include <sys/kdb.h>
47 #include <sys/kernel.h>
48 #include <sys/ktr.h>
49 #include <sys/lock.h>
50 #include <sys/mutex.h>
51 #include <sys/proc.h>
52 #include <sys/resourcevar.h>
53 #include <sys/sched.h>
54 #include <sys/sdt.h>
55 #include <sys/signalvar.h>
56 #include <sys/sleepqueue.h>
57 #include <sys/smp.h>
58 #include <sys/sx.h>
59 #include <sys/sysctl.h>
60 #include <sys/sysproto.h>
61 #include <sys/vmmeter.h>
62 #ifdef KTRACE
63 #include <sys/uio.h>
64 #include <sys/ktrace.h>
65 #endif
66 
67 #include <machine/cpu.h>
68 
69 #define	KTDSTATE(td)							\
70 	(((td)->td_inhibitors & TDI_SLEEPING) != 0 ? "sleep"  :		\
71 	((td)->td_inhibitors & TDI_SUSPENDED) != 0 ? "suspended" :	\
72 	((td)->td_inhibitors & TDI_SWAPPED) != 0 ? "swapped" :		\
73 	((td)->td_inhibitors & TDI_LOCK) != 0 ? "blocked" :		\
74 	((td)->td_inhibitors & TDI_IWAIT) != 0 ? "iwait" : "yielding")
75 
76 static void synch_setup(void *dummy);
77 SYSINIT(synch_setup, SI_SUB_KICK_SCHEDULER, SI_ORDER_FIRST, synch_setup,
78     NULL);
79 
80 int	hogticks;
81 static uint8_t pause_wchan[MAXCPU];
82 
83 static struct callout loadav_callout;
84 
85 struct loadavg averunnable =
86 	{ {0, 0, 0}, FSCALE };	/* load average, of runnable procs */
87 /*
88  * Constants for averages over 1, 5, and 15 minutes
89  * when sampling at 5 second intervals.
90  */
91 static fixpt_t cexp[3] = {
92 	0.9200444146293232 * FSCALE,	/* exp(-1/12) */
93 	0.9834714538216174 * FSCALE,	/* exp(-1/60) */
94 	0.9944598480048967 * FSCALE,	/* exp(-1/180) */
95 };
96 
97 /* kernel uses `FSCALE', userland (SHOULD) use kern.fscale */
98 SYSCTL_INT(_kern, OID_AUTO, fscale, CTLFLAG_RD, SYSCTL_NULL_INT_PTR, FSCALE, "");
99 
100 static void	loadav(void *arg);
101 
102 SDT_PROVIDER_DECLARE(sched);
103 SDT_PROBE_DEFINE(sched, , , preempt);
104 
105 static void
106 sleepinit(void *unused)
107 {
108 
109 	hogticks = (hz / 10) * 2;	/* Default only. */
110 	init_sleepqueues();
111 }
112 
113 /*
114  * vmem tries to lock the sleepq mutexes when free'ing kva, so make sure
115  * it is available.
116  */
117 SYSINIT(sleepinit, SI_SUB_KMEM, SI_ORDER_ANY, sleepinit, 0);
118 
119 /*
120  * General sleep call.  Suspends the current thread until a wakeup is
121  * performed on the specified identifier.  The thread will then be made
122  * runnable with the specified priority.  Sleeps at most sbt units of time
123  * (0 means no timeout).  If pri includes the PCATCH flag, let signals
124  * interrupt the sleep, otherwise ignore them while sleeping.  Returns 0 if
125  * awakened, EWOULDBLOCK if the timeout expires.  If PCATCH is set and a
126  * signal becomes pending, ERESTART is returned if the current system
127  * call should be restarted if possible, and EINTR is returned if the system
128  * call should be interrupted by the signal (return EINTR).
129  *
130  * The lock argument is unlocked before the caller is suspended, and
131  * re-locked before _sleep() returns.  If priority includes the PDROP
132  * flag the lock is not re-locked before returning.
133  */
134 int
135 _sleep(void *ident, struct lock_object *lock, int priority,
136     const char *wmesg, sbintime_t sbt, sbintime_t pr, int flags)
137 {
138 	struct thread *td;
139 	struct proc *p;
140 	struct lock_class *class;
141 	uintptr_t lock_state;
142 	int catch, pri, rval, sleepq_flags;
143 	WITNESS_SAVE_DECL(lock_witness);
144 
145 	td = curthread;
146 	p = td->td_proc;
147 #ifdef KTRACE
148 	if (KTRPOINT(td, KTR_CSW))
149 		ktrcsw(1, 0, wmesg);
150 #endif
151 	WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, lock,
152 	    "Sleeping on \"%s\"", wmesg);
153 	KASSERT(sbt != 0 || mtx_owned(&Giant) || lock != NULL,
154 	    ("sleeping without a lock"));
155 	KASSERT(p != NULL, ("msleep1"));
156 	KASSERT(ident != NULL && TD_IS_RUNNING(td), ("msleep"));
157 	if (priority & PDROP)
158 		KASSERT(lock != NULL && lock != &Giant.lock_object,
159 		    ("PDROP requires a non-Giant lock"));
160 	if (lock != NULL)
161 		class = LOCK_CLASS(lock);
162 	else
163 		class = NULL;
164 
165 	if (SCHEDULER_STOPPED()) {
166 		if (lock != NULL && priority & PDROP)
167 			class->lc_unlock(lock);
168 		return (0);
169 	}
170 	catch = priority & PCATCH;
171 	pri = priority & PRIMASK;
172 
173 	/*
174 	 * If we are already on a sleep queue, then remove us from that
175 	 * sleep queue first.  We have to do this to handle recursive
176 	 * sleeps.
177 	 */
178 	if (TD_ON_SLEEPQ(td))
179 		sleepq_remove(td, td->td_wchan);
180 
181 	if ((uint8_t *)ident >= &pause_wchan[0] &&
182 	    (uint8_t *)ident <= &pause_wchan[MAXCPU - 1])
183 		sleepq_flags = SLEEPQ_PAUSE;
184 	else
185 		sleepq_flags = SLEEPQ_SLEEP;
186 	if (catch)
187 		sleepq_flags |= SLEEPQ_INTERRUPTIBLE;
188 
189 	sleepq_lock(ident);
190 	CTR5(KTR_PROC, "sleep: thread %ld (pid %ld, %s) on %s (%p)",
191 	    td->td_tid, p->p_pid, td->td_name, wmesg, ident);
192 
193 	if (lock == &Giant.lock_object)
194 		mtx_assert(&Giant, MA_OWNED);
195 	DROP_GIANT();
196 	if (lock != NULL && lock != &Giant.lock_object &&
197 	    !(class->lc_flags & LC_SLEEPABLE)) {
198 		WITNESS_SAVE(lock, lock_witness);
199 		lock_state = class->lc_unlock(lock);
200 	} else
201 		/* GCC needs to follow the Yellow Brick Road */
202 		lock_state = -1;
203 
204 	/*
205 	 * We put ourselves on the sleep queue and start our timeout
206 	 * before calling thread_suspend_check, as we could stop there,
207 	 * and a wakeup or a SIGCONT (or both) could occur while we were
208 	 * stopped without resuming us.  Thus, we must be ready for sleep
209 	 * when cursig() is called.  If the wakeup happens while we're
210 	 * stopped, then td will no longer be on a sleep queue upon
211 	 * return from cursig().
212 	 */
213 	sleepq_add(ident, lock, wmesg, sleepq_flags, 0);
214 	if (sbt != 0)
215 		sleepq_set_timeout_sbt(ident, sbt, pr, flags);
216 	if (lock != NULL && class->lc_flags & LC_SLEEPABLE) {
217 		sleepq_release(ident);
218 		WITNESS_SAVE(lock, lock_witness);
219 		lock_state = class->lc_unlock(lock);
220 		sleepq_lock(ident);
221 	}
222 	if (sbt != 0 && catch)
223 		rval = sleepq_timedwait_sig(ident, pri);
224 	else if (sbt != 0)
225 		rval = sleepq_timedwait(ident, pri);
226 	else if (catch)
227 		rval = sleepq_wait_sig(ident, pri);
228 	else {
229 		sleepq_wait(ident, pri);
230 		rval = 0;
231 	}
232 #ifdef KTRACE
233 	if (KTRPOINT(td, KTR_CSW))
234 		ktrcsw(0, 0, wmesg);
235 #endif
236 	PICKUP_GIANT();
237 	if (lock != NULL && lock != &Giant.lock_object && !(priority & PDROP)) {
238 		class->lc_lock(lock, lock_state);
239 		WITNESS_RESTORE(lock, lock_witness);
240 	}
241 	return (rval);
242 }
243 
244 int
245 msleep_spin_sbt(void *ident, struct mtx *mtx, const char *wmesg,
246     sbintime_t sbt, sbintime_t pr, int flags)
247 {
248 	struct thread *td;
249 	struct proc *p;
250 	int rval;
251 	WITNESS_SAVE_DECL(mtx);
252 
253 	td = curthread;
254 	p = td->td_proc;
255 	KASSERT(mtx != NULL, ("sleeping without a mutex"));
256 	KASSERT(p != NULL, ("msleep1"));
257 	KASSERT(ident != NULL && TD_IS_RUNNING(td), ("msleep"));
258 
259 	if (SCHEDULER_STOPPED())
260 		return (0);
261 
262 	sleepq_lock(ident);
263 	CTR5(KTR_PROC, "msleep_spin: thread %ld (pid %ld, %s) on %s (%p)",
264 	    td->td_tid, p->p_pid, td->td_name, wmesg, ident);
265 
266 	DROP_GIANT();
267 	mtx_assert(mtx, MA_OWNED | MA_NOTRECURSED);
268 	WITNESS_SAVE(&mtx->lock_object, mtx);
269 	mtx_unlock_spin(mtx);
270 
271 	/*
272 	 * We put ourselves on the sleep queue and start our timeout.
273 	 */
274 	sleepq_add(ident, &mtx->lock_object, wmesg, SLEEPQ_SLEEP, 0);
275 	if (sbt != 0)
276 		sleepq_set_timeout_sbt(ident, sbt, pr, flags);
277 
278 	/*
279 	 * Can't call ktrace with any spin locks held so it can lock the
280 	 * ktrace_mtx lock, and WITNESS_WARN considers it an error to hold
281 	 * any spin lock.  Thus, we have to drop the sleepq spin lock while
282 	 * we handle those requests.  This is safe since we have placed our
283 	 * thread on the sleep queue already.
284 	 */
285 #ifdef KTRACE
286 	if (KTRPOINT(td, KTR_CSW)) {
287 		sleepq_release(ident);
288 		ktrcsw(1, 0, wmesg);
289 		sleepq_lock(ident);
290 	}
291 #endif
292 #ifdef WITNESS
293 	sleepq_release(ident);
294 	WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, "Sleeping on \"%s\"",
295 	    wmesg);
296 	sleepq_lock(ident);
297 #endif
298 	if (sbt != 0)
299 		rval = sleepq_timedwait(ident, 0);
300 	else {
301 		sleepq_wait(ident, 0);
302 		rval = 0;
303 	}
304 #ifdef KTRACE
305 	if (KTRPOINT(td, KTR_CSW))
306 		ktrcsw(0, 0, wmesg);
307 #endif
308 	PICKUP_GIANT();
309 	mtx_lock_spin(mtx);
310 	WITNESS_RESTORE(&mtx->lock_object, mtx);
311 	return (rval);
312 }
313 
314 /*
315  * pause() delays the calling thread by the given number of system ticks.
316  * During cold bootup, pause() uses the DELAY() function instead of
317  * the tsleep() function to do the waiting. The "timo" argument must be
318  * greater than or equal to zero. A "timo" value of zero is equivalent
319  * to a "timo" value of one.
320  */
321 int
322 pause_sbt(const char *wmesg, sbintime_t sbt, sbintime_t pr, int flags)
323 {
324 	KASSERT(sbt >= 0, ("pause: timeout must be >= 0"));
325 
326 	/* silently convert invalid timeouts */
327 	if (sbt == 0)
328 		sbt = tick_sbt;
329 
330 	if (cold || kdb_active || SCHEDULER_STOPPED()) {
331 		/*
332 		 * We delay one second at a time to avoid overflowing the
333 		 * system specific DELAY() function(s):
334 		 */
335 		while (sbt >= SBT_1S) {
336 			DELAY(1000000);
337 			sbt -= SBT_1S;
338 		}
339 		/* Do the delay remainder, if any */
340 		sbt = howmany(sbt, SBT_1US);
341 		if (sbt > 0)
342 			DELAY(sbt);
343 		return (0);
344 	}
345 	return (_sleep(&pause_wchan[curcpu], NULL, 0, wmesg, sbt, pr, flags));
346 }
347 
348 /*
349  * Make all threads sleeping on the specified identifier runnable.
350  */
351 void
352 wakeup(void *ident)
353 {
354 	int wakeup_swapper;
355 
356 	sleepq_lock(ident);
357 	wakeup_swapper = sleepq_broadcast(ident, SLEEPQ_SLEEP, 0, 0);
358 	sleepq_release(ident);
359 	if (wakeup_swapper) {
360 		KASSERT(ident != &proc0,
361 		    ("wakeup and wakeup_swapper and proc0"));
362 		kick_proc0();
363 	}
364 }
365 
366 /*
367  * Make a thread sleeping on the specified identifier runnable.
368  * May wake more than one thread if a target thread is currently
369  * swapped out.
370  */
371 void
372 wakeup_one(void *ident)
373 {
374 	int wakeup_swapper;
375 
376 	sleepq_lock(ident);
377 	wakeup_swapper = sleepq_signal(ident, SLEEPQ_SLEEP, 0, 0);
378 	sleepq_release(ident);
379 	if (wakeup_swapper)
380 		kick_proc0();
381 }
382 
383 static void
384 kdb_switch(void)
385 {
386 	thread_unlock(curthread);
387 	kdb_backtrace();
388 	kdb_reenter();
389 	panic("%s: did not reenter debugger", __func__);
390 }
391 
392 /*
393  * The machine independent parts of context switching.
394  */
395 void
396 mi_switch(int flags, struct thread *newtd)
397 {
398 	uint64_t runtime, new_switchtime;
399 	struct thread *td;
400 
401 	td = curthread;			/* XXX */
402 	THREAD_LOCK_ASSERT(td, MA_OWNED | MA_NOTRECURSED);
403 	KASSERT(!TD_ON_RUNQ(td), ("mi_switch: called by old code"));
404 #ifdef INVARIANTS
405 	if (!TD_ON_LOCK(td) && !TD_IS_RUNNING(td))
406 		mtx_assert(&Giant, MA_NOTOWNED);
407 #endif
408 	KASSERT(td->td_critnest == 1 || panicstr,
409 	    ("mi_switch: switch in a critical section"));
410 	KASSERT((flags & (SW_INVOL | SW_VOL)) != 0,
411 	    ("mi_switch: switch must be voluntary or involuntary"));
412 	KASSERT(newtd != curthread, ("mi_switch: preempting back to ourself"));
413 
414 	/*
415 	 * Don't perform context switches from the debugger.
416 	 */
417 	if (kdb_active)
418 		kdb_switch();
419 	if (SCHEDULER_STOPPED())
420 		return;
421 	if (flags & SW_VOL) {
422 		td->td_ru.ru_nvcsw++;
423 		td->td_swvoltick = ticks;
424 	} else {
425 		td->td_ru.ru_nivcsw++;
426 		td->td_swinvoltick = ticks;
427 	}
428 #ifdef SCHED_STATS
429 	SCHED_STAT_INC(sched_switch_stats[flags & SW_TYPE_MASK]);
430 #endif
431 	/*
432 	 * Compute the amount of time during which the current
433 	 * thread was running, and add that to its total so far.
434 	 */
435 	new_switchtime = cpu_ticks();
436 	runtime = new_switchtime - PCPU_GET(switchtime);
437 	td->td_runtime += runtime;
438 	td->td_incruntime += runtime;
439 	PCPU_SET(switchtime, new_switchtime);
440 	td->td_generation++;	/* bump preempt-detect counter */
441 	PCPU_INC(cnt.v_swtch);
442 	PCPU_SET(switchticks, ticks);
443 	CTR4(KTR_PROC, "mi_switch: old thread %ld (td_sched %p, pid %ld, %s)",
444 	    td->td_tid, td_get_sched(td), td->td_proc->p_pid, td->td_name);
445 #if (KTR_COMPILE & KTR_SCHED) != 0
446 	if (TD_IS_IDLETHREAD(td))
447 		KTR_STATE1(KTR_SCHED, "thread", sched_tdname(td), "idle",
448 		    "prio:%d", td->td_priority);
449 	else
450 		KTR_STATE3(KTR_SCHED, "thread", sched_tdname(td), KTDSTATE(td),
451 		    "prio:%d", td->td_priority, "wmesg:\"%s\"", td->td_wmesg,
452 		    "lockname:\"%s\"", td->td_lockname);
453 #endif
454 	SDT_PROBE0(sched, , , preempt);
455 	sched_switch(td, newtd, flags);
456 	KTR_STATE1(KTR_SCHED, "thread", sched_tdname(td), "running",
457 	    "prio:%d", td->td_priority);
458 
459 	CTR4(KTR_PROC, "mi_switch: new thread %ld (td_sched %p, pid %ld, %s)",
460 	    td->td_tid, td_get_sched(td), td->td_proc->p_pid, td->td_name);
461 
462 	/*
463 	 * If the last thread was exiting, finish cleaning it up.
464 	 */
465 	if ((td = PCPU_GET(deadthread))) {
466 		PCPU_SET(deadthread, NULL);
467 		thread_stash(td);
468 	}
469 }
470 
471 /*
472  * Change thread state to be runnable, placing it on the run queue if
473  * it is in memory.  If it is swapped out, return true so our caller
474  * will know to awaken the swapper.
475  */
476 int
477 setrunnable(struct thread *td)
478 {
479 
480 	THREAD_LOCK_ASSERT(td, MA_OWNED);
481 	KASSERT(td->td_proc->p_state != PRS_ZOMBIE,
482 	    ("setrunnable: pid %d is a zombie", td->td_proc->p_pid));
483 	switch (td->td_state) {
484 	case TDS_RUNNING:
485 	case TDS_RUNQ:
486 		return (0);
487 	case TDS_INHIBITED:
488 		/*
489 		 * If we are only inhibited because we are swapped out
490 		 * then arange to swap in this process. Otherwise just return.
491 		 */
492 		if (td->td_inhibitors != TDI_SWAPPED)
493 			return (0);
494 		/* FALLTHROUGH */
495 	case TDS_CAN_RUN:
496 		break;
497 	default:
498 		printf("state is 0x%x", td->td_state);
499 		panic("setrunnable(2)");
500 	}
501 	if ((td->td_flags & TDF_INMEM) == 0) {
502 		if ((td->td_flags & TDF_SWAPINREQ) == 0) {
503 			td->td_flags |= TDF_SWAPINREQ;
504 			return (1);
505 		}
506 	} else
507 		sched_wakeup(td);
508 	return (0);
509 }
510 
511 /*
512  * Compute a tenex style load average of a quantity on
513  * 1, 5 and 15 minute intervals.
514  */
515 static void
516 loadav(void *arg)
517 {
518 	int i, nrun;
519 	struct loadavg *avg;
520 
521 	nrun = sched_load();
522 	avg = &averunnable;
523 
524 	for (i = 0; i < 3; i++)
525 		avg->ldavg[i] = (cexp[i] * avg->ldavg[i] +
526 		    nrun * FSCALE * (FSCALE - cexp[i])) >> FSHIFT;
527 
528 	/*
529 	 * Schedule the next update to occur after 5 seconds, but add a
530 	 * random variation to avoid synchronisation with processes that
531 	 * run at regular intervals.
532 	 */
533 	callout_reset_sbt(&loadav_callout,
534 	    SBT_1US * (4000000 + (int)(random() % 2000001)), SBT_1US,
535 	    loadav, NULL, C_DIRECT_EXEC | C_PREL(32));
536 }
537 
538 /* ARGSUSED */
539 static void
540 synch_setup(void *dummy)
541 {
542 	callout_init(&loadav_callout, 1);
543 
544 	/* Kick off timeout driven events by calling first time. */
545 	loadav(NULL);
546 }
547 
548 int
549 should_yield(void)
550 {
551 
552 	return ((u_int)ticks - (u_int)curthread->td_swvoltick >= hogticks);
553 }
554 
555 void
556 maybe_yield(void)
557 {
558 
559 	if (should_yield())
560 		kern_yield(PRI_USER);
561 }
562 
563 void
564 kern_yield(int prio)
565 {
566 	struct thread *td;
567 
568 	td = curthread;
569 	DROP_GIANT();
570 	thread_lock(td);
571 	if (prio == PRI_USER)
572 		prio = td->td_user_pri;
573 	if (prio >= 0)
574 		sched_prio(td, prio);
575 	mi_switch(SW_VOL | SWT_RELINQUISH, NULL);
576 	thread_unlock(td);
577 	PICKUP_GIANT();
578 }
579 
580 /*
581  * General purpose yield system call.
582  */
583 int
584 sys_yield(struct thread *td, struct yield_args *uap)
585 {
586 
587 	thread_lock(td);
588 	if (PRI_BASE(td->td_pri_class) == PRI_TIMESHARE)
589 		sched_prio(td, PRI_MAX_TIMESHARE);
590 	mi_switch(SW_VOL | SWT_RELINQUISH, NULL);
591 	thread_unlock(td);
592 	td->td_retval[0] = 0;
593 	return (0);
594 }
595