xref: /freebsd/sys/kern/kern_synch.c (revision e627b39baccd1ec9129690167cf5e6d860509655)
1 /*-
2  * Copyright (c) 1982, 1986, 1990, 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  * (c) UNIX System Laboratories, Inc.
5  * All or some portions of this file are derived from material licensed
6  * to the University of California by American Telephone and Telegraph
7  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8  * the permission of UNIX System Laboratories, Inc.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. All advertising materials mentioning features or use of this software
19  *    must display the following acknowledgement:
20  *	This product includes software developed by the University of
21  *	California, Berkeley and its contributors.
22  * 4. Neither the name of the University nor the names of its contributors
23  *    may be used to endorse or promote products derived from this software
24  *    without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36  * SUCH DAMAGE.
37  *
38  *	@(#)kern_synch.c	8.9 (Berkeley) 5/19/95
39  * $Id: kern_synch.c,v 1.24 1996/09/01 10:30:33 davidg Exp $
40  */
41 
42 #include "opt_ktrace.h"
43 
44 #include <sys/param.h>
45 #include <sys/systm.h>
46 #include <sys/proc.h>
47 #include <sys/kernel.h>
48 #include <sys/buf.h>
49 #include <sys/signalvar.h>
50 #include <sys/resourcevar.h>
51 #include <sys/signalvar.h>
52 #include <sys/vmmeter.h>
53 #include <vm/vm.h>
54 #include <vm/vm_param.h>
55 #include <vm/vm_extern.h>
56 #ifdef KTRACE
57 #include <sys/ktrace.h>
58 #endif
59 
60 #include <machine/cpu.h>
61 
62 static void rqinit __P((void *));
63 SYSINIT(runqueue, SI_SUB_RUN_QUEUE, SI_ORDER_FIRST, rqinit, NULL)
64 
65 u_char	curpriority;		/* usrpri of curproc */
66 int	lbolt;			/* once a second sleep address */
67 
68 extern void	endtsleep __P((void *));
69 extern void	updatepri __P((struct proc *p));
70 
71 /*
72  * Force switch among equal priority processes every 100ms.
73  */
74 /* ARGSUSED */
75 void
76 roundrobin(arg)
77 	void *arg;
78 {
79 
80 	need_resched();
81 	timeout(roundrobin, NULL, hz / 10);
82 }
83 
84 /*
85  * Constants for digital decay and forget:
86  *	90% of (p_estcpu) usage in 5 * loadav time
87  *	95% of (p_pctcpu) usage in 60 seconds (load insensitive)
88  *          Note that, as ps(1) mentions, this can let percentages
89  *          total over 100% (I've seen 137.9% for 3 processes).
90  *
91  * Note that statclock updates p_estcpu and p_cpticks independently.
92  *
93  * We wish to decay away 90% of p_estcpu in (5 * loadavg) seconds.
94  * That is, the system wants to compute a value of decay such
95  * that the following for loop:
96  * 	for (i = 0; i < (5 * loadavg); i++)
97  * 		p_estcpu *= decay;
98  * will compute
99  * 	p_estcpu *= 0.1;
100  * for all values of loadavg:
101  *
102  * Mathematically this loop can be expressed by saying:
103  * 	decay ** (5 * loadavg) ~= .1
104  *
105  * The system computes decay as:
106  * 	decay = (2 * loadavg) / (2 * loadavg + 1)
107  *
108  * We wish to prove that the system's computation of decay
109  * will always fulfill the equation:
110  * 	decay ** (5 * loadavg) ~= .1
111  *
112  * If we compute b as:
113  * 	b = 2 * loadavg
114  * then
115  * 	decay = b / (b + 1)
116  *
117  * We now need to prove two things:
118  *	1) Given factor ** (5 * loadavg) ~= .1, prove factor == b/(b+1)
119  *	2) Given b/(b+1) ** power ~= .1, prove power == (5 * loadavg)
120  *
121  * Facts:
122  *         For x close to zero, exp(x) =~ 1 + x, since
123  *              exp(x) = 0! + x**1/1! + x**2/2! + ... .
124  *              therefore exp(-1/b) =~ 1 - (1/b) = (b-1)/b.
125  *         For x close to zero, ln(1+x) =~ x, since
126  *              ln(1+x) = x - x**2/2 + x**3/3 - ...     -1 < x < 1
127  *              therefore ln(b/(b+1)) = ln(1 - 1/(b+1)) =~ -1/(b+1).
128  *         ln(.1) =~ -2.30
129  *
130  * Proof of (1):
131  *    Solve (factor)**(power) =~ .1 given power (5*loadav):
132  *	solving for factor,
133  *      ln(factor) =~ (-2.30/5*loadav), or
134  *      factor =~ exp(-1/((5/2.30)*loadav)) =~ exp(-1/(2*loadav)) =
135  *          exp(-1/b) =~ (b-1)/b =~ b/(b+1).                    QED
136  *
137  * Proof of (2):
138  *    Solve (factor)**(power) =~ .1 given factor == (b/(b+1)):
139  *	solving for power,
140  *      power*ln(b/(b+1)) =~ -2.30, or
141  *      power =~ 2.3 * (b + 1) = 4.6*loadav + 2.3 =~ 5*loadav.  QED
142  *
143  * Actual power values for the implemented algorithm are as follows:
144  *      loadav: 1       2       3       4
145  *      power:  5.68    10.32   14.94   19.55
146  */
147 
148 /* calculations for digital decay to forget 90% of usage in 5*loadav sec */
149 #define	loadfactor(loadav)	(2 * (loadav))
150 #define	decay_cpu(loadfac, cpu)	(((loadfac) * (cpu)) / ((loadfac) + FSCALE))
151 
152 /* decay 95% of `p_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */
153 fixpt_t	ccpu = 0.95122942450071400909 * FSCALE;		/* exp(-1/20) */
154 
155 /*
156  * If `ccpu' is not equal to `exp(-1/20)' and you still want to use the
157  * faster/more-accurate formula, you'll have to estimate CCPU_SHIFT below
158  * and possibly adjust FSHIFT in "param.h" so that (FSHIFT >= CCPU_SHIFT).
159  *
160  * To estimate CCPU_SHIFT for exp(-1/20), the following formula was used:
161  *	1 - exp(-1/20) ~= 0.0487 ~= 0.0488 == 1 (fixed pt, *11* bits).
162  *
163  * If you dont want to bother with the faster/more-accurate formula, you
164  * can set CCPU_SHIFT to (FSHIFT + 1) which will use a slower/less-accurate
165  * (more general) method of calculating the %age of CPU used by a process.
166  */
167 #define	CCPU_SHIFT	11
168 
169 /*
170  * Recompute process priorities, every hz ticks.
171  */
172 /* ARGSUSED */
173 void
174 schedcpu(arg)
175 	void *arg;
176 {
177 	register fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
178 	register struct proc *p;
179 	register int s;
180 	register unsigned int newcpu;
181 
182 	wakeup((caddr_t)&lbolt);
183 	for (p = allproc.lh_first; p != 0; p = p->p_list.le_next) {
184 		/*
185 		 * Increment time in/out of memory and sleep time
186 		 * (if sleeping).  We ignore overflow; with 16-bit int's
187 		 * (remember them?) overflow takes 45 days.
188 		 */
189 		p->p_swtime++;
190 		if (p->p_stat == SSLEEP || p->p_stat == SSTOP)
191 			p->p_slptime++;
192 		p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT;
193 		/*
194 		 * If the process has slept the entire second,
195 		 * stop recalculating its priority until it wakes up.
196 		 */
197 		if (p->p_slptime > 1)
198 			continue;
199 		s = splhigh();	/* prevent state changes and protect run queue */
200 		/*
201 		 * p_pctcpu is only for ps.
202 		 */
203 #if	(FSHIFT >= CCPU_SHIFT)
204 		p->p_pctcpu += (hz == 100)?
205 			((fixpt_t) p->p_cpticks) << (FSHIFT - CCPU_SHIFT):
206                 	100 * (((fixpt_t) p->p_cpticks)
207 				<< (FSHIFT - CCPU_SHIFT)) / hz;
208 #else
209 		p->p_pctcpu += ((FSCALE - ccpu) *
210 			(p->p_cpticks * FSCALE / hz)) >> FSHIFT;
211 #endif
212 		p->p_cpticks = 0;
213 		newcpu = (u_int) decay_cpu(loadfac, p->p_estcpu) + p->p_nice;
214 		p->p_estcpu = min(newcpu, UCHAR_MAX);
215 		resetpriority(p);
216 		if (p->p_priority >= PUSER) {
217 #define	PPQ	(128 / NQS)		/* priorities per queue */
218 			if ((p != curproc) &&
219 			    p->p_stat == SRUN &&
220 			    (p->p_flag & P_INMEM) &&
221 			    (p->p_priority / PPQ) != (p->p_usrpri / PPQ)) {
222 				remrq(p);
223 				p->p_priority = p->p_usrpri;
224 				setrunqueue(p);
225 			} else
226 				p->p_priority = p->p_usrpri;
227 		}
228 		splx(s);
229 	}
230 	vmmeter();
231 	timeout(schedcpu, (void *)0, hz);
232 }
233 
234 /*
235  * Recalculate the priority of a process after it has slept for a while.
236  * For all load averages >= 1 and max p_estcpu of 255, sleeping for at
237  * least six times the loadfactor will decay p_estcpu to zero.
238  */
239 void
240 updatepri(p)
241 	register struct proc *p;
242 {
243 	register unsigned int newcpu = p->p_estcpu;
244 	register fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
245 
246 	if (p->p_slptime > 5 * loadfac)
247 		p->p_estcpu = 0;
248 	else {
249 		p->p_slptime--;	/* the first time was done in schedcpu */
250 		while (newcpu && --p->p_slptime)
251 			newcpu = (int) decay_cpu(loadfac, newcpu);
252 		p->p_estcpu = min(newcpu, UCHAR_MAX);
253 	}
254 	resetpriority(p);
255 }
256 
257 /*
258  * We're only looking at 7 bits of the address; everything is
259  * aligned to 4, lots of things are aligned to greater powers
260  * of 2.  Shift right by 8, i.e. drop the bottom 256 worth.
261  */
262 #define TABLESIZE	128
263 TAILQ_HEAD(slpquehead, proc) slpque[TABLESIZE];
264 #define LOOKUP(x)	(((long)(x) >> 8) & (TABLESIZE - 1))
265 
266 /*
267  * During autoconfiguration or after a panic, a sleep will simply
268  * lower the priority briefly to allow interrupts, then return.
269  * The priority to be used (safepri) is machine-dependent, thus this
270  * value is initialized and maintained in the machine-dependent layers.
271  * This priority will typically be 0, or the lowest priority
272  * that is safe for use on the interrupt stack; it can be made
273  * higher to block network software interrupts after panics.
274  */
275 int safepri;
276 
277 void
278 sleepinit()
279 {
280 	int i;
281 
282 	for (i = 0; i < TABLESIZE; i++)
283 		TAILQ_INIT(&slpque[i]);
284 }
285 
286 /*
287  * General sleep call.  Suspends the current process until a wakeup is
288  * performed on the specified identifier.  The process will then be made
289  * runnable with the specified priority.  Sleeps at most timo/hz seconds
290  * (0 means no timeout).  If pri includes PCATCH flag, signals are checked
291  * before and after sleeping, else signals are not checked.  Returns 0 if
292  * awakened, EWOULDBLOCK if the timeout expires.  If PCATCH is set and a
293  * signal needs to be delivered, ERESTART is returned if the current system
294  * call should be restarted if possible, and EINTR is returned if the system
295  * call should be interrupted by the signal (return EINTR).
296  */
297 int
298 tsleep(ident, priority, wmesg, timo)
299 	void *ident;
300 	int priority, timo;
301 	char *wmesg;
302 {
303 	struct proc *p = curproc;
304 	int s, sig, catch = priority & PCATCH;
305 
306 #ifdef KTRACE
307 	if (KTRPOINT(p, KTR_CSW))
308 		ktrcsw(p->p_tracep, 1, 0);
309 #endif
310 	s = splhigh();
311 	if (cold || panicstr) {
312 		/*
313 		 * After a panic, or during autoconfiguration,
314 		 * just give interrupts a chance, then just return;
315 		 * don't run any other procs or panic below,
316 		 * in case this is the idle process and already asleep.
317 		 */
318 		splx(safepri);
319 		splx(s);
320 		return (0);
321 	}
322 #ifdef DIAGNOSTIC
323 	if (ident == NULL || p->p_stat != SRUN)
324 		panic("tsleep");
325 #endif
326 	p->p_wchan = ident;
327 	p->p_wmesg = wmesg;
328 	p->p_slptime = 0;
329 	p->p_priority = priority & PRIMASK;
330 	TAILQ_INSERT_TAIL(&slpque[LOOKUP(ident)], p, p_procq);
331 	if (timo)
332 		timeout(endtsleep, (void *)p, timo);
333 	/*
334 	 * We put ourselves on the sleep queue and start our timeout
335 	 * before calling CURSIG, as we could stop there, and a wakeup
336 	 * or a SIGCONT (or both) could occur while we were stopped.
337 	 * A SIGCONT would cause us to be marked as SSLEEP
338 	 * without resuming us, thus we must be ready for sleep
339 	 * when CURSIG is called.  If the wakeup happens while we're
340 	 * stopped, p->p_wchan will be 0 upon return from CURSIG.
341 	 */
342 	if (catch) {
343 		p->p_flag |= P_SINTR;
344 		if ((sig = CURSIG(p))) {
345 			if (p->p_wchan)
346 				unsleep(p);
347 			p->p_stat = SRUN;
348 			goto resume;
349 		}
350 		if (p->p_wchan == 0) {
351 			catch = 0;
352 			goto resume;
353 		}
354 	} else
355 		sig = 0;
356 	p->p_stat = SSLEEP;
357 	p->p_stats->p_ru.ru_nvcsw++;
358 	mi_switch();
359 resume:
360 	curpriority = p->p_usrpri;
361 	splx(s);
362 	p->p_flag &= ~P_SINTR;
363 	if (p->p_flag & P_TIMEOUT) {
364 		p->p_flag &= ~P_TIMEOUT;
365 		if (sig == 0) {
366 #ifdef KTRACE
367 			if (KTRPOINT(p, KTR_CSW))
368 				ktrcsw(p->p_tracep, 0, 0);
369 #endif
370 			return (EWOULDBLOCK);
371 		}
372 	} else if (timo)
373 		untimeout(endtsleep, (void *)p);
374 	if (catch && (sig != 0 || (sig = CURSIG(p)))) {
375 #ifdef KTRACE
376 		if (KTRPOINT(p, KTR_CSW))
377 			ktrcsw(p->p_tracep, 0, 0);
378 #endif
379 		if (p->p_sigacts->ps_sigintr & sigmask(sig))
380 			return (EINTR);
381 		return (ERESTART);
382 	}
383 #ifdef KTRACE
384 	if (KTRPOINT(p, KTR_CSW))
385 		ktrcsw(p->p_tracep, 0, 0);
386 #endif
387 	return (0);
388 }
389 
390 /*
391  * Implement timeout for tsleep.
392  * If process hasn't been awakened (wchan non-zero),
393  * set timeout flag and undo the sleep.  If proc
394  * is stopped, just unsleep so it will remain stopped.
395  */
396 void
397 endtsleep(arg)
398 	void *arg;
399 {
400 	register struct proc *p;
401 	int s;
402 
403 	p = (struct proc *)arg;
404 	s = splhigh();
405 	if (p->p_wchan) {
406 		if (p->p_stat == SSLEEP)
407 			setrunnable(p);
408 		else
409 			unsleep(p);
410 		p->p_flag |= P_TIMEOUT;
411 	}
412 	splx(s);
413 }
414 
415 /*
416  * Remove a process from its wait queue
417  */
418 void
419 unsleep(p)
420 	register struct proc *p;
421 {
422 	int s;
423 
424 	s = splhigh();
425 	if (p->p_wchan) {
426 		TAILQ_REMOVE(&slpque[LOOKUP(p->p_wchan)], p, p_procq);
427 		p->p_wchan = 0;
428 	}
429 	splx(s);
430 }
431 
432 /*
433  * Make all processes sleeping on the specified identifier runnable.
434  */
435 void
436 wakeup(ident)
437 	register void *ident;
438 {
439 	register struct slpquehead *qp;
440 	register struct proc *p;
441 	int s;
442 
443 	s = splhigh();
444 	qp = &slpque[LOOKUP(ident)];
445 restart:
446 	for (p = qp->tqh_first; p != NULL; p = p->p_procq.tqe_next) {
447 #ifdef DIAGNOSTIC
448 		if (p->p_stat != SSLEEP && p->p_stat != SSTOP)
449 			panic("wakeup");
450 #endif
451 		if (p->p_wchan == ident) {
452 			TAILQ_REMOVE(qp, p, p_procq);
453 			p->p_wchan = 0;
454 			if (p->p_stat == SSLEEP) {
455 				/* OPTIMIZED EXPANSION OF setrunnable(p); */
456 				if (p->p_slptime > 1)
457 					updatepri(p);
458 				p->p_slptime = 0;
459 				p->p_stat = SRUN;
460 				if (p->p_flag & P_INMEM) {
461 					setrunqueue(p);
462 					need_resched();
463 				} else {
464 					wakeup((caddr_t)&proc0);
465 				}
466 				/* END INLINE EXPANSION */
467 				goto restart;
468 			}
469 		}
470 	}
471 	splx(s);
472 }
473 
474 /*
475  * Make a process sleeping on the specified identifier runnable.
476  * May wake more than one process if a target prcoess is currently
477  * swapped out.
478  */
479 void
480 wakeup_one(ident)
481 	register void *ident;
482 {
483 	register struct slpquehead *qp;
484 	register struct proc *p;
485 	int s;
486 
487 	s = splhigh();
488 	qp = &slpque[LOOKUP(ident)];
489 
490 	for (p = qp->tqh_first; p != NULL; p = p->p_procq.tqe_next) {
491 #ifdef DIAGNOSTIC
492 		if (p->p_stat != SSLEEP && p->p_stat != SSTOP)
493 			panic("wakeup_one");
494 #endif
495 		if (p->p_wchan == ident) {
496 			TAILQ_REMOVE(qp, p, p_procq);
497 			p->p_wchan = 0;
498 			if (p->p_stat == SSLEEP) {
499 				/* OPTIMIZED EXPANSION OF setrunnable(p); */
500 				if (p->p_slptime > 1)
501 					updatepri(p);
502 				p->p_slptime = 0;
503 				p->p_stat = SRUN;
504 				if (p->p_flag & P_INMEM) {
505 					setrunqueue(p);
506 					need_resched();
507 					break;
508 				} else {
509 					wakeup((caddr_t)&proc0);
510 				}
511 				/* END INLINE EXPANSION */
512 			}
513 		}
514 	}
515 	splx(s);
516 }
517 
518 /*
519  * The machine independent parts of mi_switch().
520  * Must be called at splstatclock() or higher.
521  */
522 void
523 mi_switch()
524 {
525 	register struct proc *p = curproc;	/* XXX */
526 	register struct rlimit *rlim;
527 	register long s, u;
528 	struct timeval tv;
529 
530 #ifdef DEBUG
531 	if (p->p_simple_locks)
532 		panic("sleep: holding simple lock");
533 #endif
534 	/*
535 	 * Compute the amount of time during which the current
536 	 * process was running, and add that to its total so far.
537 	 */
538 	microtime(&tv);
539 	u = p->p_rtime.tv_usec + (tv.tv_usec - runtime.tv_usec);
540 	s = p->p_rtime.tv_sec + (tv.tv_sec - runtime.tv_sec);
541 	if (u < 0) {
542 		u += 1000000;
543 		s--;
544 	} else if (u >= 1000000) {
545 		u -= 1000000;
546 		s++;
547 	}
548 	p->p_rtime.tv_usec = u;
549 	p->p_rtime.tv_sec = s;
550 
551 	/*
552 	 * Check if the process exceeds its cpu resource allocation.
553 	 * If over max, kill it.
554 	 */
555 	if (p->p_stat != SZOMB) {
556 		rlim = &p->p_rlimit[RLIMIT_CPU];
557 		if (s >= rlim->rlim_cur) {
558 			if (s >= rlim->rlim_max)
559 				killproc(p, "exceeded maximum CPU limit");
560 			else {
561 				psignal(p, SIGXCPU);
562 				if (rlim->rlim_cur < rlim->rlim_max)
563 					rlim->rlim_cur += 5;
564 			}
565 		}
566 	}
567 
568 	/*
569 	 * Pick a new current process and record its start time.
570 	 */
571 	cnt.v_swtch++;
572 	cpu_switch(p);
573 	microtime(&runtime);
574 }
575 
576 /*
577  * Initialize the (doubly-linked) run queues
578  * to be empty.
579  */
580 /* ARGSUSED*/
581 static void
582 rqinit(dummy)
583 	void *dummy;
584 {
585 	register int i;
586 
587 	for (i = 0; i < NQS; i++) {
588 		qs[i].ph_link = qs[i].ph_rlink = (struct proc *)&qs[i];
589 		rtqs[i].ph_link = rtqs[i].ph_rlink = (struct proc *)&rtqs[i];
590 		idqs[i].ph_link = idqs[i].ph_rlink = (struct proc *)&idqs[i];
591 	}
592 }
593 
594 /*
595  * Change process state to be runnable,
596  * placing it on the run queue if it is in memory,
597  * and awakening the swapper if it isn't in memory.
598  */
599 void
600 setrunnable(p)
601 	register struct proc *p;
602 {
603 	register int s;
604 
605 	s = splhigh();
606 	switch (p->p_stat) {
607 	case 0:
608 	case SRUN:
609 	case SZOMB:
610 	default:
611 		panic("setrunnable");
612 	case SSTOP:
613 	case SSLEEP:
614 		unsleep(p);		/* e.g. when sending signals */
615 		break;
616 
617 	case SIDL:
618 		break;
619 	}
620 	p->p_stat = SRUN;
621 	if (p->p_flag & P_INMEM)
622 		setrunqueue(p);
623 	splx(s);
624 	if (p->p_slptime > 1)
625 		updatepri(p);
626 	p->p_slptime = 0;
627 	if ((p->p_flag & P_INMEM) == 0)
628 		wakeup((caddr_t)&proc0);
629 	else if (p->p_priority < curpriority)
630 		need_resched();
631 }
632 
633 /*
634  * Compute the priority of a process when running in user mode.
635  * Arrange to reschedule if the resulting priority is better
636  * than that of the current process.
637  */
638 void
639 resetpriority(p)
640 	register struct proc *p;
641 {
642 	register unsigned int newpriority;
643 
644 	if (p->p_rtprio.type == RTP_PRIO_NORMAL) {
645 		newpriority = PUSER + p->p_estcpu / 4 + 2 * p->p_nice;
646 		newpriority = min(newpriority, MAXPRI);
647 		p->p_usrpri = newpriority;
648 		if (newpriority < curpriority)
649 			need_resched();
650 	} else {
651 		need_resched();
652 	}
653 }
654