xref: /freebsd/sys/kern/kern_synch.c (revision dba6dd177bdee890cf445fbe21a5dccefd5de18e)
1 /*-
2  * Copyright (c) 1982, 1986, 1990, 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  * (c) UNIX System Laboratories, Inc.
5  * All or some portions of this file are derived from material licensed
6  * to the University of California by American Telephone and Telegraph
7  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8  * the permission of UNIX System Laboratories, Inc.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 4. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  *	@(#)kern_synch.c	8.9 (Berkeley) 5/19/95
35  */
36 
37 #include <sys/cdefs.h>
38 __FBSDID("$FreeBSD$");
39 
40 #include "opt_ddb.h"
41 #include "opt_ktrace.h"
42 
43 #include <sys/param.h>
44 #include <sys/systm.h>
45 #include <sys/condvar.h>
46 #include <sys/kernel.h>
47 #include <sys/ktr.h>
48 #include <sys/lock.h>
49 #include <sys/mutex.h>
50 #include <sys/proc.h>
51 #include <sys/resourcevar.h>
52 #include <sys/sched.h>
53 #include <sys/signalvar.h>
54 #include <sys/sleepqueue.h>
55 #include <sys/smp.h>
56 #include <sys/sx.h>
57 #include <sys/sysctl.h>
58 #include <sys/sysproto.h>
59 #include <sys/vmmeter.h>
60 #ifdef DDB
61 #include <ddb/ddb.h>
62 #endif
63 #ifdef KTRACE
64 #include <sys/uio.h>
65 #include <sys/ktrace.h>
66 #endif
67 
68 #include <machine/cpu.h>
69 
70 static void synch_setup(void *dummy);
71 SYSINIT(synch_setup, SI_SUB_KICK_SCHEDULER, SI_ORDER_FIRST, synch_setup, NULL)
72 
73 int	hogticks;
74 int	lbolt;
75 
76 static struct callout loadav_callout;
77 static struct callout lbolt_callout;
78 
79 struct loadavg averunnable =
80 	{ {0, 0, 0}, FSCALE };	/* load average, of runnable procs */
81 /*
82  * Constants for averages over 1, 5, and 15 minutes
83  * when sampling at 5 second intervals.
84  */
85 static fixpt_t cexp[3] = {
86 	0.9200444146293232 * FSCALE,	/* exp(-1/12) */
87 	0.9834714538216174 * FSCALE,	/* exp(-1/60) */
88 	0.9944598480048967 * FSCALE,	/* exp(-1/180) */
89 };
90 
91 /* kernel uses `FSCALE', userland (SHOULD) use kern.fscale */
92 static int      fscale __unused = FSCALE;
93 SYSCTL_INT(_kern, OID_AUTO, fscale, CTLFLAG_RD, 0, FSCALE, "");
94 
95 static void	loadav(void *arg);
96 static void	lboltcb(void *arg);
97 
98 void
99 sleepinit(void)
100 {
101 
102 	hogticks = (hz / 10) * 2;	/* Default only. */
103 	init_sleepqueues();
104 }
105 
106 /*
107  * General sleep call.  Suspends the current process until a wakeup is
108  * performed on the specified identifier.  The process will then be made
109  * runnable with the specified priority.  Sleeps at most timo/hz seconds
110  * (0 means no timeout).  If pri includes PCATCH flag, signals are checked
111  * before and after sleeping, else signals are not checked.  Returns 0 if
112  * awakened, EWOULDBLOCK if the timeout expires.  If PCATCH is set and a
113  * signal needs to be delivered, ERESTART is returned if the current system
114  * call should be restarted if possible, and EINTR is returned if the system
115  * call should be interrupted by the signal (return EINTR).
116  *
117  * The mutex argument is exited before the caller is suspended, and
118  * entered before msleep returns.  If priority includes the PDROP
119  * flag the mutex is not entered before returning.
120  */
121 int
122 msleep(ident, mtx, priority, wmesg, timo)
123 	void *ident;
124 	struct mtx *mtx;
125 	int priority, timo;
126 	const char *wmesg;
127 {
128 	struct sleepqueue *sq;
129 	struct thread *td;
130 	struct proc *p;
131 	int catch, rval, sig;
132 	WITNESS_SAVE_DECL(mtx);
133 
134 	td = curthread;
135 	p = td->td_proc;
136 #ifdef KTRACE
137 	if (KTRPOINT(td, KTR_CSW))
138 		ktrcsw(1, 0);
139 #endif
140 	WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, mtx == NULL ? NULL :
141 	    &mtx->mtx_object, "Sleeping on \"%s\"", wmesg);
142 	KASSERT(timo != 0 || mtx_owned(&Giant) || mtx != NULL,
143 	    ("sleeping without a mutex"));
144 	KASSERT(p != NULL, ("msleep1"));
145 	KASSERT(ident != NULL && TD_IS_RUNNING(td), ("msleep"));
146 
147 	if (cold) {
148 		/*
149 		 * During autoconfiguration, just return;
150 		 * don't run any other threads or panic below,
151 		 * in case this is the idle thread and already asleep.
152 		 * XXX: this used to do "s = splhigh(); splx(safepri);
153 		 * splx(s);" to give interrupts a chance, but there is
154 		 * no way to give interrupts a chance now.
155 		 */
156 		if (mtx != NULL && priority & PDROP)
157 			mtx_unlock(mtx);
158 		return (0);
159 	}
160 	catch = priority & PCATCH;
161 	rval = 0;
162 
163 	/*
164 	 * If we are already on a sleep queue, then remove us from that
165 	 * sleep queue first.  We have to do this to handle recursive
166 	 * sleeps.
167 	 */
168 	if (TD_ON_SLEEPQ(td))
169 		sleepq_remove(td, td->td_wchan);
170 
171 	sq = sleepq_lookup(ident);
172 	mtx_lock_spin(&sched_lock);
173 
174 	/*
175 	 * If we are capable of async syscalls and there isn't already
176 	 * another one ready to return, start a new thread
177 	 * and queue it as ready to run. Note that there is danger here
178 	 * because we need to make sure that we don't sleep allocating
179 	 * the thread (recursion here might be bad).
180 	 */
181 	if (p->p_flag & P_SA || p->p_numthreads > 1) {
182 		/*
183 		 * Just don't bother if we are exiting
184 		 * and not the exiting thread or thread was marked as
185 		 * interrupted.
186 		 */
187 		if (catch) {
188 			if ((p->p_flag & P_WEXIT) && p->p_singlethread != td) {
189 				mtx_unlock_spin(&sched_lock);
190 				sleepq_release(ident);
191 				return (EINTR);
192 			}
193 			if (td->td_flags & TDF_INTERRUPT) {
194 				mtx_unlock_spin(&sched_lock);
195 				sleepq_release(ident);
196 				return (td->td_intrval);
197 			}
198 		}
199 	}
200 	mtx_unlock_spin(&sched_lock);
201 	CTR5(KTR_PROC, "msleep: thread %p (pid %ld, %s) on %s (%p)",
202 	    (void *)td, (long)p->p_pid, p->p_comm, wmesg, ident);
203 
204 	DROP_GIANT();
205 	if (mtx != NULL) {
206 		mtx_assert(mtx, MA_OWNED | MA_NOTRECURSED);
207 		WITNESS_SAVE(&mtx->mtx_object, mtx);
208 		mtx_unlock(mtx);
209 	}
210 
211 	/*
212 	 * We put ourselves on the sleep queue and start our timeout
213 	 * before calling thread_suspend_check, as we could stop there,
214 	 * and a wakeup or a SIGCONT (or both) could occur while we were
215 	 * stopped without resuming us.  Thus, we must be ready for sleep
216 	 * when cursig() is called.  If the wakeup happens while we're
217 	 * stopped, then td will no longer be on a sleep queue upon
218 	 * return from cursig().
219 	 */
220 	sleepq_add(sq, ident, mtx, wmesg, 0);
221 	if (timo)
222 		sleepq_set_timeout(ident, timo);
223 	if (catch) {
224 		sig = sleepq_catch_signals(ident);
225 		if (sig == 0 && !TD_ON_SLEEPQ(td)) {
226 			mtx_lock_spin(&sched_lock);
227 			td->td_flags &= ~TDF_SINTR;
228 			mtx_unlock_spin(&sched_lock);
229 			catch = 0;
230 		}
231 	} else
232 		sig = 0;
233 
234 	/*
235 	 * Adjust this thread's priority.
236 	 *
237 	 * XXX: do we need to save priority in td_base_pri?
238 	 */
239 	mtx_lock_spin(&sched_lock);
240 	sched_prio(td, priority & PRIMASK);
241 	mtx_unlock_spin(&sched_lock);
242 
243 	if (timo && catch)
244 		rval = sleepq_timedwait_sig(ident, sig != 0);
245 	else if (timo)
246 		rval = sleepq_timedwait(ident, sig != 0);
247 	else if (catch)
248 		rval = sleepq_wait_sig(ident);
249 	else {
250 		sleepq_wait(ident);
251 		rval = 0;
252 	}
253 	if (rval == 0 && catch)
254 		rval = sleepq_calc_signal_retval(sig);
255 #ifdef KTRACE
256 	if (KTRPOINT(td, KTR_CSW))
257 		ktrcsw(0, 0);
258 #endif
259 	PICKUP_GIANT();
260 	if (mtx != NULL && !(priority & PDROP)) {
261 		mtx_lock(mtx);
262 		WITNESS_RESTORE(&mtx->mtx_object, mtx);
263 	}
264 	return (rval);
265 }
266 
267 /*
268  * Make all threads sleeping on the specified identifier runnable.
269  */
270 void
271 wakeup(ident)
272 	register void *ident;
273 {
274 
275 	sleepq_broadcast(ident, 0, -1);
276 }
277 
278 /*
279  * Make a thread sleeping on the specified identifier runnable.
280  * May wake more than one thread if a target thread is currently
281  * swapped out.
282  */
283 void
284 wakeup_one(ident)
285 	register void *ident;
286 {
287 
288 	sleepq_signal(ident, 0, -1);
289 }
290 
291 /*
292  * The machine independent parts of context switching.
293  */
294 void
295 mi_switch(int flags)
296 {
297 	struct bintime new_switchtime;
298 	struct thread *td;
299 	struct proc *p;
300 
301 	mtx_assert(&sched_lock, MA_OWNED | MA_NOTRECURSED);
302 	td = curthread;			/* XXX */
303 	p = td->td_proc;		/* XXX */
304 	KASSERT(!TD_ON_RUNQ(td), ("mi_switch: called by old code"));
305 #ifdef INVARIANTS
306 	if (!TD_ON_LOCK(td) && !TD_IS_RUNNING(td))
307 		mtx_assert(&Giant, MA_NOTOWNED);
308 #endif
309 	KASSERT(td->td_critnest == 1,
310 	    ("mi_switch: switch in a critical section"));
311 	KASSERT((flags & (SW_INVOL | SW_VOL)) != 0,
312 	    ("mi_switch: switch must be voluntary or involuntary"));
313 
314 	if (flags & SW_VOL)
315 		p->p_stats->p_ru.ru_nvcsw++;
316 	else
317 		p->p_stats->p_ru.ru_nivcsw++;
318 	/*
319 	 * Compute the amount of time during which the current
320 	 * process was running, and add that to its total so far.
321 	 */
322 	binuptime(&new_switchtime);
323 	bintime_add(&p->p_runtime, &new_switchtime);
324 	bintime_sub(&p->p_runtime, PCPU_PTR(switchtime));
325 
326 	td->td_generation++;	/* bump preempt-detect counter */
327 
328 #ifdef DDB
329 	/*
330 	 * Don't perform context switches from the debugger.
331 	 */
332 	if (db_active) {
333 		mtx_unlock_spin(&sched_lock);
334 		db_print_backtrace();
335 		db_error("Context switches not allowed in the debugger");
336 	}
337 #endif
338 
339 	/*
340 	 * Check if the process exceeds its cpu resource allocation.  If
341 	 * over max, arrange to kill the process in ast().
342 	 */
343 	if (p->p_cpulimit != RLIM_INFINITY &&
344 	    p->p_runtime.sec > p->p_cpulimit) {
345 		p->p_sflag |= PS_XCPU;
346 		td->td_flags |= TDF_ASTPENDING;
347 	}
348 
349 	/*
350 	 * Finish up stats for outgoing thread.
351 	 */
352 	cnt.v_swtch++;
353 	PCPU_SET(switchtime, new_switchtime);
354 	PCPU_SET(switchticks, ticks);
355 	CTR3(KTR_PROC, "mi_switch: old thread %p (pid %ld, %s)",
356 	    (void *)td, (long)p->p_pid, p->p_comm);
357 	if (td->td_proc->p_flag & P_SA)
358 		thread_switchout(td);
359 	sched_switch(td);
360 
361 	CTR3(KTR_PROC, "mi_switch: new thread %p (pid %ld, %s)",
362 	    (void *)td, (long)p->p_pid, p->p_comm);
363 
364 	/*
365 	 * If the last thread was exiting, finish cleaning it up.
366 	 */
367 	if ((td = PCPU_GET(deadthread))) {
368 		PCPU_SET(deadthread, NULL);
369 		thread_stash(td);
370 	}
371 }
372 
373 /*
374  * Change process state to be runnable,
375  * placing it on the run queue if it is in memory,
376  * and awakening the swapper if it isn't in memory.
377  */
378 void
379 setrunnable(struct thread *td)
380 {
381 	struct proc *p;
382 
383 	p = td->td_proc;
384 	mtx_assert(&sched_lock, MA_OWNED);
385 	switch (p->p_state) {
386 	case PRS_ZOMBIE:
387 		panic("setrunnable(1)");
388 	default:
389 		break;
390 	}
391 	switch (td->td_state) {
392 	case TDS_RUNNING:
393 	case TDS_RUNQ:
394 		return;
395 	case TDS_INHIBITED:
396 		/*
397 		 * If we are only inhibited because we are swapped out
398 		 * then arange to swap in this process. Otherwise just return.
399 		 */
400 		if (td->td_inhibitors != TDI_SWAPPED)
401 			return;
402 		/* XXX: intentional fall-through ? */
403 	case TDS_CAN_RUN:
404 		break;
405 	default:
406 		printf("state is 0x%x", td->td_state);
407 		panic("setrunnable(2)");
408 	}
409 	if ((p->p_sflag & PS_INMEM) == 0) {
410 		if ((p->p_sflag & PS_SWAPPINGIN) == 0) {
411 			p->p_sflag |= PS_SWAPINREQ;
412 			wakeup(&proc0);
413 		}
414 	} else
415 		sched_wakeup(td);
416 }
417 
418 /*
419  * Compute a tenex style load average of a quantity on
420  * 1, 5 and 15 minute intervals.
421  * XXXKSE   Needs complete rewrite when correct info is available.
422  * Completely Bogus.. only works with 1:1 (but compiles ok now :-)
423  */
424 static void
425 loadav(void *arg)
426 {
427 	int i, nrun;
428 	struct loadavg *avg;
429 
430 	nrun = sched_load();
431 	avg = &averunnable;
432 
433 	for (i = 0; i < 3; i++)
434 		avg->ldavg[i] = (cexp[i] * avg->ldavg[i] +
435 		    nrun * FSCALE * (FSCALE - cexp[i])) >> FSHIFT;
436 
437 	/*
438 	 * Schedule the next update to occur after 5 seconds, but add a
439 	 * random variation to avoid synchronisation with processes that
440 	 * run at regular intervals.
441 	 */
442 	callout_reset(&loadav_callout, hz * 4 + (int)(random() % (hz * 2 + 1)),
443 	    loadav, NULL);
444 }
445 
446 static void
447 lboltcb(void *arg)
448 {
449 	wakeup(&lbolt);
450 	callout_reset(&lbolt_callout, hz, lboltcb, NULL);
451 }
452 
453 /* ARGSUSED */
454 static void
455 synch_setup(dummy)
456 	void *dummy;
457 {
458 	callout_init(&loadav_callout, CALLOUT_MPSAFE);
459 	callout_init(&lbolt_callout, CALLOUT_MPSAFE);
460 
461 	/* Kick off timeout driven events by calling first time. */
462 	loadav(NULL);
463 	lboltcb(NULL);
464 }
465 
466 /*
467  * General purpose yield system call
468  */
469 int
470 yield(struct thread *td, struct yield_args *uap)
471 {
472 	struct ksegrp *kg;
473 
474 	kg = td->td_ksegrp;
475 	mtx_assert(&Giant, MA_NOTOWNED);
476 	mtx_lock_spin(&sched_lock);
477 	sched_prio(td, PRI_MAX_TIMESHARE);
478 	mi_switch(SW_VOL);
479 	mtx_unlock_spin(&sched_lock);
480 	td->td_retval[0] = 0;
481 	return (0);
482 }
483