1 /*- 2 * Copyright (c) 1982, 1986, 1990, 1991, 1993 3 * The Regents of the University of California. All rights reserved. 4 * (c) UNIX System Laboratories, Inc. 5 * All or some portions of this file are derived from material licensed 6 * to the University of California by American Telephone and Telegraph 7 * Co. or Unix System Laboratories, Inc. and are reproduced herein with 8 * the permission of UNIX System Laboratories, Inc. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 3. All advertising materials mentioning features or use of this software 19 * must display the following acknowledgement: 20 * This product includes software developed by the University of 21 * California, Berkeley and its contributors. 22 * 4. Neither the name of the University nor the names of its contributors 23 * may be used to endorse or promote products derived from this software 24 * without specific prior written permission. 25 * 26 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 28 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 29 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 30 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 36 * SUCH DAMAGE. 37 * 38 * @(#)kern_synch.c 8.9 (Berkeley) 5/19/95 39 * $FreeBSD$ 40 */ 41 42 #include "opt_ktrace.h" 43 44 #include <sys/param.h> 45 #include <sys/systm.h> 46 #include <sys/proc.h> 47 #include <sys/kernel.h> 48 #include <sys/signalvar.h> 49 #include <sys/resourcevar.h> 50 #include <sys/vmmeter.h> 51 #include <sys/sysctl.h> 52 #include <vm/vm.h> 53 #include <vm/vm_extern.h> 54 #ifdef KTRACE 55 #include <sys/uio.h> 56 #include <sys/ktrace.h> 57 #endif 58 59 #include <machine/cpu.h> 60 #ifdef SMP 61 #include <machine/smp.h> 62 #endif 63 64 static void sched_setup __P((void *dummy)); 65 SYSINIT(sched_setup, SI_SUB_KICK_SCHEDULER, SI_ORDER_FIRST, sched_setup, NULL) 66 67 u_char curpriority; 68 int hogticks; 69 int lbolt; 70 int sched_quantum; /* Roundrobin scheduling quantum in ticks. */ 71 72 static void endtsleep __P((void *)); 73 static void roundrobin __P((void *arg)); 74 static void schedcpu __P((void *arg)); 75 static void updatepri __P((struct proc *p)); 76 77 static int 78 sysctl_kern_quantum SYSCTL_HANDLER_ARGS 79 { 80 int error, new_val; 81 82 new_val = sched_quantum * tick; 83 error = sysctl_handle_int(oidp, &new_val, 0, req); 84 if (error != 0 || req->newptr == NULL) 85 return (error); 86 if (new_val < tick) 87 return (EINVAL); 88 sched_quantum = new_val / tick; 89 hogticks = 2 * sched_quantum; 90 return (0); 91 } 92 93 SYSCTL_PROC(_kern, OID_AUTO, quantum, CTLTYPE_INT|CTLFLAG_RW, 94 0, sizeof sched_quantum, sysctl_kern_quantum, "I", ""); 95 96 /* maybe_resched: Decide if you need to reschedule or not 97 * taking the priorities and schedulers into account. 98 */ 99 static void maybe_resched(struct proc *chk) 100 { 101 struct proc *p = curproc; /* XXX */ 102 103 /* 104 * Compare priorities if the new process is on the same scheduler, 105 * otherwise the one on the more realtimeish scheduler wins. 106 * 107 * XXX idle scheduler still broken because proccess stays on idle 108 * scheduler during waits (such as when getting FS locks). If a 109 * standard process becomes runaway cpu-bound, the system can lockup 110 * due to idle-scheduler processes in wakeup never getting any cpu. 111 */ 112 if (p == 0 || 113 (chk->p_priority < curpriority && RTP_PRIO_BASE(p->p_rtprio.type) == RTP_PRIO_BASE(chk->p_rtprio.type)) || 114 RTP_PRIO_BASE(chk->p_rtprio.type) < RTP_PRIO_BASE(p->p_rtprio.type) 115 ) { 116 need_resched(); 117 } 118 } 119 120 int 121 roundrobin_interval(void) 122 { 123 return (sched_quantum); 124 } 125 126 /* 127 * Force switch among equal priority processes every 100ms. 128 */ 129 /* ARGSUSED */ 130 static void 131 roundrobin(arg) 132 void *arg; 133 { 134 #ifndef SMP 135 struct proc *p = curproc; /* XXX */ 136 #endif 137 138 #ifdef SMP 139 need_resched(); 140 forward_roundrobin(); 141 #else 142 if (p == 0 || RTP_PRIO_NEED_RR(p->p_rtprio.type)) 143 need_resched(); 144 #endif 145 146 timeout(roundrobin, NULL, sched_quantum); 147 } 148 149 /* 150 * Constants for digital decay and forget: 151 * 90% of (p_estcpu) usage in 5 * loadav time 152 * 95% of (p_pctcpu) usage in 60 seconds (load insensitive) 153 * Note that, as ps(1) mentions, this can let percentages 154 * total over 100% (I've seen 137.9% for 3 processes). 155 * 156 * Note that schedclock() updates p_estcpu and p_cpticks asynchronously. 157 * 158 * We wish to decay away 90% of p_estcpu in (5 * loadavg) seconds. 159 * That is, the system wants to compute a value of decay such 160 * that the following for loop: 161 * for (i = 0; i < (5 * loadavg); i++) 162 * p_estcpu *= decay; 163 * will compute 164 * p_estcpu *= 0.1; 165 * for all values of loadavg: 166 * 167 * Mathematically this loop can be expressed by saying: 168 * decay ** (5 * loadavg) ~= .1 169 * 170 * The system computes decay as: 171 * decay = (2 * loadavg) / (2 * loadavg + 1) 172 * 173 * We wish to prove that the system's computation of decay 174 * will always fulfill the equation: 175 * decay ** (5 * loadavg) ~= .1 176 * 177 * If we compute b as: 178 * b = 2 * loadavg 179 * then 180 * decay = b / (b + 1) 181 * 182 * We now need to prove two things: 183 * 1) Given factor ** (5 * loadavg) ~= .1, prove factor == b/(b+1) 184 * 2) Given b/(b+1) ** power ~= .1, prove power == (5 * loadavg) 185 * 186 * Facts: 187 * For x close to zero, exp(x) =~ 1 + x, since 188 * exp(x) = 0! + x**1/1! + x**2/2! + ... . 189 * therefore exp(-1/b) =~ 1 - (1/b) = (b-1)/b. 190 * For x close to zero, ln(1+x) =~ x, since 191 * ln(1+x) = x - x**2/2 + x**3/3 - ... -1 < x < 1 192 * therefore ln(b/(b+1)) = ln(1 - 1/(b+1)) =~ -1/(b+1). 193 * ln(.1) =~ -2.30 194 * 195 * Proof of (1): 196 * Solve (factor)**(power) =~ .1 given power (5*loadav): 197 * solving for factor, 198 * ln(factor) =~ (-2.30/5*loadav), or 199 * factor =~ exp(-1/((5/2.30)*loadav)) =~ exp(-1/(2*loadav)) = 200 * exp(-1/b) =~ (b-1)/b =~ b/(b+1). QED 201 * 202 * Proof of (2): 203 * Solve (factor)**(power) =~ .1 given factor == (b/(b+1)): 204 * solving for power, 205 * power*ln(b/(b+1)) =~ -2.30, or 206 * power =~ 2.3 * (b + 1) = 4.6*loadav + 2.3 =~ 5*loadav. QED 207 * 208 * Actual power values for the implemented algorithm are as follows: 209 * loadav: 1 2 3 4 210 * power: 5.68 10.32 14.94 19.55 211 */ 212 213 /* calculations for digital decay to forget 90% of usage in 5*loadav sec */ 214 #define loadfactor(loadav) (2 * (loadav)) 215 #define decay_cpu(loadfac, cpu) (((loadfac) * (cpu)) / ((loadfac) + FSCALE)) 216 217 /* decay 95% of `p_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */ 218 static fixpt_t ccpu = 0.95122942450071400909 * FSCALE; /* exp(-1/20) */ 219 SYSCTL_INT(_kern, OID_AUTO, ccpu, CTLFLAG_RD, &ccpu, 0, ""); 220 221 /* kernel uses `FSCALE', userland (SHOULD) use kern.fscale */ 222 static int fscale __unused = FSCALE; 223 SYSCTL_INT(_kern, OID_AUTO, fscale, CTLFLAG_RD, 0, FSCALE, ""); 224 225 /* 226 * If `ccpu' is not equal to `exp(-1/20)' and you still want to use the 227 * faster/more-accurate formula, you'll have to estimate CCPU_SHIFT below 228 * and possibly adjust FSHIFT in "param.h" so that (FSHIFT >= CCPU_SHIFT). 229 * 230 * To estimate CCPU_SHIFT for exp(-1/20), the following formula was used: 231 * 1 - exp(-1/20) ~= 0.0487 ~= 0.0488 == 1 (fixed pt, *11* bits). 232 * 233 * If you don't want to bother with the faster/more-accurate formula, you 234 * can set CCPU_SHIFT to (FSHIFT + 1) which will use a slower/less-accurate 235 * (more general) method of calculating the %age of CPU used by a process. 236 */ 237 #define CCPU_SHIFT 11 238 239 /* 240 * Recompute process priorities, every hz ticks. 241 */ 242 /* ARGSUSED */ 243 static void 244 schedcpu(arg) 245 void *arg; 246 { 247 register fixpt_t loadfac = loadfactor(averunnable.ldavg[0]); 248 register struct proc *p; 249 register int realstathz, s; 250 251 realstathz = stathz ? stathz : hz; 252 LIST_FOREACH(p, &allproc, p_list) { 253 /* 254 * Increment time in/out of memory and sleep time 255 * (if sleeping). We ignore overflow; with 16-bit int's 256 * (remember them?) overflow takes 45 days. 257 */ 258 p->p_swtime++; 259 if (p->p_stat == SSLEEP || p->p_stat == SSTOP) 260 p->p_slptime++; 261 p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT; 262 /* 263 * If the process has slept the entire second, 264 * stop recalculating its priority until it wakes up. 265 */ 266 if (p->p_slptime > 1) 267 continue; 268 s = splhigh(); /* prevent state changes and protect run queue */ 269 /* 270 * p_pctcpu is only for ps. 271 */ 272 #if (FSHIFT >= CCPU_SHIFT) 273 p->p_pctcpu += (realstathz == 100)? 274 ((fixpt_t) p->p_cpticks) << (FSHIFT - CCPU_SHIFT): 275 100 * (((fixpt_t) p->p_cpticks) 276 << (FSHIFT - CCPU_SHIFT)) / realstathz; 277 #else 278 p->p_pctcpu += ((FSCALE - ccpu) * 279 (p->p_cpticks * FSCALE / realstathz)) >> FSHIFT; 280 #endif 281 p->p_cpticks = 0; 282 p->p_estcpu = decay_cpu(loadfac, p->p_estcpu); 283 resetpriority(p); 284 if (p->p_priority >= PUSER) { 285 if ((p != curproc) && 286 #ifdef SMP 287 p->p_oncpu == 0xff && /* idle */ 288 #endif 289 p->p_stat == SRUN && 290 (p->p_flag & P_INMEM) && 291 (p->p_priority / PPQ) != (p->p_usrpri / PPQ)) { 292 remrunqueue(p); 293 p->p_priority = p->p_usrpri; 294 setrunqueue(p); 295 } else 296 p->p_priority = p->p_usrpri; 297 } 298 splx(s); 299 } 300 vmmeter(); 301 wakeup((caddr_t)&lbolt); 302 timeout(schedcpu, (void *)0, hz); 303 } 304 305 /* 306 * Recalculate the priority of a process after it has slept for a while. 307 * For all load averages >= 1 and max p_estcpu of 255, sleeping for at 308 * least six times the loadfactor will decay p_estcpu to zero. 309 */ 310 static void 311 updatepri(p) 312 register struct proc *p; 313 { 314 register unsigned int newcpu = p->p_estcpu; 315 register fixpt_t loadfac = loadfactor(averunnable.ldavg[0]); 316 317 if (p->p_slptime > 5 * loadfac) 318 p->p_estcpu = 0; 319 else { 320 p->p_slptime--; /* the first time was done in schedcpu */ 321 while (newcpu && --p->p_slptime) 322 newcpu = decay_cpu(loadfac, newcpu); 323 p->p_estcpu = newcpu; 324 } 325 resetpriority(p); 326 } 327 328 /* 329 * We're only looking at 7 bits of the address; everything is 330 * aligned to 4, lots of things are aligned to greater powers 331 * of 2. Shift right by 8, i.e. drop the bottom 256 worth. 332 */ 333 #define TABLESIZE 128 334 static TAILQ_HEAD(slpquehead, proc) slpque[TABLESIZE]; 335 #define LOOKUP(x) (((intptr_t)(x) >> 8) & (TABLESIZE - 1)) 336 337 /* 338 * During autoconfiguration or after a panic, a sleep will simply 339 * lower the priority briefly to allow interrupts, then return. 340 * The priority to be used (safepri) is machine-dependent, thus this 341 * value is initialized and maintained in the machine-dependent layers. 342 * This priority will typically be 0, or the lowest priority 343 * that is safe for use on the interrupt stack; it can be made 344 * higher to block network software interrupts after panics. 345 */ 346 int safepri; 347 348 void 349 sleepinit(void) 350 { 351 int i; 352 353 sched_quantum = hz/10; 354 hogticks = 2 * sched_quantum; 355 for (i = 0; i < TABLESIZE; i++) 356 TAILQ_INIT(&slpque[i]); 357 } 358 359 /* 360 * General sleep call. Suspends the current process until a wakeup is 361 * performed on the specified identifier. The process will then be made 362 * runnable with the specified priority. Sleeps at most timo/hz seconds 363 * (0 means no timeout). If pri includes PCATCH flag, signals are checked 364 * before and after sleeping, else signals are not checked. Returns 0 if 365 * awakened, EWOULDBLOCK if the timeout expires. If PCATCH is set and a 366 * signal needs to be delivered, ERESTART is returned if the current system 367 * call should be restarted if possible, and EINTR is returned if the system 368 * call should be interrupted by the signal (return EINTR). 369 */ 370 int 371 tsleep(ident, priority, wmesg, timo) 372 void *ident; 373 int priority, timo; 374 const char *wmesg; 375 { 376 struct proc *p = curproc; 377 int s, sig, catch = priority & PCATCH; 378 struct callout_handle thandle; 379 380 #ifdef KTRACE 381 if (p && KTRPOINT(p, KTR_CSW)) 382 ktrcsw(p->p_tracep, 1, 0); 383 #endif 384 s = splhigh(); 385 if (cold || panicstr) { 386 /* 387 * After a panic, or during autoconfiguration, 388 * just give interrupts a chance, then just return; 389 * don't run any other procs or panic below, 390 * in case this is the idle process and already asleep. 391 */ 392 splx(safepri); 393 splx(s); 394 return (0); 395 } 396 KASSERT(p != NULL, ("tsleep1")); 397 KASSERT(ident != NULL && p->p_stat == SRUN, ("tsleep")); 398 /* 399 * Process may be sitting on a slpque if asleep() was called, remove 400 * it before re-adding. 401 */ 402 if (p->p_wchan != NULL) 403 unsleep(p); 404 405 p->p_wchan = ident; 406 p->p_wmesg = wmesg; 407 p->p_slptime = 0; 408 p->p_priority = priority & PRIMASK; 409 TAILQ_INSERT_TAIL(&slpque[LOOKUP(ident)], p, p_procq); 410 if (timo) 411 thandle = timeout(endtsleep, (void *)p, timo); 412 /* 413 * We put ourselves on the sleep queue and start our timeout 414 * before calling CURSIG, as we could stop there, and a wakeup 415 * or a SIGCONT (or both) could occur while we were stopped. 416 * A SIGCONT would cause us to be marked as SSLEEP 417 * without resuming us, thus we must be ready for sleep 418 * when CURSIG is called. If the wakeup happens while we're 419 * stopped, p->p_wchan will be 0 upon return from CURSIG. 420 */ 421 if (catch) { 422 p->p_flag |= P_SINTR; 423 if ((sig = CURSIG(p))) { 424 if (p->p_wchan) 425 unsleep(p); 426 p->p_stat = SRUN; 427 goto resume; 428 } 429 if (p->p_wchan == 0) { 430 catch = 0; 431 goto resume; 432 } 433 } else 434 sig = 0; 435 p->p_stat = SSLEEP; 436 p->p_stats->p_ru.ru_nvcsw++; 437 mi_switch(); 438 resume: 439 curpriority = p->p_usrpri; 440 splx(s); 441 p->p_flag &= ~P_SINTR; 442 if (p->p_flag & P_TIMEOUT) { 443 p->p_flag &= ~P_TIMEOUT; 444 if (sig == 0) { 445 #ifdef KTRACE 446 if (KTRPOINT(p, KTR_CSW)) 447 ktrcsw(p->p_tracep, 0, 0); 448 #endif 449 return (EWOULDBLOCK); 450 } 451 } else if (timo) 452 untimeout(endtsleep, (void *)p, thandle); 453 if (catch && (sig != 0 || (sig = CURSIG(p)))) { 454 #ifdef KTRACE 455 if (KTRPOINT(p, KTR_CSW)) 456 ktrcsw(p->p_tracep, 0, 0); 457 #endif 458 if (SIGISMEMBER(p->p_sigacts->ps_sigintr, sig)) 459 return (EINTR); 460 return (ERESTART); 461 } 462 #ifdef KTRACE 463 if (KTRPOINT(p, KTR_CSW)) 464 ktrcsw(p->p_tracep, 0, 0); 465 #endif 466 return (0); 467 } 468 469 /* 470 * asleep() - async sleep call. Place process on wait queue and return 471 * immediately without blocking. The process stays runnable until await() 472 * is called. If ident is NULL, remove process from wait queue if it is still 473 * on one. 474 * 475 * Only the most recent sleep condition is effective when making successive 476 * calls to asleep() or when calling tsleep(). 477 * 478 * The timeout, if any, is not initiated until await() is called. The sleep 479 * priority, signal, and timeout is specified in the asleep() call but may be 480 * overriden in the await() call. 481 * 482 * <<<<<<<< EXPERIMENTAL, UNTESTED >>>>>>>>>> 483 */ 484 485 int 486 asleep(void *ident, int priority, const char *wmesg, int timo) 487 { 488 struct proc *p = curproc; 489 int s; 490 491 /* 492 * splhigh() while manipulating sleep structures and slpque. 493 * 494 * Remove preexisting wait condition (if any) and place process 495 * on appropriate slpque, but do not put process to sleep. 496 */ 497 498 s = splhigh(); 499 500 if (p->p_wchan != NULL) 501 unsleep(p); 502 503 if (ident) { 504 p->p_wchan = ident; 505 p->p_wmesg = wmesg; 506 p->p_slptime = 0; 507 p->p_asleep.as_priority = priority; 508 p->p_asleep.as_timo = timo; 509 TAILQ_INSERT_TAIL(&slpque[LOOKUP(ident)], p, p_procq); 510 } 511 512 splx(s); 513 514 return(0); 515 } 516 517 /* 518 * await() - wait for async condition to occur. The process blocks until 519 * wakeup() is called on the most recent asleep() address. If wakeup is called 520 * priority to await(), await() winds up being a NOP. 521 * 522 * If await() is called more then once (without an intervening asleep() call), 523 * await() is still effectively a NOP but it calls mi_switch() to give other 524 * processes some cpu before returning. The process is left runnable. 525 * 526 * <<<<<<<< EXPERIMENTAL, UNTESTED >>>>>>>>>> 527 */ 528 529 int 530 await(int priority, int timo) 531 { 532 struct proc *p = curproc; 533 int s; 534 535 s = splhigh(); 536 537 if (p->p_wchan != NULL) { 538 struct callout_handle thandle; 539 int sig; 540 int catch; 541 542 /* 543 * The call to await() can override defaults specified in 544 * the original asleep(). 545 */ 546 if (priority < 0) 547 priority = p->p_asleep.as_priority; 548 if (timo < 0) 549 timo = p->p_asleep.as_timo; 550 551 /* 552 * Install timeout 553 */ 554 555 if (timo) 556 thandle = timeout(endtsleep, (void *)p, timo); 557 558 sig = 0; 559 catch = priority & PCATCH; 560 561 if (catch) { 562 p->p_flag |= P_SINTR; 563 if ((sig = CURSIG(p))) { 564 if (p->p_wchan) 565 unsleep(p); 566 p->p_stat = SRUN; 567 goto resume; 568 } 569 if (p->p_wchan == NULL) { 570 catch = 0; 571 goto resume; 572 } 573 } 574 p->p_stat = SSLEEP; 575 p->p_stats->p_ru.ru_nvcsw++; 576 mi_switch(); 577 resume: 578 curpriority = p->p_usrpri; 579 580 splx(s); 581 p->p_flag &= ~P_SINTR; 582 if (p->p_flag & P_TIMEOUT) { 583 p->p_flag &= ~P_TIMEOUT; 584 if (sig == 0) { 585 #ifdef KTRACE 586 if (KTRPOINT(p, KTR_CSW)) 587 ktrcsw(p->p_tracep, 0, 0); 588 #endif 589 return (EWOULDBLOCK); 590 } 591 } else if (timo) 592 untimeout(endtsleep, (void *)p, thandle); 593 if (catch && (sig != 0 || (sig = CURSIG(p)))) { 594 #ifdef KTRACE 595 if (KTRPOINT(p, KTR_CSW)) 596 ktrcsw(p->p_tracep, 0, 0); 597 #endif 598 if (SIGISMEMBER(p->p_sigacts->ps_sigintr, sig)) 599 return (EINTR); 600 return (ERESTART); 601 } 602 #ifdef KTRACE 603 if (KTRPOINT(p, KTR_CSW)) 604 ktrcsw(p->p_tracep, 0, 0); 605 #endif 606 } else { 607 /* 608 * If as_priority is 0, await() has been called without an 609 * intervening asleep(). We are still effectively a NOP, 610 * but we call mi_switch() for safety. 611 */ 612 613 if (p->p_asleep.as_priority == 0) { 614 p->p_stats->p_ru.ru_nvcsw++; 615 mi_switch(); 616 } 617 splx(s); 618 } 619 620 /* 621 * clear p_asleep.as_priority as an indication that await() has been 622 * called. If await() is called again without an intervening asleep(), 623 * await() is still effectively a NOP but the above mi_switch() code 624 * is triggered as a safety. 625 */ 626 p->p_asleep.as_priority = 0; 627 628 return (0); 629 } 630 631 /* 632 * Implement timeout for tsleep or asleep()/await() 633 * 634 * If process hasn't been awakened (wchan non-zero), 635 * set timeout flag and undo the sleep. If proc 636 * is stopped, just unsleep so it will remain stopped. 637 */ 638 static void 639 endtsleep(arg) 640 void *arg; 641 { 642 register struct proc *p; 643 int s; 644 645 p = (struct proc *)arg; 646 s = splhigh(); 647 if (p->p_wchan) { 648 if (p->p_stat == SSLEEP) 649 setrunnable(p); 650 else 651 unsleep(p); 652 p->p_flag |= P_TIMEOUT; 653 } 654 splx(s); 655 } 656 657 /* 658 * Remove a process from its wait queue 659 */ 660 void 661 unsleep(p) 662 register struct proc *p; 663 { 664 int s; 665 666 s = splhigh(); 667 if (p->p_wchan) { 668 TAILQ_REMOVE(&slpque[LOOKUP(p->p_wchan)], p, p_procq); 669 p->p_wchan = 0; 670 } 671 splx(s); 672 } 673 674 /* 675 * Make all processes sleeping on the specified identifier runnable. 676 */ 677 void 678 wakeup(ident) 679 register void *ident; 680 { 681 register struct slpquehead *qp; 682 register struct proc *p; 683 int s; 684 685 s = splhigh(); 686 qp = &slpque[LOOKUP(ident)]; 687 restart: 688 TAILQ_FOREACH(p, qp, p_procq) { 689 if (p->p_wchan == ident) { 690 TAILQ_REMOVE(qp, p, p_procq); 691 p->p_wchan = 0; 692 if (p->p_stat == SSLEEP) { 693 /* OPTIMIZED EXPANSION OF setrunnable(p); */ 694 if (p->p_slptime > 1) 695 updatepri(p); 696 p->p_slptime = 0; 697 p->p_stat = SRUN; 698 if (p->p_flag & P_INMEM) { 699 setrunqueue(p); 700 maybe_resched(p); 701 } else { 702 p->p_flag |= P_SWAPINREQ; 703 wakeup((caddr_t)&proc0); 704 } 705 /* END INLINE EXPANSION */ 706 goto restart; 707 } 708 } 709 } 710 splx(s); 711 } 712 713 /* 714 * Make a process sleeping on the specified identifier runnable. 715 * May wake more than one process if a target prcoess is currently 716 * swapped out. 717 */ 718 void 719 wakeup_one(ident) 720 register void *ident; 721 { 722 register struct slpquehead *qp; 723 register struct proc *p; 724 int s; 725 726 s = splhigh(); 727 qp = &slpque[LOOKUP(ident)]; 728 729 TAILQ_FOREACH(p, qp, p_procq) { 730 if (p->p_wchan == ident) { 731 TAILQ_REMOVE(qp, p, p_procq); 732 p->p_wchan = 0; 733 if (p->p_stat == SSLEEP) { 734 /* OPTIMIZED EXPANSION OF setrunnable(p); */ 735 if (p->p_slptime > 1) 736 updatepri(p); 737 p->p_slptime = 0; 738 p->p_stat = SRUN; 739 if (p->p_flag & P_INMEM) { 740 setrunqueue(p); 741 maybe_resched(p); 742 break; 743 } else { 744 p->p_flag |= P_SWAPINREQ; 745 wakeup((caddr_t)&proc0); 746 } 747 /* END INLINE EXPANSION */ 748 } 749 } 750 } 751 splx(s); 752 } 753 754 /* 755 * The machine independent parts of mi_switch(). 756 * Must be called at splstatclock() or higher. 757 */ 758 void 759 mi_switch() 760 { 761 struct timeval new_switchtime; 762 register struct proc *p = curproc; /* XXX */ 763 register struct rlimit *rlim; 764 int x; 765 766 /* 767 * XXX this spl is almost unnecessary. It is partly to allow for 768 * sloppy callers that don't do it (issignal() via CURSIG() is the 769 * main offender). It is partly to work around a bug in the i386 770 * cpu_switch() (the ipl is not preserved). We ran for years 771 * without it. I think there was only a interrupt latency problem. 772 * The main caller, tsleep(), does an splx() a couple of instructions 773 * after calling here. The buggy caller, issignal(), usually calls 774 * here at spl0() and sometimes returns at splhigh(). The process 775 * then runs for a little too long at splhigh(). The ipl gets fixed 776 * when the process returns to user mode (or earlier). 777 * 778 * It would probably be better to always call here at spl0(). Callers 779 * are prepared to give up control to another process, so they must 780 * be prepared to be interrupted. The clock stuff here may not 781 * actually need splstatclock(). 782 */ 783 x = splstatclock(); 784 785 #ifdef SIMPLELOCK_DEBUG 786 if (p->p_simple_locks) 787 printf("sleep: holding simple lock\n"); 788 #endif 789 /* 790 * Compute the amount of time during which the current 791 * process was running, and add that to its total so far. 792 */ 793 microuptime(&new_switchtime); 794 if (timevalcmp(&new_switchtime, &switchtime, <)) { 795 printf("microuptime() went backwards (%ld.%06ld -> %ld,%06ld)\n", 796 switchtime.tv_sec, switchtime.tv_usec, 797 new_switchtime.tv_sec, new_switchtime.tv_usec); 798 new_switchtime = switchtime; 799 } else { 800 p->p_runtime += (new_switchtime.tv_usec - switchtime.tv_usec) + 801 (new_switchtime.tv_sec - switchtime.tv_sec) * (int64_t)1000000; 802 } 803 804 /* 805 * Check if the process exceeds its cpu resource allocation. 806 * If over max, kill it. 807 */ 808 if (p->p_stat != SZOMB && p->p_limit->p_cpulimit != RLIM_INFINITY && 809 p->p_runtime > p->p_limit->p_cpulimit) { 810 rlim = &p->p_rlimit[RLIMIT_CPU]; 811 if (p->p_runtime / (rlim_t)1000000 >= rlim->rlim_max) { 812 killproc(p, "exceeded maximum CPU limit"); 813 } else { 814 psignal(p, SIGXCPU); 815 if (rlim->rlim_cur < rlim->rlim_max) { 816 /* XXX: we should make a private copy */ 817 rlim->rlim_cur += 5; 818 } 819 } 820 } 821 822 /* 823 * Pick a new current process and record its start time. 824 */ 825 cnt.v_swtch++; 826 switchtime = new_switchtime; 827 cpu_switch(p); 828 if (switchtime.tv_sec == 0) 829 microuptime(&switchtime); 830 switchticks = ticks; 831 832 splx(x); 833 } 834 835 /* 836 * Change process state to be runnable, 837 * placing it on the run queue if it is in memory, 838 * and awakening the swapper if it isn't in memory. 839 */ 840 void 841 setrunnable(p) 842 register struct proc *p; 843 { 844 register int s; 845 846 s = splhigh(); 847 switch (p->p_stat) { 848 case 0: 849 case SRUN: 850 case SZOMB: 851 default: 852 panic("setrunnable"); 853 case SSTOP: 854 case SSLEEP: 855 unsleep(p); /* e.g. when sending signals */ 856 break; 857 858 case SIDL: 859 break; 860 } 861 p->p_stat = SRUN; 862 if (p->p_flag & P_INMEM) 863 setrunqueue(p); 864 splx(s); 865 if (p->p_slptime > 1) 866 updatepri(p); 867 p->p_slptime = 0; 868 if ((p->p_flag & P_INMEM) == 0) { 869 p->p_flag |= P_SWAPINREQ; 870 wakeup((caddr_t)&proc0); 871 } 872 else 873 maybe_resched(p); 874 } 875 876 /* 877 * Compute the priority of a process when running in user mode. 878 * Arrange to reschedule if the resulting priority is better 879 * than that of the current process. 880 */ 881 void 882 resetpriority(p) 883 register struct proc *p; 884 { 885 register unsigned int newpriority; 886 887 if (p->p_rtprio.type == RTP_PRIO_NORMAL) { 888 newpriority = PUSER + p->p_estcpu / INVERSE_ESTCPU_WEIGHT + 889 NICE_WEIGHT * p->p_nice; 890 newpriority = min(newpriority, MAXPRI); 891 p->p_usrpri = newpriority; 892 } 893 maybe_resched(p); 894 } 895 896 /* ARGSUSED */ 897 static void 898 sched_setup(dummy) 899 void *dummy; 900 { 901 /* Kick off timeout driven events by calling first time. */ 902 roundrobin(NULL); 903 schedcpu(NULL); 904 } 905 906 /* 907 * We adjust the priority of the current process. The priority of 908 * a process gets worse as it accumulates CPU time. The cpu usage 909 * estimator (p_estcpu) is increased here. resetpriority() will 910 * compute a different priority each time p_estcpu increases by 911 * INVERSE_ESTCPU_WEIGHT 912 * (until MAXPRI is reached). The cpu usage estimator ramps up 913 * quite quickly when the process is running (linearly), and decays 914 * away exponentially, at a rate which is proportionally slower when 915 * the system is busy. The basic principle is that the system will 916 * 90% forget that the process used a lot of CPU time in 5 * loadav 917 * seconds. This causes the system to favor processes which haven't 918 * run much recently, and to round-robin among other processes. 919 */ 920 void 921 schedclock(p) 922 struct proc *p; 923 { 924 925 p->p_cpticks++; 926 p->p_estcpu = ESTCPULIM(p->p_estcpu + 1); 927 if ((p->p_estcpu % INVERSE_ESTCPU_WEIGHT) == 0) { 928 resetpriority(p); 929 if (p->p_priority >= PUSER) 930 p->p_priority = p->p_usrpri; 931 } 932 } 933