xref: /freebsd/sys/kern/kern_synch.c (revision d93a896ef95946b0bf1219866fcb324b78543444)
1 /*-
2  * Copyright (c) 1982, 1986, 1990, 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  * (c) UNIX System Laboratories, Inc.
5  * All or some portions of this file are derived from material licensed
6  * to the University of California by American Telephone and Telegraph
7  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8  * the permission of UNIX System Laboratories, Inc.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  *	@(#)kern_synch.c	8.9 (Berkeley) 5/19/95
35  */
36 
37 #include <sys/cdefs.h>
38 __FBSDID("$FreeBSD$");
39 
40 #include "opt_ktrace.h"
41 #include "opt_sched.h"
42 
43 #include <sys/param.h>
44 #include <sys/systm.h>
45 #include <sys/condvar.h>
46 #include <sys/kdb.h>
47 #include <sys/kernel.h>
48 #include <sys/ktr.h>
49 #include <sys/lock.h>
50 #include <sys/mutex.h>
51 #include <sys/proc.h>
52 #include <sys/resourcevar.h>
53 #include <sys/sched.h>
54 #include <sys/sdt.h>
55 #include <sys/signalvar.h>
56 #include <sys/sleepqueue.h>
57 #include <sys/smp.h>
58 #include <sys/sx.h>
59 #include <sys/sysctl.h>
60 #include <sys/sysproto.h>
61 #include <sys/vmmeter.h>
62 #ifdef KTRACE
63 #include <sys/uio.h>
64 #include <sys/ktrace.h>
65 #endif
66 
67 #include <machine/cpu.h>
68 
69 static void synch_setup(void *dummy);
70 SYSINIT(synch_setup, SI_SUB_KICK_SCHEDULER, SI_ORDER_FIRST, synch_setup,
71     NULL);
72 
73 int	hogticks;
74 static uint8_t pause_wchan[MAXCPU];
75 
76 static struct callout loadav_callout;
77 
78 struct loadavg averunnable =
79 	{ {0, 0, 0}, FSCALE };	/* load average, of runnable procs */
80 /*
81  * Constants for averages over 1, 5, and 15 minutes
82  * when sampling at 5 second intervals.
83  */
84 static fixpt_t cexp[3] = {
85 	0.9200444146293232 * FSCALE,	/* exp(-1/12) */
86 	0.9834714538216174 * FSCALE,	/* exp(-1/60) */
87 	0.9944598480048967 * FSCALE,	/* exp(-1/180) */
88 };
89 
90 /* kernel uses `FSCALE', userland (SHOULD) use kern.fscale */
91 SYSCTL_INT(_kern, OID_AUTO, fscale, CTLFLAG_RD, SYSCTL_NULL_INT_PTR, FSCALE, "");
92 
93 static void	loadav(void *arg);
94 
95 SDT_PROVIDER_DECLARE(sched);
96 SDT_PROBE_DEFINE(sched, , , preempt);
97 
98 static void
99 sleepinit(void *unused)
100 {
101 
102 	hogticks = (hz / 10) * 2;	/* Default only. */
103 	init_sleepqueues();
104 }
105 
106 /*
107  * vmem tries to lock the sleepq mutexes when free'ing kva, so make sure
108  * it is available.
109  */
110 SYSINIT(sleepinit, SI_SUB_KMEM, SI_ORDER_ANY, sleepinit, 0);
111 
112 /*
113  * General sleep call.  Suspends the current thread until a wakeup is
114  * performed on the specified identifier.  The thread will then be made
115  * runnable with the specified priority.  Sleeps at most sbt units of time
116  * (0 means no timeout).  If pri includes the PCATCH flag, let signals
117  * interrupt the sleep, otherwise ignore them while sleeping.  Returns 0 if
118  * awakened, EWOULDBLOCK if the timeout expires.  If PCATCH is set and a
119  * signal becomes pending, ERESTART is returned if the current system
120  * call should be restarted if possible, and EINTR is returned if the system
121  * call should be interrupted by the signal (return EINTR).
122  *
123  * The lock argument is unlocked before the caller is suspended, and
124  * re-locked before _sleep() returns.  If priority includes the PDROP
125  * flag the lock is not re-locked before returning.
126  */
127 int
128 _sleep(void *ident, struct lock_object *lock, int priority,
129     const char *wmesg, sbintime_t sbt, sbintime_t pr, int flags)
130 {
131 	struct thread *td;
132 	struct proc *p;
133 	struct lock_class *class;
134 	uintptr_t lock_state;
135 	int catch, pri, rval, sleepq_flags;
136 	WITNESS_SAVE_DECL(lock_witness);
137 
138 	td = curthread;
139 	p = td->td_proc;
140 #ifdef KTRACE
141 	if (KTRPOINT(td, KTR_CSW))
142 		ktrcsw(1, 0, wmesg);
143 #endif
144 	WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, lock,
145 	    "Sleeping on \"%s\"", wmesg);
146 	KASSERT(sbt != 0 || mtx_owned(&Giant) || lock != NULL,
147 	    ("sleeping without a lock"));
148 	KASSERT(ident != NULL, ("_sleep: NULL ident"));
149 	KASSERT(TD_IS_RUNNING(td), ("_sleep: curthread not running"));
150 	if (priority & PDROP)
151 		KASSERT(lock != NULL && lock != &Giant.lock_object,
152 		    ("PDROP requires a non-Giant lock"));
153 	if (lock != NULL)
154 		class = LOCK_CLASS(lock);
155 	else
156 		class = NULL;
157 
158 	if (SCHEDULER_STOPPED_TD(td)) {
159 		if (lock != NULL && priority & PDROP)
160 			class->lc_unlock(lock);
161 		return (0);
162 	}
163 	catch = priority & PCATCH;
164 	pri = priority & PRIMASK;
165 
166 	KASSERT(!TD_ON_SLEEPQ(td), ("recursive sleep"));
167 
168 	if ((uint8_t *)ident >= &pause_wchan[0] &&
169 	    (uint8_t *)ident <= &pause_wchan[MAXCPU - 1])
170 		sleepq_flags = SLEEPQ_PAUSE;
171 	else
172 		sleepq_flags = SLEEPQ_SLEEP;
173 	if (catch)
174 		sleepq_flags |= SLEEPQ_INTERRUPTIBLE;
175 
176 	sleepq_lock(ident);
177 	CTR5(KTR_PROC, "sleep: thread %ld (pid %ld, %s) on %s (%p)",
178 	    td->td_tid, p->p_pid, td->td_name, wmesg, ident);
179 
180 	if (lock == &Giant.lock_object)
181 		mtx_assert(&Giant, MA_OWNED);
182 	DROP_GIANT();
183 	if (lock != NULL && lock != &Giant.lock_object &&
184 	    !(class->lc_flags & LC_SLEEPABLE)) {
185 		WITNESS_SAVE(lock, lock_witness);
186 		lock_state = class->lc_unlock(lock);
187 	} else
188 		/* GCC needs to follow the Yellow Brick Road */
189 		lock_state = -1;
190 
191 	/*
192 	 * We put ourselves on the sleep queue and start our timeout
193 	 * before calling thread_suspend_check, as we could stop there,
194 	 * and a wakeup or a SIGCONT (or both) could occur while we were
195 	 * stopped without resuming us.  Thus, we must be ready for sleep
196 	 * when cursig() is called.  If the wakeup happens while we're
197 	 * stopped, then td will no longer be on a sleep queue upon
198 	 * return from cursig().
199 	 */
200 	sleepq_add(ident, lock, wmesg, sleepq_flags, 0);
201 	if (sbt != 0)
202 		sleepq_set_timeout_sbt(ident, sbt, pr, flags);
203 	if (lock != NULL && class->lc_flags & LC_SLEEPABLE) {
204 		sleepq_release(ident);
205 		WITNESS_SAVE(lock, lock_witness);
206 		lock_state = class->lc_unlock(lock);
207 		sleepq_lock(ident);
208 	}
209 	if (sbt != 0 && catch)
210 		rval = sleepq_timedwait_sig(ident, pri);
211 	else if (sbt != 0)
212 		rval = sleepq_timedwait(ident, pri);
213 	else if (catch)
214 		rval = sleepq_wait_sig(ident, pri);
215 	else {
216 		sleepq_wait(ident, pri);
217 		rval = 0;
218 	}
219 #ifdef KTRACE
220 	if (KTRPOINT(td, KTR_CSW))
221 		ktrcsw(0, 0, wmesg);
222 #endif
223 	PICKUP_GIANT();
224 	if (lock != NULL && lock != &Giant.lock_object && !(priority & PDROP)) {
225 		class->lc_lock(lock, lock_state);
226 		WITNESS_RESTORE(lock, lock_witness);
227 	}
228 	return (rval);
229 }
230 
231 int
232 msleep_spin_sbt(void *ident, struct mtx *mtx, const char *wmesg,
233     sbintime_t sbt, sbintime_t pr, int flags)
234 {
235 	struct thread *td;
236 	struct proc *p;
237 	int rval;
238 	WITNESS_SAVE_DECL(mtx);
239 
240 	td = curthread;
241 	p = td->td_proc;
242 	KASSERT(mtx != NULL, ("sleeping without a mutex"));
243 	KASSERT(ident != NULL, ("msleep_spin_sbt: NULL ident"));
244 	KASSERT(TD_IS_RUNNING(td), ("msleep_spin_sbt: curthread not running"));
245 
246 	if (SCHEDULER_STOPPED_TD(td))
247 		return (0);
248 
249 	sleepq_lock(ident);
250 	CTR5(KTR_PROC, "msleep_spin: thread %ld (pid %ld, %s) on %s (%p)",
251 	    td->td_tid, p->p_pid, td->td_name, wmesg, ident);
252 
253 	DROP_GIANT();
254 	mtx_assert(mtx, MA_OWNED | MA_NOTRECURSED);
255 	WITNESS_SAVE(&mtx->lock_object, mtx);
256 	mtx_unlock_spin(mtx);
257 
258 	/*
259 	 * We put ourselves on the sleep queue and start our timeout.
260 	 */
261 	sleepq_add(ident, &mtx->lock_object, wmesg, SLEEPQ_SLEEP, 0);
262 	if (sbt != 0)
263 		sleepq_set_timeout_sbt(ident, sbt, pr, flags);
264 
265 	/*
266 	 * Can't call ktrace with any spin locks held so it can lock the
267 	 * ktrace_mtx lock, and WITNESS_WARN considers it an error to hold
268 	 * any spin lock.  Thus, we have to drop the sleepq spin lock while
269 	 * we handle those requests.  This is safe since we have placed our
270 	 * thread on the sleep queue already.
271 	 */
272 #ifdef KTRACE
273 	if (KTRPOINT(td, KTR_CSW)) {
274 		sleepq_release(ident);
275 		ktrcsw(1, 0, wmesg);
276 		sleepq_lock(ident);
277 	}
278 #endif
279 #ifdef WITNESS
280 	sleepq_release(ident);
281 	WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, "Sleeping on \"%s\"",
282 	    wmesg);
283 	sleepq_lock(ident);
284 #endif
285 	if (sbt != 0)
286 		rval = sleepq_timedwait(ident, 0);
287 	else {
288 		sleepq_wait(ident, 0);
289 		rval = 0;
290 	}
291 #ifdef KTRACE
292 	if (KTRPOINT(td, KTR_CSW))
293 		ktrcsw(0, 0, wmesg);
294 #endif
295 	PICKUP_GIANT();
296 	mtx_lock_spin(mtx);
297 	WITNESS_RESTORE(&mtx->lock_object, mtx);
298 	return (rval);
299 }
300 
301 /*
302  * pause() delays the calling thread by the given number of system ticks.
303  * During cold bootup, pause() uses the DELAY() function instead of
304  * the tsleep() function to do the waiting. The "timo" argument must be
305  * greater than or equal to zero. A "timo" value of zero is equivalent
306  * to a "timo" value of one.
307  */
308 int
309 pause_sbt(const char *wmesg, sbintime_t sbt, sbintime_t pr, int flags)
310 {
311 	KASSERT(sbt >= 0, ("pause: timeout must be >= 0"));
312 
313 	/* silently convert invalid timeouts */
314 	if (sbt == 0)
315 		sbt = tick_sbt;
316 
317 	if ((cold && curthread == &thread0) || kdb_active ||
318 	    SCHEDULER_STOPPED()) {
319 		/*
320 		 * We delay one second at a time to avoid overflowing the
321 		 * system specific DELAY() function(s):
322 		 */
323 		while (sbt >= SBT_1S) {
324 			DELAY(1000000);
325 			sbt -= SBT_1S;
326 		}
327 		/* Do the delay remainder, if any */
328 		sbt = howmany(sbt, SBT_1US);
329 		if (sbt > 0)
330 			DELAY(sbt);
331 		return (0);
332 	}
333 	return (_sleep(&pause_wchan[curcpu], NULL, 0, wmesg, sbt, pr, flags));
334 }
335 
336 /*
337  * Make all threads sleeping on the specified identifier runnable.
338  */
339 void
340 wakeup(void *ident)
341 {
342 	int wakeup_swapper;
343 
344 	sleepq_lock(ident);
345 	wakeup_swapper = sleepq_broadcast(ident, SLEEPQ_SLEEP, 0, 0);
346 	sleepq_release(ident);
347 	if (wakeup_swapper) {
348 		KASSERT(ident != &proc0,
349 		    ("wakeup and wakeup_swapper and proc0"));
350 		kick_proc0();
351 	}
352 }
353 
354 /*
355  * Make a thread sleeping on the specified identifier runnable.
356  * May wake more than one thread if a target thread is currently
357  * swapped out.
358  */
359 void
360 wakeup_one(void *ident)
361 {
362 	int wakeup_swapper;
363 
364 	sleepq_lock(ident);
365 	wakeup_swapper = sleepq_signal(ident, SLEEPQ_SLEEP, 0, 0);
366 	sleepq_release(ident);
367 	if (wakeup_swapper)
368 		kick_proc0();
369 }
370 
371 static void
372 kdb_switch(void)
373 {
374 	thread_unlock(curthread);
375 	kdb_backtrace();
376 	kdb_reenter();
377 	panic("%s: did not reenter debugger", __func__);
378 }
379 
380 /*
381  * The machine independent parts of context switching.
382  */
383 void
384 mi_switch(int flags, struct thread *newtd)
385 {
386 	uint64_t runtime, new_switchtime;
387 	struct thread *td;
388 
389 	td = curthread;			/* XXX */
390 	THREAD_LOCK_ASSERT(td, MA_OWNED | MA_NOTRECURSED);
391 	KASSERT(!TD_ON_RUNQ(td), ("mi_switch: called by old code"));
392 #ifdef INVARIANTS
393 	if (!TD_ON_LOCK(td) && !TD_IS_RUNNING(td))
394 		mtx_assert(&Giant, MA_NOTOWNED);
395 #endif
396 	KASSERT(td->td_critnest == 1 || panicstr,
397 	    ("mi_switch: switch in a critical section"));
398 	KASSERT((flags & (SW_INVOL | SW_VOL)) != 0,
399 	    ("mi_switch: switch must be voluntary or involuntary"));
400 	KASSERT(newtd != curthread, ("mi_switch: preempting back to ourself"));
401 
402 	/*
403 	 * Don't perform context switches from the debugger.
404 	 */
405 	if (kdb_active)
406 		kdb_switch();
407 	if (SCHEDULER_STOPPED_TD(td))
408 		return;
409 	if (flags & SW_VOL) {
410 		td->td_ru.ru_nvcsw++;
411 		td->td_swvoltick = ticks;
412 	} else {
413 		td->td_ru.ru_nivcsw++;
414 		td->td_swinvoltick = ticks;
415 	}
416 #ifdef SCHED_STATS
417 	SCHED_STAT_INC(sched_switch_stats[flags & SW_TYPE_MASK]);
418 #endif
419 	/*
420 	 * Compute the amount of time during which the current
421 	 * thread was running, and add that to its total so far.
422 	 */
423 	new_switchtime = cpu_ticks();
424 	runtime = new_switchtime - PCPU_GET(switchtime);
425 	td->td_runtime += runtime;
426 	td->td_incruntime += runtime;
427 	PCPU_SET(switchtime, new_switchtime);
428 	td->td_generation++;	/* bump preempt-detect counter */
429 	VM_CNT_INC(v_swtch);
430 	PCPU_SET(switchticks, ticks);
431 	CTR4(KTR_PROC, "mi_switch: old thread %ld (td_sched %p, pid %ld, %s)",
432 	    td->td_tid, td_get_sched(td), td->td_proc->p_pid, td->td_name);
433 #ifdef KDTRACE_HOOKS
434 	if ((flags & SW_PREEMPT) != 0 || ((flags & SW_INVOL) != 0 &&
435 	    (flags & SW_TYPE_MASK) == SWT_NEEDRESCHED))
436 		SDT_PROBE0(sched, , , preempt);
437 #endif
438 	sched_switch(td, newtd, flags);
439 	CTR4(KTR_PROC, "mi_switch: new thread %ld (td_sched %p, pid %ld, %s)",
440 	    td->td_tid, td_get_sched(td), td->td_proc->p_pid, td->td_name);
441 
442 	/*
443 	 * If the last thread was exiting, finish cleaning it up.
444 	 */
445 	if ((td = PCPU_GET(deadthread))) {
446 		PCPU_SET(deadthread, NULL);
447 		thread_stash(td);
448 	}
449 }
450 
451 /*
452  * Change thread state to be runnable, placing it on the run queue if
453  * it is in memory.  If it is swapped out, return true so our caller
454  * will know to awaken the swapper.
455  */
456 int
457 setrunnable(struct thread *td)
458 {
459 
460 	THREAD_LOCK_ASSERT(td, MA_OWNED);
461 	KASSERT(td->td_proc->p_state != PRS_ZOMBIE,
462 	    ("setrunnable: pid %d is a zombie", td->td_proc->p_pid));
463 	switch (td->td_state) {
464 	case TDS_RUNNING:
465 	case TDS_RUNQ:
466 		return (0);
467 	case TDS_INHIBITED:
468 		/*
469 		 * If we are only inhibited because we are swapped out
470 		 * then arange to swap in this process. Otherwise just return.
471 		 */
472 		if (td->td_inhibitors != TDI_SWAPPED)
473 			return (0);
474 		/* FALLTHROUGH */
475 	case TDS_CAN_RUN:
476 		break;
477 	default:
478 		printf("state is 0x%x", td->td_state);
479 		panic("setrunnable(2)");
480 	}
481 	if ((td->td_flags & TDF_INMEM) == 0) {
482 		if ((td->td_flags & TDF_SWAPINREQ) == 0) {
483 			td->td_flags |= TDF_SWAPINREQ;
484 			return (1);
485 		}
486 	} else
487 		sched_wakeup(td);
488 	return (0);
489 }
490 
491 /*
492  * Compute a tenex style load average of a quantity on
493  * 1, 5 and 15 minute intervals.
494  */
495 static void
496 loadav(void *arg)
497 {
498 	int i, nrun;
499 	struct loadavg *avg;
500 
501 	nrun = sched_load();
502 	avg = &averunnable;
503 
504 	for (i = 0; i < 3; i++)
505 		avg->ldavg[i] = (cexp[i] * avg->ldavg[i] +
506 		    nrun * FSCALE * (FSCALE - cexp[i])) >> FSHIFT;
507 
508 	/*
509 	 * Schedule the next update to occur after 5 seconds, but add a
510 	 * random variation to avoid synchronisation with processes that
511 	 * run at regular intervals.
512 	 */
513 	callout_reset_sbt(&loadav_callout,
514 	    SBT_1US * (4000000 + (int)(random() % 2000001)), SBT_1US,
515 	    loadav, NULL, C_DIRECT_EXEC | C_PREL(32));
516 }
517 
518 /* ARGSUSED */
519 static void
520 synch_setup(void *dummy)
521 {
522 	callout_init(&loadav_callout, 1);
523 
524 	/* Kick off timeout driven events by calling first time. */
525 	loadav(NULL);
526 }
527 
528 int
529 should_yield(void)
530 {
531 
532 	return ((u_int)ticks - (u_int)curthread->td_swvoltick >= hogticks);
533 }
534 
535 void
536 maybe_yield(void)
537 {
538 
539 	if (should_yield())
540 		kern_yield(PRI_USER);
541 }
542 
543 void
544 kern_yield(int prio)
545 {
546 	struct thread *td;
547 
548 	td = curthread;
549 	DROP_GIANT();
550 	thread_lock(td);
551 	if (prio == PRI_USER)
552 		prio = td->td_user_pri;
553 	if (prio >= 0)
554 		sched_prio(td, prio);
555 	mi_switch(SW_VOL | SWT_RELINQUISH, NULL);
556 	thread_unlock(td);
557 	PICKUP_GIANT();
558 }
559 
560 /*
561  * General purpose yield system call.
562  */
563 int
564 sys_yield(struct thread *td, struct yield_args *uap)
565 {
566 
567 	thread_lock(td);
568 	if (PRI_BASE(td->td_pri_class) == PRI_TIMESHARE)
569 		sched_prio(td, PRI_MAX_TIMESHARE);
570 	mi_switch(SW_VOL | SWT_RELINQUISH, NULL);
571 	thread_unlock(td);
572 	td->td_retval[0] = 0;
573 	return (0);
574 }
575