xref: /freebsd/sys/kern/kern_synch.c (revision ce3adf4362fcca6a43e500b2531f0038adbfbd21)
1 /*-
2  * Copyright (c) 1982, 1986, 1990, 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  * (c) UNIX System Laboratories, Inc.
5  * All or some portions of this file are derived from material licensed
6  * to the University of California by American Telephone and Telegraph
7  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8  * the permission of UNIX System Laboratories, Inc.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 4. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  *	@(#)kern_synch.c	8.9 (Berkeley) 5/19/95
35  */
36 
37 #include <sys/cdefs.h>
38 __FBSDID("$FreeBSD$");
39 
40 #include "opt_kdtrace.h"
41 #include "opt_ktrace.h"
42 #include "opt_sched.h"
43 
44 #include <sys/param.h>
45 #include <sys/systm.h>
46 #include <sys/condvar.h>
47 #include <sys/kdb.h>
48 #include <sys/kernel.h>
49 #include <sys/ktr.h>
50 #include <sys/lock.h>
51 #include <sys/mutex.h>
52 #include <sys/proc.h>
53 #include <sys/resourcevar.h>
54 #include <sys/sched.h>
55 #include <sys/sdt.h>
56 #include <sys/signalvar.h>
57 #include <sys/sleepqueue.h>
58 #include <sys/smp.h>
59 #include <sys/sx.h>
60 #include <sys/sysctl.h>
61 #include <sys/sysproto.h>
62 #include <sys/vmmeter.h>
63 #ifdef KTRACE
64 #include <sys/uio.h>
65 #include <sys/ktrace.h>
66 #endif
67 
68 #include <machine/cpu.h>
69 
70 #ifdef XEN
71 #include <vm/vm.h>
72 #include <vm/vm_param.h>
73 #include <vm/pmap.h>
74 #endif
75 
76 #define	KTDSTATE(td)							\
77 	(((td)->td_inhibitors & TDI_SLEEPING) != 0 ? "sleep"  :		\
78 	((td)->td_inhibitors & TDI_SUSPENDED) != 0 ? "suspended" :	\
79 	((td)->td_inhibitors & TDI_SWAPPED) != 0 ? "swapped" :		\
80 	((td)->td_inhibitors & TDI_LOCK) != 0 ? "blocked" :		\
81 	((td)->td_inhibitors & TDI_IWAIT) != 0 ? "iwait" : "yielding")
82 
83 static void synch_setup(void *dummy);
84 SYSINIT(synch_setup, SI_SUB_KICK_SCHEDULER, SI_ORDER_FIRST, synch_setup,
85     NULL);
86 
87 int	hogticks;
88 static uint8_t pause_wchan[MAXCPU];
89 
90 static struct callout loadav_callout;
91 
92 struct loadavg averunnable =
93 	{ {0, 0, 0}, FSCALE };	/* load average, of runnable procs */
94 /*
95  * Constants for averages over 1, 5, and 15 minutes
96  * when sampling at 5 second intervals.
97  */
98 static fixpt_t cexp[3] = {
99 	0.9200444146293232 * FSCALE,	/* exp(-1/12) */
100 	0.9834714538216174 * FSCALE,	/* exp(-1/60) */
101 	0.9944598480048967 * FSCALE,	/* exp(-1/180) */
102 };
103 
104 /* kernel uses `FSCALE', userland (SHOULD) use kern.fscale */
105 static int      fscale __unused = FSCALE;
106 SYSCTL_INT(_kern, OID_AUTO, fscale, CTLFLAG_RD, 0, FSCALE, "");
107 
108 static void	loadav(void *arg);
109 
110 SDT_PROVIDER_DECLARE(sched);
111 SDT_PROBE_DEFINE(sched, , , preempt, preempt);
112 
113 /*
114  * These probes reference Solaris features that are not implemented in FreeBSD.
115  * Create the probes anyway for compatibility with existing D scripts; they'll
116  * just never fire.
117  */
118 SDT_PROBE_DEFINE(sched, , , cpucaps_sleep, cpucaps-sleep);
119 SDT_PROBE_DEFINE(sched, , , cpucaps_wakeup, cpucaps-wakeup);
120 SDT_PROBE_DEFINE(sched, , , schedctl_nopreempt, schedctl-nopreempt);
121 SDT_PROBE_DEFINE(sched, , , schedctl_preempt, schedctl-preempt);
122 SDT_PROBE_DEFINE(sched, , , schedctl_yield, schedctl-yield);
123 
124 static void
125 sleepinit(void *unused)
126 {
127 
128 	hogticks = (hz / 10) * 2;	/* Default only. */
129 	init_sleepqueues();
130 }
131 
132 /*
133  * vmem tries to lock the sleepq mutexes when free'ing kva, so make sure
134  * it is available.
135  */
136 SYSINIT(sleepinit, SI_SUB_KMEM, SI_ORDER_ANY, sleepinit, 0);
137 
138 /*
139  * General sleep call.  Suspends the current thread until a wakeup is
140  * performed on the specified identifier.  The thread will then be made
141  * runnable with the specified priority.  Sleeps at most sbt units of time
142  * (0 means no timeout).  If pri includes the PCATCH flag, let signals
143  * interrupt the sleep, otherwise ignore them while sleeping.  Returns 0 if
144  * awakened, EWOULDBLOCK if the timeout expires.  If PCATCH is set and a
145  * signal becomes pending, ERESTART is returned if the current system
146  * call should be restarted if possible, and EINTR is returned if the system
147  * call should be interrupted by the signal (return EINTR).
148  *
149  * The lock argument is unlocked before the caller is suspended, and
150  * re-locked before _sleep() returns.  If priority includes the PDROP
151  * flag the lock is not re-locked before returning.
152  */
153 int
154 _sleep(void *ident, struct lock_object *lock, int priority,
155     const char *wmesg, sbintime_t sbt, sbintime_t pr, int flags)
156 {
157 	struct thread *td;
158 	struct proc *p;
159 	struct lock_class *class;
160 	uintptr_t lock_state;
161 	int catch, pri, rval, sleepq_flags;
162 	WITNESS_SAVE_DECL(lock_witness);
163 
164 	td = curthread;
165 	p = td->td_proc;
166 #ifdef KTRACE
167 	if (KTRPOINT(td, KTR_CSW))
168 		ktrcsw(1, 0, wmesg);
169 #endif
170 	WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, lock,
171 	    "Sleeping on \"%s\"", wmesg);
172 	KASSERT(sbt != 0 || mtx_owned(&Giant) || lock != NULL,
173 	    ("sleeping without a lock"));
174 	KASSERT(p != NULL, ("msleep1"));
175 	KASSERT(ident != NULL && TD_IS_RUNNING(td), ("msleep"));
176 	if (priority & PDROP)
177 		KASSERT(lock != NULL && lock != &Giant.lock_object,
178 		    ("PDROP requires a non-Giant lock"));
179 	if (lock != NULL)
180 		class = LOCK_CLASS(lock);
181 	else
182 		class = NULL;
183 
184 	if (cold || SCHEDULER_STOPPED()) {
185 		/*
186 		 * During autoconfiguration, just return;
187 		 * don't run any other threads or panic below,
188 		 * in case this is the idle thread and already asleep.
189 		 * XXX: this used to do "s = splhigh(); splx(safepri);
190 		 * splx(s);" to give interrupts a chance, but there is
191 		 * no way to give interrupts a chance now.
192 		 */
193 		if (lock != NULL && priority & PDROP)
194 			class->lc_unlock(lock);
195 		return (0);
196 	}
197 	catch = priority & PCATCH;
198 	pri = priority & PRIMASK;
199 
200 	/*
201 	 * If we are already on a sleep queue, then remove us from that
202 	 * sleep queue first.  We have to do this to handle recursive
203 	 * sleeps.
204 	 */
205 	if (TD_ON_SLEEPQ(td))
206 		sleepq_remove(td, td->td_wchan);
207 
208 	if ((uint8_t *)ident >= &pause_wchan[0] &&
209 	    (uint8_t *)ident <= &pause_wchan[MAXCPU - 1])
210 		sleepq_flags = SLEEPQ_PAUSE;
211 	else
212 		sleepq_flags = SLEEPQ_SLEEP;
213 	if (catch)
214 		sleepq_flags |= SLEEPQ_INTERRUPTIBLE;
215 
216 	sleepq_lock(ident);
217 	CTR5(KTR_PROC, "sleep: thread %ld (pid %ld, %s) on %s (%p)",
218 	    td->td_tid, p->p_pid, td->td_name, wmesg, ident);
219 
220 	if (lock == &Giant.lock_object)
221 		mtx_assert(&Giant, MA_OWNED);
222 	DROP_GIANT();
223 	if (lock != NULL && lock != &Giant.lock_object &&
224 	    !(class->lc_flags & LC_SLEEPABLE)) {
225 		WITNESS_SAVE(lock, lock_witness);
226 		lock_state = class->lc_unlock(lock);
227 	} else
228 		/* GCC needs to follow the Yellow Brick Road */
229 		lock_state = -1;
230 
231 	/*
232 	 * We put ourselves on the sleep queue and start our timeout
233 	 * before calling thread_suspend_check, as we could stop there,
234 	 * and a wakeup or a SIGCONT (or both) could occur while we were
235 	 * stopped without resuming us.  Thus, we must be ready for sleep
236 	 * when cursig() is called.  If the wakeup happens while we're
237 	 * stopped, then td will no longer be on a sleep queue upon
238 	 * return from cursig().
239 	 */
240 	sleepq_add(ident, lock, wmesg, sleepq_flags, 0);
241 	if (sbt != 0)
242 		sleepq_set_timeout_sbt(ident, sbt, pr, flags);
243 	if (lock != NULL && class->lc_flags & LC_SLEEPABLE) {
244 		sleepq_release(ident);
245 		WITNESS_SAVE(lock, lock_witness);
246 		lock_state = class->lc_unlock(lock);
247 		sleepq_lock(ident);
248 	}
249 	if (sbt != 0 && catch)
250 		rval = sleepq_timedwait_sig(ident, pri);
251 	else if (sbt != 0)
252 		rval = sleepq_timedwait(ident, pri);
253 	else if (catch)
254 		rval = sleepq_wait_sig(ident, pri);
255 	else {
256 		sleepq_wait(ident, pri);
257 		rval = 0;
258 	}
259 #ifdef KTRACE
260 	if (KTRPOINT(td, KTR_CSW))
261 		ktrcsw(0, 0, wmesg);
262 #endif
263 	PICKUP_GIANT();
264 	if (lock != NULL && lock != &Giant.lock_object && !(priority & PDROP)) {
265 		class->lc_lock(lock, lock_state);
266 		WITNESS_RESTORE(lock, lock_witness);
267 	}
268 	return (rval);
269 }
270 
271 int
272 msleep_spin_sbt(void *ident, struct mtx *mtx, const char *wmesg,
273     sbintime_t sbt, sbintime_t pr, int flags)
274 {
275 	struct thread *td;
276 	struct proc *p;
277 	int rval;
278 	WITNESS_SAVE_DECL(mtx);
279 
280 	td = curthread;
281 	p = td->td_proc;
282 	KASSERT(mtx != NULL, ("sleeping without a mutex"));
283 	KASSERT(p != NULL, ("msleep1"));
284 	KASSERT(ident != NULL && TD_IS_RUNNING(td), ("msleep"));
285 
286 	if (cold || SCHEDULER_STOPPED()) {
287 		/*
288 		 * During autoconfiguration, just return;
289 		 * don't run any other threads or panic below,
290 		 * in case this is the idle thread and already asleep.
291 		 * XXX: this used to do "s = splhigh(); splx(safepri);
292 		 * splx(s);" to give interrupts a chance, but there is
293 		 * no way to give interrupts a chance now.
294 		 */
295 		return (0);
296 	}
297 
298 	sleepq_lock(ident);
299 	CTR5(KTR_PROC, "msleep_spin: thread %ld (pid %ld, %s) on %s (%p)",
300 	    td->td_tid, p->p_pid, td->td_name, wmesg, ident);
301 
302 	DROP_GIANT();
303 	mtx_assert(mtx, MA_OWNED | MA_NOTRECURSED);
304 	WITNESS_SAVE(&mtx->lock_object, mtx);
305 	mtx_unlock_spin(mtx);
306 
307 	/*
308 	 * We put ourselves on the sleep queue and start our timeout.
309 	 */
310 	sleepq_add(ident, &mtx->lock_object, wmesg, SLEEPQ_SLEEP, 0);
311 	if (sbt != 0)
312 		sleepq_set_timeout_sbt(ident, sbt, pr, flags);
313 
314 	/*
315 	 * Can't call ktrace with any spin locks held so it can lock the
316 	 * ktrace_mtx lock, and WITNESS_WARN considers it an error to hold
317 	 * any spin lock.  Thus, we have to drop the sleepq spin lock while
318 	 * we handle those requests.  This is safe since we have placed our
319 	 * thread on the sleep queue already.
320 	 */
321 #ifdef KTRACE
322 	if (KTRPOINT(td, KTR_CSW)) {
323 		sleepq_release(ident);
324 		ktrcsw(1, 0, wmesg);
325 		sleepq_lock(ident);
326 	}
327 #endif
328 #ifdef WITNESS
329 	sleepq_release(ident);
330 	WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, "Sleeping on \"%s\"",
331 	    wmesg);
332 	sleepq_lock(ident);
333 #endif
334 	if (sbt != 0)
335 		rval = sleepq_timedwait(ident, 0);
336 	else {
337 		sleepq_wait(ident, 0);
338 		rval = 0;
339 	}
340 #ifdef KTRACE
341 	if (KTRPOINT(td, KTR_CSW))
342 		ktrcsw(0, 0, wmesg);
343 #endif
344 	PICKUP_GIANT();
345 	mtx_lock_spin(mtx);
346 	WITNESS_RESTORE(&mtx->lock_object, mtx);
347 	return (rval);
348 }
349 
350 /*
351  * pause() delays the calling thread by the given number of system ticks.
352  * During cold bootup, pause() uses the DELAY() function instead of
353  * the tsleep() function to do the waiting. The "timo" argument must be
354  * greater than or equal to zero. A "timo" value of zero is equivalent
355  * to a "timo" value of one.
356  */
357 int
358 pause_sbt(const char *wmesg, sbintime_t sbt, sbintime_t pr, int flags)
359 {
360 	KASSERT(sbt >= 0, ("pause: timeout must be >= 0"));
361 
362 	/* silently convert invalid timeouts */
363 	if (sbt == 0)
364 		sbt = tick_sbt;
365 
366 	if (cold) {
367 		/*
368 		 * We delay one second at a time to avoid overflowing the
369 		 * system specific DELAY() function(s):
370 		 */
371 		while (sbt >= SBT_1S) {
372 			DELAY(1000000);
373 			sbt -= SBT_1S;
374 		}
375 		/* Do the delay remainder, if any */
376 		sbt = (sbt + SBT_1US - 1) / SBT_1US;
377 		if (sbt > 0)
378 			DELAY(sbt);
379 		return (0);
380 	}
381 	return (_sleep(&pause_wchan[curcpu], NULL, 0, wmesg, sbt, pr, flags));
382 }
383 
384 /*
385  * Make all threads sleeping on the specified identifier runnable.
386  */
387 void
388 wakeup(void *ident)
389 {
390 	int wakeup_swapper;
391 
392 	sleepq_lock(ident);
393 	wakeup_swapper = sleepq_broadcast(ident, SLEEPQ_SLEEP, 0, 0);
394 	sleepq_release(ident);
395 	if (wakeup_swapper) {
396 		KASSERT(ident != &proc0,
397 		    ("wakeup and wakeup_swapper and proc0"));
398 		kick_proc0();
399 	}
400 }
401 
402 /*
403  * Make a thread sleeping on the specified identifier runnable.
404  * May wake more than one thread if a target thread is currently
405  * swapped out.
406  */
407 void
408 wakeup_one(void *ident)
409 {
410 	int wakeup_swapper;
411 
412 	sleepq_lock(ident);
413 	wakeup_swapper = sleepq_signal(ident, SLEEPQ_SLEEP, 0, 0);
414 	sleepq_release(ident);
415 	if (wakeup_swapper)
416 		kick_proc0();
417 }
418 
419 static void
420 kdb_switch(void)
421 {
422 	thread_unlock(curthread);
423 	kdb_backtrace();
424 	kdb_reenter();
425 	panic("%s: did not reenter debugger", __func__);
426 }
427 
428 /*
429  * The machine independent parts of context switching.
430  */
431 void
432 mi_switch(int flags, struct thread *newtd)
433 {
434 	uint64_t runtime, new_switchtime;
435 	struct thread *td;
436 	struct proc *p;
437 
438 	td = curthread;			/* XXX */
439 	THREAD_LOCK_ASSERT(td, MA_OWNED | MA_NOTRECURSED);
440 	p = td->td_proc;		/* XXX */
441 	KASSERT(!TD_ON_RUNQ(td), ("mi_switch: called by old code"));
442 #ifdef INVARIANTS
443 	if (!TD_ON_LOCK(td) && !TD_IS_RUNNING(td))
444 		mtx_assert(&Giant, MA_NOTOWNED);
445 #endif
446 	KASSERT(td->td_critnest == 1 || panicstr,
447 	    ("mi_switch: switch in a critical section"));
448 	KASSERT((flags & (SW_INVOL | SW_VOL)) != 0,
449 	    ("mi_switch: switch must be voluntary or involuntary"));
450 	KASSERT(newtd != curthread, ("mi_switch: preempting back to ourself"));
451 
452 	/*
453 	 * Don't perform context switches from the debugger.
454 	 */
455 	if (kdb_active)
456 		kdb_switch();
457 	if (SCHEDULER_STOPPED())
458 		return;
459 	if (flags & SW_VOL) {
460 		td->td_ru.ru_nvcsw++;
461 		td->td_swvoltick = ticks;
462 	} else
463 		td->td_ru.ru_nivcsw++;
464 #ifdef SCHED_STATS
465 	SCHED_STAT_INC(sched_switch_stats[flags & SW_TYPE_MASK]);
466 #endif
467 	/*
468 	 * Compute the amount of time during which the current
469 	 * thread was running, and add that to its total so far.
470 	 */
471 	new_switchtime = cpu_ticks();
472 	runtime = new_switchtime - PCPU_GET(switchtime);
473 	td->td_runtime += runtime;
474 	td->td_incruntime += runtime;
475 	PCPU_SET(switchtime, new_switchtime);
476 	td->td_generation++;	/* bump preempt-detect counter */
477 	PCPU_INC(cnt.v_swtch);
478 	PCPU_SET(switchticks, ticks);
479 	CTR4(KTR_PROC, "mi_switch: old thread %ld (td_sched %p, pid %ld, %s)",
480 	    td->td_tid, td->td_sched, p->p_pid, td->td_name);
481 #if (KTR_COMPILE & KTR_SCHED) != 0
482 	if (TD_IS_IDLETHREAD(td))
483 		KTR_STATE1(KTR_SCHED, "thread", sched_tdname(td), "idle",
484 		    "prio:%d", td->td_priority);
485 	else
486 		KTR_STATE3(KTR_SCHED, "thread", sched_tdname(td), KTDSTATE(td),
487 		    "prio:%d", td->td_priority, "wmesg:\"%s\"", td->td_wmesg,
488 		    "lockname:\"%s\"", td->td_lockname);
489 #endif
490 	SDT_PROBE0(sched, , , preempt);
491 #ifdef XEN
492 	PT_UPDATES_FLUSH();
493 #endif
494 	sched_switch(td, newtd, flags);
495 	KTR_STATE1(KTR_SCHED, "thread", sched_tdname(td), "running",
496 	    "prio:%d", td->td_priority);
497 
498 	CTR4(KTR_PROC, "mi_switch: new thread %ld (td_sched %p, pid %ld, %s)",
499 	    td->td_tid, td->td_sched, p->p_pid, td->td_name);
500 
501 	/*
502 	 * If the last thread was exiting, finish cleaning it up.
503 	 */
504 	if ((td = PCPU_GET(deadthread))) {
505 		PCPU_SET(deadthread, NULL);
506 		thread_stash(td);
507 	}
508 }
509 
510 /*
511  * Change thread state to be runnable, placing it on the run queue if
512  * it is in memory.  If it is swapped out, return true so our caller
513  * will know to awaken the swapper.
514  */
515 int
516 setrunnable(struct thread *td)
517 {
518 
519 	THREAD_LOCK_ASSERT(td, MA_OWNED);
520 	KASSERT(td->td_proc->p_state != PRS_ZOMBIE,
521 	    ("setrunnable: pid %d is a zombie", td->td_proc->p_pid));
522 	switch (td->td_state) {
523 	case TDS_RUNNING:
524 	case TDS_RUNQ:
525 		return (0);
526 	case TDS_INHIBITED:
527 		/*
528 		 * If we are only inhibited because we are swapped out
529 		 * then arange to swap in this process. Otherwise just return.
530 		 */
531 		if (td->td_inhibitors != TDI_SWAPPED)
532 			return (0);
533 		/* FALLTHROUGH */
534 	case TDS_CAN_RUN:
535 		break;
536 	default:
537 		printf("state is 0x%x", td->td_state);
538 		panic("setrunnable(2)");
539 	}
540 	if ((td->td_flags & TDF_INMEM) == 0) {
541 		if ((td->td_flags & TDF_SWAPINREQ) == 0) {
542 			td->td_flags |= TDF_SWAPINREQ;
543 			return (1);
544 		}
545 	} else
546 		sched_wakeup(td);
547 	return (0);
548 }
549 
550 /*
551  * Compute a tenex style load average of a quantity on
552  * 1, 5 and 15 minute intervals.
553  */
554 static void
555 loadav(void *arg)
556 {
557 	int i, nrun;
558 	struct loadavg *avg;
559 
560 	nrun = sched_load();
561 	avg = &averunnable;
562 
563 	for (i = 0; i < 3; i++)
564 		avg->ldavg[i] = (cexp[i] * avg->ldavg[i] +
565 		    nrun * FSCALE * (FSCALE - cexp[i])) >> FSHIFT;
566 
567 	/*
568 	 * Schedule the next update to occur after 5 seconds, but add a
569 	 * random variation to avoid synchronisation with processes that
570 	 * run at regular intervals.
571 	 */
572 	callout_reset_sbt(&loadav_callout,
573 	    tick_sbt * (hz * 4 + (int)(random() % (hz * 2 + 1))), 0,
574 	    loadav, NULL, C_DIRECT_EXEC | C_HARDCLOCK);
575 }
576 
577 /* ARGSUSED */
578 static void
579 synch_setup(void *dummy)
580 {
581 	callout_init(&loadav_callout, CALLOUT_MPSAFE);
582 
583 	/* Kick off timeout driven events by calling first time. */
584 	loadav(NULL);
585 }
586 
587 int
588 should_yield(void)
589 {
590 
591 	return ((unsigned int)(ticks - curthread->td_swvoltick) >= hogticks);
592 }
593 
594 void
595 maybe_yield(void)
596 {
597 
598 	if (should_yield())
599 		kern_yield(PRI_USER);
600 }
601 
602 void
603 kern_yield(int prio)
604 {
605 	struct thread *td;
606 
607 	td = curthread;
608 	DROP_GIANT();
609 	thread_lock(td);
610 	if (prio == PRI_USER)
611 		prio = td->td_user_pri;
612 	if (prio >= 0)
613 		sched_prio(td, prio);
614 	mi_switch(SW_VOL | SWT_RELINQUISH, NULL);
615 	thread_unlock(td);
616 	PICKUP_GIANT();
617 }
618 
619 /*
620  * General purpose yield system call.
621  */
622 int
623 sys_yield(struct thread *td, struct yield_args *uap)
624 {
625 
626 	thread_lock(td);
627 	if (PRI_BASE(td->td_pri_class) == PRI_TIMESHARE)
628 		sched_prio(td, PRI_MAX_TIMESHARE);
629 	mi_switch(SW_VOL | SWT_RELINQUISH, NULL);
630 	thread_unlock(td);
631 	td->td_retval[0] = 0;
632 	return (0);
633 }
634