xref: /freebsd/sys/kern/kern_synch.c (revision b6a05070fa77edc7ce6e60b61623fd806e807be6)
1 /*-
2  * Copyright (c) 1982, 1986, 1990, 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  * (c) UNIX System Laboratories, Inc.
5  * All or some portions of this file are derived from material licensed
6  * to the University of California by American Telephone and Telegraph
7  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8  * the permission of UNIX System Laboratories, Inc.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 4. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  *	@(#)kern_synch.c	8.9 (Berkeley) 5/19/95
35  */
36 
37 #include <sys/cdefs.h>
38 __FBSDID("$FreeBSD$");
39 
40 #include "opt_ktrace.h"
41 #include "opt_sched.h"
42 
43 #include <sys/param.h>
44 #include <sys/systm.h>
45 #include <sys/condvar.h>
46 #include <sys/kdb.h>
47 #include <sys/kernel.h>
48 #include <sys/ktr.h>
49 #include <sys/lock.h>
50 #include <sys/mutex.h>
51 #include <sys/proc.h>
52 #include <sys/resourcevar.h>
53 #include <sys/sched.h>
54 #include <sys/sdt.h>
55 #include <sys/signalvar.h>
56 #include <sys/sleepqueue.h>
57 #include <sys/smp.h>
58 #include <sys/sx.h>
59 #include <sys/sysctl.h>
60 #include <sys/sysproto.h>
61 #include <sys/vmmeter.h>
62 #ifdef KTRACE
63 #include <sys/uio.h>
64 #include <sys/ktrace.h>
65 #endif
66 
67 #include <machine/cpu.h>
68 
69 #define	KTDSTATE(td)							\
70 	(((td)->td_inhibitors & TDI_SLEEPING) != 0 ? "sleep"  :		\
71 	((td)->td_inhibitors & TDI_SUSPENDED) != 0 ? "suspended" :	\
72 	((td)->td_inhibitors & TDI_SWAPPED) != 0 ? "swapped" :		\
73 	((td)->td_inhibitors & TDI_LOCK) != 0 ? "blocked" :		\
74 	((td)->td_inhibitors & TDI_IWAIT) != 0 ? "iwait" : "yielding")
75 
76 static void synch_setup(void *dummy);
77 SYSINIT(synch_setup, SI_SUB_KICK_SCHEDULER, SI_ORDER_FIRST, synch_setup,
78     NULL);
79 
80 int	hogticks;
81 static uint8_t pause_wchan[MAXCPU];
82 
83 static struct callout loadav_callout;
84 
85 struct loadavg averunnable =
86 	{ {0, 0, 0}, FSCALE };	/* load average, of runnable procs */
87 /*
88  * Constants for averages over 1, 5, and 15 minutes
89  * when sampling at 5 second intervals.
90  */
91 static fixpt_t cexp[3] = {
92 	0.9200444146293232 * FSCALE,	/* exp(-1/12) */
93 	0.9834714538216174 * FSCALE,	/* exp(-1/60) */
94 	0.9944598480048967 * FSCALE,	/* exp(-1/180) */
95 };
96 
97 /* kernel uses `FSCALE', userland (SHOULD) use kern.fscale */
98 SYSCTL_INT(_kern, OID_AUTO, fscale, CTLFLAG_RD, SYSCTL_NULL_INT_PTR, FSCALE, "");
99 
100 static void	loadav(void *arg);
101 
102 SDT_PROVIDER_DECLARE(sched);
103 SDT_PROBE_DEFINE(sched, , , preempt);
104 
105 static void
106 sleepinit(void *unused)
107 {
108 
109 	hogticks = (hz / 10) * 2;	/* Default only. */
110 	init_sleepqueues();
111 }
112 
113 /*
114  * vmem tries to lock the sleepq mutexes when free'ing kva, so make sure
115  * it is available.
116  */
117 SYSINIT(sleepinit, SI_SUB_KMEM, SI_ORDER_ANY, sleepinit, 0);
118 
119 /*
120  * General sleep call.  Suspends the current thread until a wakeup is
121  * performed on the specified identifier.  The thread will then be made
122  * runnable with the specified priority.  Sleeps at most sbt units of time
123  * (0 means no timeout).  If pri includes the PCATCH flag, let signals
124  * interrupt the sleep, otherwise ignore them while sleeping.  Returns 0 if
125  * awakened, EWOULDBLOCK if the timeout expires.  If PCATCH is set and a
126  * signal becomes pending, ERESTART is returned if the current system
127  * call should be restarted if possible, and EINTR is returned if the system
128  * call should be interrupted by the signal (return EINTR).
129  *
130  * The lock argument is unlocked before the caller is suspended, and
131  * re-locked before _sleep() returns.  If priority includes the PDROP
132  * flag the lock is not re-locked before returning.
133  */
134 int
135 _sleep(void *ident, struct lock_object *lock, int priority,
136     const char *wmesg, sbintime_t sbt, sbintime_t pr, int flags)
137 {
138 	struct thread *td;
139 	struct proc *p;
140 	struct lock_class *class;
141 	uintptr_t lock_state;
142 	int catch, pri, rval, sleepq_flags;
143 	WITNESS_SAVE_DECL(lock_witness);
144 
145 	td = curthread;
146 	p = td->td_proc;
147 #ifdef KTRACE
148 	if (KTRPOINT(td, KTR_CSW))
149 		ktrcsw(1, 0, wmesg);
150 #endif
151 	WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, lock,
152 	    "Sleeping on \"%s\"", wmesg);
153 	KASSERT(sbt != 0 || mtx_owned(&Giant) || lock != NULL,
154 	    ("sleeping without a lock"));
155 	KASSERT(p != NULL, ("msleep1"));
156 	KASSERT(ident != NULL && TD_IS_RUNNING(td), ("msleep"));
157 	if (priority & PDROP)
158 		KASSERT(lock != NULL && lock != &Giant.lock_object,
159 		    ("PDROP requires a non-Giant lock"));
160 	if (lock != NULL)
161 		class = LOCK_CLASS(lock);
162 	else
163 		class = NULL;
164 
165 	if (cold || SCHEDULER_STOPPED()) {
166 		/*
167 		 * During autoconfiguration, just return;
168 		 * don't run any other threads or panic below,
169 		 * in case this is the idle thread and already asleep.
170 		 * XXX: this used to do "s = splhigh(); splx(safepri);
171 		 * splx(s);" to give interrupts a chance, but there is
172 		 * no way to give interrupts a chance now.
173 		 */
174 		if (lock != NULL && priority & PDROP)
175 			class->lc_unlock(lock);
176 		return (0);
177 	}
178 	catch = priority & PCATCH;
179 	pri = priority & PRIMASK;
180 
181 	/*
182 	 * If we are already on a sleep queue, then remove us from that
183 	 * sleep queue first.  We have to do this to handle recursive
184 	 * sleeps.
185 	 */
186 	if (TD_ON_SLEEPQ(td))
187 		sleepq_remove(td, td->td_wchan);
188 
189 	if ((uint8_t *)ident >= &pause_wchan[0] &&
190 	    (uint8_t *)ident <= &pause_wchan[MAXCPU - 1])
191 		sleepq_flags = SLEEPQ_PAUSE;
192 	else
193 		sleepq_flags = SLEEPQ_SLEEP;
194 	if (catch)
195 		sleepq_flags |= SLEEPQ_INTERRUPTIBLE;
196 
197 	sleepq_lock(ident);
198 	CTR5(KTR_PROC, "sleep: thread %ld (pid %ld, %s) on %s (%p)",
199 	    td->td_tid, p->p_pid, td->td_name, wmesg, ident);
200 
201 	if (lock == &Giant.lock_object)
202 		mtx_assert(&Giant, MA_OWNED);
203 	DROP_GIANT();
204 	if (lock != NULL && lock != &Giant.lock_object &&
205 	    !(class->lc_flags & LC_SLEEPABLE)) {
206 		WITNESS_SAVE(lock, lock_witness);
207 		lock_state = class->lc_unlock(lock);
208 	} else
209 		/* GCC needs to follow the Yellow Brick Road */
210 		lock_state = -1;
211 
212 	/*
213 	 * We put ourselves on the sleep queue and start our timeout
214 	 * before calling thread_suspend_check, as we could stop there,
215 	 * and a wakeup or a SIGCONT (or both) could occur while we were
216 	 * stopped without resuming us.  Thus, we must be ready for sleep
217 	 * when cursig() is called.  If the wakeup happens while we're
218 	 * stopped, then td will no longer be on a sleep queue upon
219 	 * return from cursig().
220 	 */
221 	sleepq_add(ident, lock, wmesg, sleepq_flags, 0);
222 	if (sbt != 0)
223 		sleepq_set_timeout_sbt(ident, sbt, pr, flags);
224 	if (lock != NULL && class->lc_flags & LC_SLEEPABLE) {
225 		sleepq_release(ident);
226 		WITNESS_SAVE(lock, lock_witness);
227 		lock_state = class->lc_unlock(lock);
228 		sleepq_lock(ident);
229 	}
230 	if (sbt != 0 && catch)
231 		rval = sleepq_timedwait_sig(ident, pri);
232 	else if (sbt != 0)
233 		rval = sleepq_timedwait(ident, pri);
234 	else if (catch)
235 		rval = sleepq_wait_sig(ident, pri);
236 	else {
237 		sleepq_wait(ident, pri);
238 		rval = 0;
239 	}
240 #ifdef KTRACE
241 	if (KTRPOINT(td, KTR_CSW))
242 		ktrcsw(0, 0, wmesg);
243 #endif
244 	PICKUP_GIANT();
245 	if (lock != NULL && lock != &Giant.lock_object && !(priority & PDROP)) {
246 		class->lc_lock(lock, lock_state);
247 		WITNESS_RESTORE(lock, lock_witness);
248 	}
249 	return (rval);
250 }
251 
252 int
253 msleep_spin_sbt(void *ident, struct mtx *mtx, const char *wmesg,
254     sbintime_t sbt, sbintime_t pr, int flags)
255 {
256 	struct thread *td;
257 	struct proc *p;
258 	int rval;
259 	WITNESS_SAVE_DECL(mtx);
260 
261 	td = curthread;
262 	p = td->td_proc;
263 	KASSERT(mtx != NULL, ("sleeping without a mutex"));
264 	KASSERT(p != NULL, ("msleep1"));
265 	KASSERT(ident != NULL && TD_IS_RUNNING(td), ("msleep"));
266 
267 	if (cold || SCHEDULER_STOPPED()) {
268 		/*
269 		 * During autoconfiguration, just return;
270 		 * don't run any other threads or panic below,
271 		 * in case this is the idle thread and already asleep.
272 		 * XXX: this used to do "s = splhigh(); splx(safepri);
273 		 * splx(s);" to give interrupts a chance, but there is
274 		 * no way to give interrupts a chance now.
275 		 */
276 		return (0);
277 	}
278 
279 	sleepq_lock(ident);
280 	CTR5(KTR_PROC, "msleep_spin: thread %ld (pid %ld, %s) on %s (%p)",
281 	    td->td_tid, p->p_pid, td->td_name, wmesg, ident);
282 
283 	DROP_GIANT();
284 	mtx_assert(mtx, MA_OWNED | MA_NOTRECURSED);
285 	WITNESS_SAVE(&mtx->lock_object, mtx);
286 	mtx_unlock_spin(mtx);
287 
288 	/*
289 	 * We put ourselves on the sleep queue and start our timeout.
290 	 */
291 	sleepq_add(ident, &mtx->lock_object, wmesg, SLEEPQ_SLEEP, 0);
292 	if (sbt != 0)
293 		sleepq_set_timeout_sbt(ident, sbt, pr, flags);
294 
295 	/*
296 	 * Can't call ktrace with any spin locks held so it can lock the
297 	 * ktrace_mtx lock, and WITNESS_WARN considers it an error to hold
298 	 * any spin lock.  Thus, we have to drop the sleepq spin lock while
299 	 * we handle those requests.  This is safe since we have placed our
300 	 * thread on the sleep queue already.
301 	 */
302 #ifdef KTRACE
303 	if (KTRPOINT(td, KTR_CSW)) {
304 		sleepq_release(ident);
305 		ktrcsw(1, 0, wmesg);
306 		sleepq_lock(ident);
307 	}
308 #endif
309 #ifdef WITNESS
310 	sleepq_release(ident);
311 	WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, "Sleeping on \"%s\"",
312 	    wmesg);
313 	sleepq_lock(ident);
314 #endif
315 	if (sbt != 0)
316 		rval = sleepq_timedwait(ident, 0);
317 	else {
318 		sleepq_wait(ident, 0);
319 		rval = 0;
320 	}
321 #ifdef KTRACE
322 	if (KTRPOINT(td, KTR_CSW))
323 		ktrcsw(0, 0, wmesg);
324 #endif
325 	PICKUP_GIANT();
326 	mtx_lock_spin(mtx);
327 	WITNESS_RESTORE(&mtx->lock_object, mtx);
328 	return (rval);
329 }
330 
331 /*
332  * pause() delays the calling thread by the given number of system ticks.
333  * During cold bootup, pause() uses the DELAY() function instead of
334  * the tsleep() function to do the waiting. The "timo" argument must be
335  * greater than or equal to zero. A "timo" value of zero is equivalent
336  * to a "timo" value of one.
337  */
338 int
339 pause_sbt(const char *wmesg, sbintime_t sbt, sbintime_t pr, int flags)
340 {
341 	KASSERT(sbt >= 0, ("pause: timeout must be >= 0"));
342 
343 	/* silently convert invalid timeouts */
344 	if (sbt == 0)
345 		sbt = tick_sbt;
346 
347 	if (cold || kdb_active) {
348 		/*
349 		 * We delay one second at a time to avoid overflowing the
350 		 * system specific DELAY() function(s):
351 		 */
352 		while (sbt >= SBT_1S) {
353 			DELAY(1000000);
354 			sbt -= SBT_1S;
355 		}
356 		/* Do the delay remainder, if any */
357 		sbt = (sbt + SBT_1US - 1) / SBT_1US;
358 		if (sbt > 0)
359 			DELAY(sbt);
360 		return (0);
361 	}
362 	return (_sleep(&pause_wchan[curcpu], NULL, 0, wmesg, sbt, pr, flags));
363 }
364 
365 /*
366  * Make all threads sleeping on the specified identifier runnable.
367  */
368 void
369 wakeup(void *ident)
370 {
371 	int wakeup_swapper;
372 
373 	sleepq_lock(ident);
374 	wakeup_swapper = sleepq_broadcast(ident, SLEEPQ_SLEEP, 0, 0);
375 	sleepq_release(ident);
376 	if (wakeup_swapper) {
377 		KASSERT(ident != &proc0,
378 		    ("wakeup and wakeup_swapper and proc0"));
379 		kick_proc0();
380 	}
381 }
382 
383 /*
384  * Make a thread sleeping on the specified identifier runnable.
385  * May wake more than one thread if a target thread is currently
386  * swapped out.
387  */
388 void
389 wakeup_one(void *ident)
390 {
391 	int wakeup_swapper;
392 
393 	sleepq_lock(ident);
394 	wakeup_swapper = sleepq_signal(ident, SLEEPQ_SLEEP, 0, 0);
395 	sleepq_release(ident);
396 	if (wakeup_swapper)
397 		kick_proc0();
398 }
399 
400 static void
401 kdb_switch(void)
402 {
403 	thread_unlock(curthread);
404 	kdb_backtrace();
405 	kdb_reenter();
406 	panic("%s: did not reenter debugger", __func__);
407 }
408 
409 /*
410  * The machine independent parts of context switching.
411  */
412 void
413 mi_switch(int flags, struct thread *newtd)
414 {
415 	uint64_t runtime, new_switchtime;
416 	struct thread *td;
417 
418 	td = curthread;			/* XXX */
419 	THREAD_LOCK_ASSERT(td, MA_OWNED | MA_NOTRECURSED);
420 	KASSERT(!TD_ON_RUNQ(td), ("mi_switch: called by old code"));
421 #ifdef INVARIANTS
422 	if (!TD_ON_LOCK(td) && !TD_IS_RUNNING(td))
423 		mtx_assert(&Giant, MA_NOTOWNED);
424 #endif
425 	KASSERT(td->td_critnest == 1 || panicstr,
426 	    ("mi_switch: switch in a critical section"));
427 	KASSERT((flags & (SW_INVOL | SW_VOL)) != 0,
428 	    ("mi_switch: switch must be voluntary or involuntary"));
429 	KASSERT(newtd != curthread, ("mi_switch: preempting back to ourself"));
430 
431 	/*
432 	 * Don't perform context switches from the debugger.
433 	 */
434 	if (kdb_active)
435 		kdb_switch();
436 	if (SCHEDULER_STOPPED())
437 		return;
438 	if (flags & SW_VOL) {
439 		td->td_ru.ru_nvcsw++;
440 		td->td_swvoltick = ticks;
441 	} else
442 		td->td_ru.ru_nivcsw++;
443 #ifdef SCHED_STATS
444 	SCHED_STAT_INC(sched_switch_stats[flags & SW_TYPE_MASK]);
445 #endif
446 	/*
447 	 * Compute the amount of time during which the current
448 	 * thread was running, and add that to its total so far.
449 	 */
450 	new_switchtime = cpu_ticks();
451 	runtime = new_switchtime - PCPU_GET(switchtime);
452 	td->td_runtime += runtime;
453 	td->td_incruntime += runtime;
454 	PCPU_SET(switchtime, new_switchtime);
455 	td->td_generation++;	/* bump preempt-detect counter */
456 	PCPU_INC(cnt.v_swtch);
457 	PCPU_SET(switchticks, ticks);
458 	CTR4(KTR_PROC, "mi_switch: old thread %ld (td_sched %p, pid %ld, %s)",
459 	    td->td_tid, td->td_sched, td->td_proc->p_pid, td->td_name);
460 #if (KTR_COMPILE & KTR_SCHED) != 0
461 	if (TD_IS_IDLETHREAD(td))
462 		KTR_STATE1(KTR_SCHED, "thread", sched_tdname(td), "idle",
463 		    "prio:%d", td->td_priority);
464 	else
465 		KTR_STATE3(KTR_SCHED, "thread", sched_tdname(td), KTDSTATE(td),
466 		    "prio:%d", td->td_priority, "wmesg:\"%s\"", td->td_wmesg,
467 		    "lockname:\"%s\"", td->td_lockname);
468 #endif
469 	SDT_PROBE0(sched, , , preempt);
470 	sched_switch(td, newtd, flags);
471 	KTR_STATE1(KTR_SCHED, "thread", sched_tdname(td), "running",
472 	    "prio:%d", td->td_priority);
473 
474 	CTR4(KTR_PROC, "mi_switch: new thread %ld (td_sched %p, pid %ld, %s)",
475 	    td->td_tid, td->td_sched, td->td_proc->p_pid, td->td_name);
476 
477 	/*
478 	 * If the last thread was exiting, finish cleaning it up.
479 	 */
480 	if ((td = PCPU_GET(deadthread))) {
481 		PCPU_SET(deadthread, NULL);
482 		thread_stash(td);
483 	}
484 }
485 
486 /*
487  * Change thread state to be runnable, placing it on the run queue if
488  * it is in memory.  If it is swapped out, return true so our caller
489  * will know to awaken the swapper.
490  */
491 int
492 setrunnable(struct thread *td)
493 {
494 
495 	THREAD_LOCK_ASSERT(td, MA_OWNED);
496 	KASSERT(td->td_proc->p_state != PRS_ZOMBIE,
497 	    ("setrunnable: pid %d is a zombie", td->td_proc->p_pid));
498 	switch (td->td_state) {
499 	case TDS_RUNNING:
500 	case TDS_RUNQ:
501 		return (0);
502 	case TDS_INHIBITED:
503 		/*
504 		 * If we are only inhibited because we are swapped out
505 		 * then arange to swap in this process. Otherwise just return.
506 		 */
507 		if (td->td_inhibitors != TDI_SWAPPED)
508 			return (0);
509 		/* FALLTHROUGH */
510 	case TDS_CAN_RUN:
511 		break;
512 	default:
513 		printf("state is 0x%x", td->td_state);
514 		panic("setrunnable(2)");
515 	}
516 	if ((td->td_flags & TDF_INMEM) == 0) {
517 		if ((td->td_flags & TDF_SWAPINREQ) == 0) {
518 			td->td_flags |= TDF_SWAPINREQ;
519 			return (1);
520 		}
521 	} else
522 		sched_wakeup(td);
523 	return (0);
524 }
525 
526 /*
527  * Compute a tenex style load average of a quantity on
528  * 1, 5 and 15 minute intervals.
529  */
530 static void
531 loadav(void *arg)
532 {
533 	int i, nrun;
534 	struct loadavg *avg;
535 
536 	nrun = sched_load();
537 	avg = &averunnable;
538 
539 	for (i = 0; i < 3; i++)
540 		avg->ldavg[i] = (cexp[i] * avg->ldavg[i] +
541 		    nrun * FSCALE * (FSCALE - cexp[i])) >> FSHIFT;
542 
543 	/*
544 	 * Schedule the next update to occur after 5 seconds, but add a
545 	 * random variation to avoid synchronisation with processes that
546 	 * run at regular intervals.
547 	 */
548 	callout_reset_sbt(&loadav_callout,
549 	    SBT_1US * (4000000 + (int)(random() % 2000001)), SBT_1US,
550 	    loadav, NULL, C_DIRECT_EXEC | C_PREL(32));
551 }
552 
553 /* ARGSUSED */
554 static void
555 synch_setup(void *dummy)
556 {
557 	callout_init(&loadav_callout, 1);
558 
559 	/* Kick off timeout driven events by calling first time. */
560 	loadav(NULL);
561 }
562 
563 int
564 should_yield(void)
565 {
566 
567 	return ((u_int)ticks - (u_int)curthread->td_swvoltick >= hogticks);
568 }
569 
570 void
571 maybe_yield(void)
572 {
573 
574 	if (should_yield())
575 		kern_yield(PRI_USER);
576 }
577 
578 void
579 kern_yield(int prio)
580 {
581 	struct thread *td;
582 
583 	td = curthread;
584 	DROP_GIANT();
585 	thread_lock(td);
586 	if (prio == PRI_USER)
587 		prio = td->td_user_pri;
588 	if (prio >= 0)
589 		sched_prio(td, prio);
590 	mi_switch(SW_VOL | SWT_RELINQUISH, NULL);
591 	thread_unlock(td);
592 	PICKUP_GIANT();
593 }
594 
595 /*
596  * General purpose yield system call.
597  */
598 int
599 sys_yield(struct thread *td, struct yield_args *uap)
600 {
601 
602 	thread_lock(td);
603 	if (PRI_BASE(td->td_pri_class) == PRI_TIMESHARE)
604 		sched_prio(td, PRI_MAX_TIMESHARE);
605 	mi_switch(SW_VOL | SWT_RELINQUISH, NULL);
606 	thread_unlock(td);
607 	td->td_retval[0] = 0;
608 	return (0);
609 }
610