xref: /freebsd/sys/kern/kern_synch.c (revision b64c5a0ace59af62eff52bfe110a521dc73c937b)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1982, 1986, 1990, 1991, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  * (c) UNIX System Laboratories, Inc.
7  * All or some portions of this file are derived from material licensed
8  * to the University of California by American Telephone and Telegraph
9  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
10  * the permission of UNIX System Laboratories, Inc.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  * 3. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  */
36 
37 #include <sys/cdefs.h>
38 #include "opt_ktrace.h"
39 #include "opt_sched.h"
40 
41 #include <sys/param.h>
42 #include <sys/systm.h>
43 #include <sys/blockcount.h>
44 #include <sys/condvar.h>
45 #include <sys/kdb.h>
46 #include <sys/kernel.h>
47 #include <sys/ktr.h>
48 #include <sys/ktrace.h>
49 #include <sys/lock.h>
50 #include <sys/mutex.h>
51 #include <sys/proc.h>
52 #include <sys/resourcevar.h>
53 #include <sys/sched.h>
54 #include <sys/sdt.h>
55 #include <sys/signalvar.h>
56 #include <sys/sleepqueue.h>
57 #include <sys/smp.h>
58 #include <sys/sx.h>
59 #include <sys/sysctl.h>
60 #include <sys/sysproto.h>
61 #include <sys/vmmeter.h>
62 #ifdef KTRACE
63 #include <sys/uio.h>
64 #endif
65 #ifdef EPOCH_TRACE
66 #include <sys/epoch.h>
67 #endif
68 
69 #include <machine/cpu.h>
70 
71 static void synch_setup(void *dummy);
72 SYSINIT(synch_setup, SI_SUB_KICK_SCHEDULER, SI_ORDER_FIRST, synch_setup,
73     NULL);
74 
75 int	hogticks;
76 static const char pause_wchan[MAXCPU];
77 
78 static struct callout loadav_callout;
79 
80 struct loadavg averunnable =
81 	{ {0, 0, 0}, FSCALE };	/* load average, of runnable procs */
82 /*
83  * Constants for averages over 1, 5, and 15 minutes
84  * when sampling at 5 second intervals.
85  */
86 static uint64_t cexp[3] = {
87 	0.9200444146293232 * FSCALE,	/* exp(-1/12) */
88 	0.9834714538216174 * FSCALE,	/* exp(-1/60) */
89 	0.9944598480048967 * FSCALE,	/* exp(-1/180) */
90 };
91 
92 /* kernel uses `FSCALE', userland (SHOULD) use kern.fscale */
93 SYSCTL_INT(_kern, OID_AUTO, fscale, CTLFLAG_RD, SYSCTL_NULL_INT_PTR, FSCALE,
94     "Fixed-point scale factor used for calculating load average values");
95 
96 static void	loadav(void *arg);
97 
98 SDT_PROVIDER_DECLARE(sched);
99 SDT_PROBE_DEFINE(sched, , , preempt);
100 
101 static void
102 sleepinit(void *unused)
103 {
104 
105 	hogticks = (hz / 10) * 2;	/* Default only. */
106 	init_sleepqueues();
107 }
108 
109 /*
110  * vmem tries to lock the sleepq mutexes when free'ing kva, so make sure
111  * it is available.
112  */
113 SYSINIT(sleepinit, SI_SUB_KMEM, SI_ORDER_ANY, sleepinit, NULL);
114 
115 /*
116  * General sleep call.  Suspends the current thread until a wakeup is
117  * performed on the specified identifier.  The thread will then be made
118  * runnable with the specified priority.  Sleeps at most sbt units of time
119  * (0 means no timeout).  If pri includes the PCATCH flag, let signals
120  * interrupt the sleep, otherwise ignore them while sleeping.  Returns 0 if
121  * awakened, EWOULDBLOCK if the timeout expires.  If PCATCH is set and a
122  * signal becomes pending, ERESTART is returned if the current system
123  * call should be restarted if possible, and EINTR is returned if the system
124  * call should be interrupted by the signal (return EINTR).
125  *
126  * The lock argument is unlocked before the caller is suspended, and
127  * re-locked before _sleep() returns.  If priority includes the PDROP
128  * flag the lock is not re-locked before returning.
129  */
130 int
131 _sleep(const void *ident, struct lock_object *lock, int priority,
132     const char *wmesg, sbintime_t sbt, sbintime_t pr, int flags)
133 {
134 	struct thread *td __ktrace_used;
135 	struct lock_class *class;
136 	uintptr_t lock_state;
137 	int catch, pri, rval, sleepq_flags;
138 	WITNESS_SAVE_DECL(lock_witness);
139 
140 	TSENTER();
141 	td = curthread;
142 #ifdef KTRACE
143 	if (KTRPOINT(td, KTR_CSW))
144 		ktrcsw(1, 0, wmesg);
145 #endif
146 	WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, lock,
147 	    "Sleeping on \"%s\"", wmesg);
148 	KASSERT(sbt != 0 || mtx_owned(&Giant) || lock != NULL ||
149 	    (priority & PNOLOCK) != 0,
150 	    ("sleeping without a lock"));
151 	KASSERT(ident != NULL, ("_sleep: NULL ident"));
152 	KASSERT(TD_IS_RUNNING(td), ("_sleep: curthread not running"));
153 	if (priority & PDROP)
154 		KASSERT(lock != NULL && lock != &Giant.lock_object,
155 		    ("PDROP requires a non-Giant lock"));
156 	if (lock != NULL)
157 		class = LOCK_CLASS(lock);
158 	else
159 		class = NULL;
160 
161 	if (SCHEDULER_STOPPED()) {
162 		if (lock != NULL && priority & PDROP)
163 			class->lc_unlock(lock);
164 		return (0);
165 	}
166 	catch = priority & PCATCH;
167 	pri = priority & PRIMASK;
168 
169 	KASSERT(!TD_ON_SLEEPQ(td), ("recursive sleep"));
170 
171 	if ((uintptr_t)ident >= (uintptr_t)&pause_wchan[0] &&
172 	    (uintptr_t)ident <= (uintptr_t)&pause_wchan[MAXCPU - 1])
173 		sleepq_flags = SLEEPQ_PAUSE;
174 	else
175 		sleepq_flags = SLEEPQ_SLEEP;
176 	if (catch)
177 		sleepq_flags |= SLEEPQ_INTERRUPTIBLE;
178 
179 	sleepq_lock(ident);
180 	CTR5(KTR_PROC, "sleep: thread %ld (pid %ld, %s) on %s (%p)",
181 	    td->td_tid, td->td_proc->p_pid, td->td_name, wmesg, ident);
182 
183 	if (lock == &Giant.lock_object)
184 		mtx_assert(&Giant, MA_OWNED);
185 	DROP_GIANT();
186 	if (lock != NULL && lock != &Giant.lock_object &&
187 	    !(class->lc_flags & LC_SLEEPABLE)) {
188 		KASSERT(!(class->lc_flags & LC_SPINLOCK),
189 		    ("spin locks can only use msleep_spin"));
190 		WITNESS_SAVE(lock, lock_witness);
191 		lock_state = class->lc_unlock(lock);
192 	} else
193 		/* GCC needs to follow the Yellow Brick Road */
194 		lock_state = -1;
195 
196 	/*
197 	 * We put ourselves on the sleep queue and start our timeout
198 	 * before calling thread_suspend_check, as we could stop there,
199 	 * and a wakeup or a SIGCONT (or both) could occur while we were
200 	 * stopped without resuming us.  Thus, we must be ready for sleep
201 	 * when cursig() is called.  If the wakeup happens while we're
202 	 * stopped, then td will no longer be on a sleep queue upon
203 	 * return from cursig().
204 	 */
205 	sleepq_add(ident, lock, wmesg, sleepq_flags, 0);
206 	if (sbt != 0)
207 		sleepq_set_timeout_sbt(ident, sbt, pr, flags);
208 	if (lock != NULL && class->lc_flags & LC_SLEEPABLE) {
209 		sleepq_release(ident);
210 		WITNESS_SAVE(lock, lock_witness);
211 		lock_state = class->lc_unlock(lock);
212 		sleepq_lock(ident);
213 	}
214 	if (sbt != 0 && catch)
215 		rval = sleepq_timedwait_sig(ident, pri);
216 	else if (sbt != 0)
217 		rval = sleepq_timedwait(ident, pri);
218 	else if (catch)
219 		rval = sleepq_wait_sig(ident, pri);
220 	else {
221 		sleepq_wait(ident, pri);
222 		rval = 0;
223 	}
224 #ifdef KTRACE
225 	if (KTRPOINT(td, KTR_CSW))
226 		ktrcsw(0, 0, wmesg);
227 #endif
228 	PICKUP_GIANT();
229 	if (lock != NULL && lock != &Giant.lock_object && !(priority & PDROP)) {
230 		class->lc_lock(lock, lock_state);
231 		WITNESS_RESTORE(lock, lock_witness);
232 	}
233 	TSEXIT();
234 	return (rval);
235 }
236 
237 int
238 msleep_spin_sbt(const void *ident, struct mtx *mtx, const char *wmesg,
239     sbintime_t sbt, sbintime_t pr, int flags)
240 {
241 	struct thread *td __ktrace_used;
242 	int rval;
243 	WITNESS_SAVE_DECL(mtx);
244 
245 	td = curthread;
246 	KASSERT(mtx != NULL, ("sleeping without a mutex"));
247 	KASSERT(ident != NULL, ("msleep_spin_sbt: NULL ident"));
248 	KASSERT(TD_IS_RUNNING(td), ("msleep_spin_sbt: curthread not running"));
249 
250 	if (SCHEDULER_STOPPED())
251 		return (0);
252 
253 	sleepq_lock(ident);
254 	CTR5(KTR_PROC, "msleep_spin: thread %ld (pid %ld, %s) on %s (%p)",
255 	    td->td_tid, td->td_proc->p_pid, td->td_name, wmesg, ident);
256 
257 	DROP_GIANT();
258 	mtx_assert(mtx, MA_OWNED | MA_NOTRECURSED);
259 	WITNESS_SAVE(&mtx->lock_object, mtx);
260 	mtx_unlock_spin(mtx);
261 
262 	/*
263 	 * We put ourselves on the sleep queue and start our timeout.
264 	 */
265 	sleepq_add(ident, &mtx->lock_object, wmesg, SLEEPQ_SLEEP, 0);
266 	if (sbt != 0)
267 		sleepq_set_timeout_sbt(ident, sbt, pr, flags);
268 
269 	/*
270 	 * Can't call ktrace with any spin locks held so it can lock the
271 	 * ktrace_mtx lock, and WITNESS_WARN considers it an error to hold
272 	 * any spin lock.  Thus, we have to drop the sleepq spin lock while
273 	 * we handle those requests.  This is safe since we have placed our
274 	 * thread on the sleep queue already.
275 	 */
276 #ifdef KTRACE
277 	if (KTRPOINT(td, KTR_CSW)) {
278 		sleepq_release(ident);
279 		ktrcsw(1, 0, wmesg);
280 		sleepq_lock(ident);
281 	}
282 #endif
283 #ifdef WITNESS
284 	sleepq_release(ident);
285 	WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, "Sleeping on \"%s\"",
286 	    wmesg);
287 	sleepq_lock(ident);
288 #endif
289 	if (sbt != 0)
290 		rval = sleepq_timedwait(ident, 0);
291 	else {
292 		sleepq_wait(ident, 0);
293 		rval = 0;
294 	}
295 #ifdef KTRACE
296 	if (KTRPOINT(td, KTR_CSW))
297 		ktrcsw(0, 0, wmesg);
298 #endif
299 	PICKUP_GIANT();
300 	mtx_lock_spin(mtx);
301 	WITNESS_RESTORE(&mtx->lock_object, mtx);
302 	return (rval);
303 }
304 
305 /*
306  * pause_sbt() delays the calling thread by the given signed binary
307  * time. During cold bootup, pause_sbt() uses the DELAY() function
308  * instead of the _sleep() function to do the waiting. The "sbt"
309  * argument must be greater than or equal to zero. A "sbt" value of
310  * zero is equivalent to a "sbt" value of one tick.
311  */
312 int
313 pause_sbt(const char *wmesg, sbintime_t sbt, sbintime_t pr, int flags)
314 {
315 	KASSERT(sbt >= 0, ("pause_sbt: timeout must be >= 0"));
316 
317 	/* silently convert invalid timeouts */
318 	if (sbt == 0)
319 		sbt = tick_sbt;
320 
321 	if ((cold && curthread == &thread0) || kdb_active ||
322 	    SCHEDULER_STOPPED()) {
323 		/*
324 		 * We delay one second at a time to avoid overflowing the
325 		 * system specific DELAY() function(s):
326 		 */
327 		while (sbt >= SBT_1S) {
328 			DELAY(1000000);
329 			sbt -= SBT_1S;
330 		}
331 		/* Do the delay remainder, if any */
332 		sbt = howmany(sbt, SBT_1US);
333 		if (sbt > 0)
334 			DELAY(sbt);
335 		return (EWOULDBLOCK);
336 	}
337 	return (_sleep(&pause_wchan[curcpu], NULL,
338 	    (flags & C_CATCH) ? PCATCH : 0, wmesg, sbt, pr, flags));
339 }
340 
341 /*
342  * Make all threads sleeping on the specified identifier runnable.
343  */
344 void
345 wakeup(const void *ident)
346 {
347 	sleepq_lock(ident);
348 	sleepq_broadcast(ident, SLEEPQ_SLEEP, 0, 0);
349 	sleepq_release(ident);
350 }
351 
352 /*
353  * Make a thread sleeping on the specified identifier runnable.
354  * May wake more than one thread if a target thread is currently
355  * swapped out.
356  */
357 void
358 wakeup_one(const void *ident)
359 {
360 	sleepq_lock(ident);
361 	sleepq_signal(ident, SLEEPQ_SLEEP | SLEEPQ_DROP, 0, 0);
362 }
363 
364 void
365 wakeup_any(const void *ident)
366 {
367 	sleepq_lock(ident);
368 	sleepq_signal(ident, SLEEPQ_SLEEP | SLEEPQ_UNFAIR | SLEEPQ_DROP, 0, 0);
369 }
370 
371 /*
372  * Signal sleeping waiters after the counter has reached zero.
373  */
374 void
375 _blockcount_wakeup(blockcount_t *bc, u_int old)
376 {
377 
378 	KASSERT(_BLOCKCOUNT_WAITERS(old),
379 	    ("%s: no waiters on %p", __func__, bc));
380 
381 	if (atomic_cmpset_int(&bc->__count, _BLOCKCOUNT_WAITERS_FLAG, 0))
382 		wakeup(bc);
383 }
384 
385 /*
386  * Wait for a wakeup or a signal.  This does not guarantee that the count is
387  * still zero on return.  Callers wanting a precise answer should use
388  * blockcount_wait() with an interlock.
389  *
390  * If there is no work to wait for, return 0.  If the sleep was interrupted by a
391  * signal, return EINTR or ERESTART, and return EAGAIN otherwise.
392  */
393 int
394 _blockcount_sleep(blockcount_t *bc, struct lock_object *lock, const char *wmesg,
395     int prio)
396 {
397 	void *wchan;
398 	uintptr_t lock_state;
399 	u_int old;
400 	int ret;
401 	bool catch, drop;
402 
403 	KASSERT(lock != &Giant.lock_object,
404 	    ("%s: cannot use Giant as the interlock", __func__));
405 
406 	catch = (prio & PCATCH) != 0;
407 	drop = (prio & PDROP) != 0;
408 	prio &= PRIMASK;
409 
410 	/*
411 	 * Synchronize with the fence in blockcount_release().  If we end up
412 	 * waiting, the sleepqueue lock acquisition will provide the required
413 	 * side effects.
414 	 *
415 	 * If there is no work to wait for, but waiters are present, try to put
416 	 * ourselves to sleep to avoid jumping ahead.
417 	 */
418 	if (atomic_load_acq_int(&bc->__count) == 0) {
419 		if (lock != NULL && drop)
420 			LOCK_CLASS(lock)->lc_unlock(lock);
421 		return (0);
422 	}
423 	lock_state = 0;
424 	wchan = bc;
425 	sleepq_lock(wchan);
426 	DROP_GIANT();
427 	if (lock != NULL)
428 		lock_state = LOCK_CLASS(lock)->lc_unlock(lock);
429 	old = blockcount_read(bc);
430 	ret = 0;
431 	do {
432 		if (_BLOCKCOUNT_COUNT(old) == 0) {
433 			sleepq_release(wchan);
434 			goto out;
435 		}
436 		if (_BLOCKCOUNT_WAITERS(old))
437 			break;
438 	} while (!atomic_fcmpset_int(&bc->__count, &old,
439 	    old | _BLOCKCOUNT_WAITERS_FLAG));
440 	sleepq_add(wchan, NULL, wmesg, catch ? SLEEPQ_INTERRUPTIBLE : 0, 0);
441 	if (catch)
442 		ret = sleepq_wait_sig(wchan, prio);
443 	else
444 		sleepq_wait(wchan, prio);
445 	if (ret == 0)
446 		ret = EAGAIN;
447 
448 out:
449 	PICKUP_GIANT();
450 	if (lock != NULL && !drop)
451 		LOCK_CLASS(lock)->lc_lock(lock, lock_state);
452 
453 	return (ret);
454 }
455 
456 static void
457 kdb_switch(void)
458 {
459 	thread_unlock(curthread);
460 	kdb_backtrace();
461 	kdb_reenter();
462 	panic("%s: did not reenter debugger", __func__);
463 }
464 
465 /*
466  * mi_switch(9): The machine-independent parts of context switching.
467  *
468  * The thread lock is required on entry and is no longer held on return.
469  */
470 void
471 mi_switch(int flags)
472 {
473 	uint64_t runtime, new_switchtime;
474 	struct thread *td;
475 
476 	td = curthread;			/* XXX */
477 	THREAD_LOCK_ASSERT(td, MA_OWNED | MA_NOTRECURSED);
478 	KASSERT(!TD_ON_RUNQ(td), ("mi_switch: called by old code"));
479 #ifdef INVARIANTS
480 	if (!TD_ON_LOCK(td) && !TD_IS_RUNNING(td))
481 		mtx_assert(&Giant, MA_NOTOWNED);
482 #endif
483 	/* thread_lock() performs spinlock_enter(). */
484 	KASSERT(td->td_critnest == 1 || KERNEL_PANICKED(),
485 	    ("mi_switch: switch in a critical section"));
486 	KASSERT((flags & (SW_INVOL | SW_VOL)) != 0,
487 	    ("mi_switch: switch must be voluntary or involuntary"));
488 	KASSERT((flags & SW_TYPE_MASK) != 0,
489 	    ("mi_switch: a switch reason (type) must be specified"));
490 	KASSERT((flags & SW_TYPE_MASK) < SWT_COUNT,
491 	    ("mi_switch: invalid switch reason %d", (flags & SW_TYPE_MASK)));
492 
493 	/*
494 	 * Don't perform context switches from the debugger.
495 	 */
496 	if (kdb_active)
497 		kdb_switch();
498 	if (SCHEDULER_STOPPED())
499 		return;
500 	if (flags & SW_VOL) {
501 		td->td_ru.ru_nvcsw++;
502 		td->td_swvoltick = ticks;
503 	} else {
504 		td->td_ru.ru_nivcsw++;
505 		td->td_swinvoltick = ticks;
506 	}
507 #ifdef SCHED_STATS
508 	SCHED_STAT_INC(sched_switch_stats[flags & SW_TYPE_MASK]);
509 #endif
510 	/*
511 	 * Compute the amount of time during which the current
512 	 * thread was running, and add that to its total so far.
513 	 */
514 	new_switchtime = cpu_ticks();
515 	runtime = new_switchtime - PCPU_GET(switchtime);
516 	td->td_runtime += runtime;
517 	td->td_incruntime += runtime;
518 	PCPU_SET(switchtime, new_switchtime);
519 	td->td_generation++;	/* bump preempt-detect counter */
520 	VM_CNT_INC(v_swtch);
521 	PCPU_SET(switchticks, ticks);
522 	CTR4(KTR_PROC, "mi_switch: old thread %ld (td_sched %p, pid %ld, %s)",
523 	    td->td_tid, td_get_sched(td), td->td_proc->p_pid, td->td_name);
524 #ifdef KDTRACE_HOOKS
525 	if (SDT_PROBES_ENABLED() &&
526 	    ((flags & SW_PREEMPT) != 0 || ((flags & SW_INVOL) != 0 &&
527 	    (flags & SW_TYPE_MASK) == SWT_NEEDRESCHED)))
528 		SDT_PROBE0(sched, , , preempt);
529 #endif
530 	sched_switch(td, flags);
531 	CTR4(KTR_PROC, "mi_switch: new thread %ld (td_sched %p, pid %ld, %s)",
532 	    td->td_tid, td_get_sched(td), td->td_proc->p_pid, td->td_name);
533 
534 	/*
535 	 * If the last thread was exiting, finish cleaning it up.
536 	 */
537 	if ((td = PCPU_GET(deadthread))) {
538 		PCPU_SET(deadthread, NULL);
539 		thread_stash(td);
540 	}
541 	spinlock_exit();
542 }
543 
544 /*
545  * Change thread state to be runnable, placing it on the run queue.
546  *
547  * Requires the thread lock on entry, drops on exit.
548  */
549 void
550 setrunnable(struct thread *td, int srqflags)
551 {
552 	THREAD_LOCK_ASSERT(td, MA_OWNED);
553 	KASSERT(td->td_proc->p_state != PRS_ZOMBIE,
554 	    ("setrunnable: pid %d is a zombie", td->td_proc->p_pid));
555 
556 	switch (TD_GET_STATE(td)) {
557 	case TDS_RUNNING:
558 	case TDS_RUNQ:
559 	case TDS_INHIBITED:
560 		if ((srqflags & (SRQ_HOLD | SRQ_HOLDTD)) == 0)
561 			thread_unlock(td);
562 		break;
563 	case TDS_CAN_RUN:
564 		KASSERT((td->td_flags & TDF_INMEM) != 0,
565 		    ("setrunnable: td %p not in mem, flags 0x%X inhibit 0x%X",
566 		    td, td->td_flags, td->td_inhibitors));
567 		/* unlocks thread lock according to flags */
568 		sched_wakeup(td, srqflags);
569 		break;
570 	default:
571 		panic("setrunnable: state 0x%x", TD_GET_STATE(td));
572 	}
573 }
574 
575 /*
576  * Compute a tenex style load average of a quantity on
577  * 1, 5 and 15 minute intervals.
578  */
579 static void
580 loadav(void *arg)
581 {
582 	int i;
583 	uint64_t nrun;
584 	struct loadavg *avg;
585 
586 	nrun = (uint64_t)sched_load();
587 	avg = &averunnable;
588 
589 	for (i = 0; i < 3; i++)
590 		avg->ldavg[i] = (cexp[i] * (uint64_t)avg->ldavg[i] +
591 		    nrun * FSCALE * (FSCALE - cexp[i])) >> FSHIFT;
592 
593 	/*
594 	 * Schedule the next update to occur after 5 seconds, but add a
595 	 * random variation to avoid synchronisation with processes that
596 	 * run at regular intervals.
597 	 */
598 	callout_reset_sbt(&loadav_callout,
599 	    SBT_1US * (4000000 + (int)(random() % 2000001)), SBT_1US,
600 	    loadav, NULL, C_DIRECT_EXEC | C_PREL(32));
601 }
602 
603 static void
604 ast_scheduler(struct thread *td, int tda __unused)
605 {
606 #ifdef KTRACE
607 	if (KTRPOINT(td, KTR_CSW))
608 		ktrcsw(1, 1, __func__);
609 #endif
610 	thread_lock(td);
611 	sched_prio(td, td->td_user_pri);
612 	mi_switch(SW_INVOL | SWT_NEEDRESCHED);
613 #ifdef KTRACE
614 	if (KTRPOINT(td, KTR_CSW))
615 		ktrcsw(0, 1, __func__);
616 #endif
617 }
618 
619 static void
620 synch_setup(void *dummy __unused)
621 {
622 	callout_init(&loadav_callout, 1);
623 	ast_register(TDA_SCHED, ASTR_ASTF_REQUIRED, 0, ast_scheduler);
624 
625 	/* Kick off timeout driven events by calling first time. */
626 	loadav(NULL);
627 }
628 
629 bool
630 should_yield(void)
631 {
632 
633 	return ((u_int)ticks - (u_int)curthread->td_swvoltick >= hogticks);
634 }
635 
636 void
637 maybe_yield(void)
638 {
639 
640 	if (should_yield())
641 		kern_yield(PRI_USER);
642 }
643 
644 void
645 kern_yield(int prio)
646 {
647 	struct thread *td;
648 
649 	td = curthread;
650 	DROP_GIANT();
651 	thread_lock(td);
652 	if (prio == PRI_USER)
653 		prio = td->td_user_pri;
654 	if (prio >= 0)
655 		sched_prio(td, prio);
656 	mi_switch(SW_VOL | SWT_RELINQUISH);
657 	PICKUP_GIANT();
658 }
659 
660 /*
661  * General purpose yield system call.
662  */
663 int
664 sys_yield(struct thread *td, struct yield_args *uap)
665 {
666 
667 	thread_lock(td);
668 	if (PRI_BASE(td->td_pri_class) == PRI_TIMESHARE)
669 		sched_prio(td, PRI_MAX_TIMESHARE);
670 	mi_switch(SW_VOL | SWT_RELINQUISH);
671 	td->td_retval[0] = 0;
672 	return (0);
673 }
674 
675 int
676 sys_sched_getcpu(struct thread *td, struct sched_getcpu_args *uap)
677 {
678 	td->td_retval[0] = td->td_oncpu;
679 	return (0);
680 }
681