xref: /freebsd/sys/kern/kern_synch.c (revision afe61c15161c324a7af299a9b8457aba5afc92db)
1 /*-
2  * Copyright (c) 1982, 1986, 1990, 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  * (c) UNIX System Laboratories, Inc.
5  * All or some portions of this file are derived from material licensed
6  * to the University of California by American Telephone and Telegraph
7  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8  * the permission of UNIX System Laboratories, Inc.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. All advertising materials mentioning features or use of this software
19  *    must display the following acknowledgement:
20  *	This product includes software developed by the University of
21  *	California, Berkeley and its contributors.
22  * 4. Neither the name of the University nor the names of its contributors
23  *    may be used to endorse or promote products derived from this software
24  *    without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36  * SUCH DAMAGE.
37  *
38  *	@(#)kern_synch.c	8.6 (Berkeley) 1/21/94
39  */
40 
41 #include <sys/param.h>
42 #include <sys/systm.h>
43 #include <sys/proc.h>
44 #include <sys/kernel.h>
45 #include <sys/buf.h>
46 #include <sys/signalvar.h>
47 #include <sys/resourcevar.h>
48 #include <sys/vmmeter.h>
49 #ifdef KTRACE
50 #include <sys/ktrace.h>
51 #endif
52 
53 #include <machine/cpu.h>
54 
55 u_char	curpriority;		/* usrpri of curproc */
56 int	lbolt;			/* once a second sleep address */
57 
58 /*
59  * Force switch among equal priority processes every 100ms.
60  */
61 /* ARGSUSED */
62 void
63 roundrobin(arg)
64 	void *arg;
65 {
66 
67 	need_resched();
68 	timeout(roundrobin, NULL, hz / 10);
69 }
70 
71 /*
72  * Constants for digital decay and forget:
73  *	90% of (p_estcpu) usage in 5 * loadav time
74  *	95% of (p_pctcpu) usage in 60 seconds (load insensitive)
75  *          Note that, as ps(1) mentions, this can let percentages
76  *          total over 100% (I've seen 137.9% for 3 processes).
77  *
78  * Note that hardclock updates p_estcpu and p_cpticks independently.
79  *
80  * We wish to decay away 90% of p_estcpu in (5 * loadavg) seconds.
81  * That is, the system wants to compute a value of decay such
82  * that the following for loop:
83  * 	for (i = 0; i < (5 * loadavg); i++)
84  * 		p_estcpu *= decay;
85  * will compute
86  * 	p_estcpu *= 0.1;
87  * for all values of loadavg:
88  *
89  * Mathematically this loop can be expressed by saying:
90  * 	decay ** (5 * loadavg) ~= .1
91  *
92  * The system computes decay as:
93  * 	decay = (2 * loadavg) / (2 * loadavg + 1)
94  *
95  * We wish to prove that the system's computation of decay
96  * will always fulfill the equation:
97  * 	decay ** (5 * loadavg) ~= .1
98  *
99  * If we compute b as:
100  * 	b = 2 * loadavg
101  * then
102  * 	decay = b / (b + 1)
103  *
104  * We now need to prove two things:
105  *	1) Given factor ** (5 * loadavg) ~= .1, prove factor == b/(b+1)
106  *	2) Given b/(b+1) ** power ~= .1, prove power == (5 * loadavg)
107  *
108  * Facts:
109  *         For x close to zero, exp(x) =~ 1 + x, since
110  *              exp(x) = 0! + x**1/1! + x**2/2! + ... .
111  *              therefore exp(-1/b) =~ 1 - (1/b) = (b-1)/b.
112  *         For x close to zero, ln(1+x) =~ x, since
113  *              ln(1+x) = x - x**2/2 + x**3/3 - ...     -1 < x < 1
114  *              therefore ln(b/(b+1)) = ln(1 - 1/(b+1)) =~ -1/(b+1).
115  *         ln(.1) =~ -2.30
116  *
117  * Proof of (1):
118  *    Solve (factor)**(power) =~ .1 given power (5*loadav):
119  *	solving for factor,
120  *      ln(factor) =~ (-2.30/5*loadav), or
121  *      factor =~ exp(-1/((5/2.30)*loadav)) =~ exp(-1/(2*loadav)) =
122  *          exp(-1/b) =~ (b-1)/b =~ b/(b+1).                    QED
123  *
124  * Proof of (2):
125  *    Solve (factor)**(power) =~ .1 given factor == (b/(b+1)):
126  *	solving for power,
127  *      power*ln(b/(b+1)) =~ -2.30, or
128  *      power =~ 2.3 * (b + 1) = 4.6*loadav + 2.3 =~ 5*loadav.  QED
129  *
130  * Actual power values for the implemented algorithm are as follows:
131  *      loadav: 1       2       3       4
132  *      power:  5.68    10.32   14.94   19.55
133  */
134 
135 /* calculations for digital decay to forget 90% of usage in 5*loadav sec */
136 #define	loadfactor(loadav)	(2 * (loadav))
137 #define	decay_cpu(loadfac, cpu)	(((loadfac) * (cpu)) / ((loadfac) + FSCALE))
138 
139 /* decay 95% of `p_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */
140 fixpt_t	ccpu = 0.95122942450071400909 * FSCALE;		/* exp(-1/20) */
141 
142 /*
143  * If `ccpu' is not equal to `exp(-1/20)' and you still want to use the
144  * faster/more-accurate formula, you'll have to estimate CCPU_SHIFT below
145  * and possibly adjust FSHIFT in "param.h" so that (FSHIFT >= CCPU_SHIFT).
146  *
147  * To estimate CCPU_SHIFT for exp(-1/20), the following formula was used:
148  *	1 - exp(-1/20) ~= 0.0487 ~= 0.0488 == 1 (fixed pt, *11* bits).
149  *
150  * If you dont want to bother with the faster/more-accurate formula, you
151  * can set CCPU_SHIFT to (FSHIFT + 1) which will use a slower/less-accurate
152  * (more general) method of calculating the %age of CPU used by a process.
153  */
154 #define	CCPU_SHIFT	11
155 
156 /*
157  * Recompute process priorities, every hz ticks.
158  */
159 /* ARGSUSED */
160 void
161 schedcpu(arg)
162 	void *arg;
163 {
164 	register fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
165 	register struct proc *p;
166 	register int s;
167 	register unsigned int newcpu;
168 
169 	wakeup((caddr_t)&lbolt);
170 	for (p = (struct proc *)allproc; p != NULL; p = p->p_next) {
171 		/*
172 		 * Increment time in/out of memory and sleep time
173 		 * (if sleeping).  We ignore overflow; with 16-bit int's
174 		 * (remember them?) overflow takes 45 days.
175 		 */
176 		p->p_swtime++;
177 		if (p->p_stat == SSLEEP || p->p_stat == SSTOP)
178 			p->p_slptime++;
179 		p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT;
180 		/*
181 		 * If the process has slept the entire second,
182 		 * stop recalculating its priority until it wakes up.
183 		 */
184 		if (p->p_slptime > 1)
185 			continue;
186 		s = splstatclock();	/* prevent state changes */
187 		/*
188 		 * p_pctcpu is only for ps.
189 		 */
190 #if	(FSHIFT >= CCPU_SHIFT)
191 		p->p_pctcpu += (hz == 100)?
192 			((fixpt_t) p->p_cpticks) << (FSHIFT - CCPU_SHIFT):
193                 	100 * (((fixpt_t) p->p_cpticks)
194 				<< (FSHIFT - CCPU_SHIFT)) / hz;
195 #else
196 		p->p_pctcpu += ((FSCALE - ccpu) *
197 			(p->p_cpticks * FSCALE / hz)) >> FSHIFT;
198 #endif
199 		p->p_cpticks = 0;
200 		newcpu = (u_int) decay_cpu(loadfac, p->p_estcpu) + p->p_nice;
201 		p->p_estcpu = min(newcpu, UCHAR_MAX);
202 		resetpriority(p);
203 		if (p->p_priority >= PUSER) {
204 #define	PPQ	(128 / NQS)		/* priorities per queue */
205 			if ((p != curproc) &&
206 			    p->p_stat == SRUN &&
207 			    (p->p_flag & P_INMEM) &&
208 			    (p->p_priority / PPQ) != (p->p_usrpri / PPQ)) {
209 				remrq(p);
210 				p->p_priority = p->p_usrpri;
211 				setrunqueue(p);
212 			} else
213 				p->p_priority = p->p_usrpri;
214 		}
215 		splx(s);
216 	}
217 	vmmeter();
218 	if (bclnlist != NULL)
219 		wakeup((caddr_t)pageproc);
220 	timeout(schedcpu, (void *)0, hz);
221 }
222 
223 /*
224  * Recalculate the priority of a process after it has slept for a while.
225  * For all load averages >= 1 and max p_estcpu of 255, sleeping for at
226  * least six times the loadfactor will decay p_estcpu to zero.
227  */
228 void
229 updatepri(p)
230 	register struct proc *p;
231 {
232 	register unsigned int newcpu = p->p_estcpu;
233 	register fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
234 
235 	if (p->p_slptime > 5 * loadfac)
236 		p->p_estcpu = 0;
237 	else {
238 		p->p_slptime--;	/* the first time was done in schedcpu */
239 		while (newcpu && --p->p_slptime)
240 			newcpu = (int) decay_cpu(loadfac, newcpu);
241 		p->p_estcpu = min(newcpu, UCHAR_MAX);
242 	}
243 	resetpriority(p);
244 }
245 
246 /*
247  * We're only looking at 7 bits of the address; everything is
248  * aligned to 4, lots of things are aligned to greater powers
249  * of 2.  Shift right by 8, i.e. drop the bottom 256 worth.
250  */
251 #define TABLESIZE	128
252 #define LOOKUP(x)	(((int)(x) >> 8) & (TABLESIZE - 1))
253 struct slpque {
254 	struct proc *sq_head;
255 	struct proc **sq_tailp;
256 } slpque[TABLESIZE];
257 
258 /*
259  * During autoconfiguration or after a panic, a sleep will simply
260  * lower the priority briefly to allow interrupts, then return.
261  * The priority to be used (safepri) is machine-dependent, thus this
262  * value is initialized and maintained in the machine-dependent layers.
263  * This priority will typically be 0, or the lowest priority
264  * that is safe for use on the interrupt stack; it can be made
265  * higher to block network software interrupts after panics.
266  */
267 int safepri;
268 
269 /*
270  * General sleep call.  Suspends the current process until a wakeup is
271  * performed on the specified identifier.  The process will then be made
272  * runnable with the specified priority.  Sleeps at most timo/hz seconds
273  * (0 means no timeout).  If pri includes PCATCH flag, signals are checked
274  * before and after sleeping, else signals are not checked.  Returns 0 if
275  * awakened, EWOULDBLOCK if the timeout expires.  If PCATCH is set and a
276  * signal needs to be delivered, ERESTART is returned if the current system
277  * call should be restarted if possible, and EINTR is returned if the system
278  * call should be interrupted by the signal (return EINTR).
279  */
280 int
281 tsleep(ident, priority, wmesg, timo)
282 	void *ident;
283 	int priority, timo;
284 	char *wmesg;
285 {
286 	register struct proc *p = curproc;
287 	register struct slpque *qp;
288 	register s;
289 	int sig, catch = priority & PCATCH;
290 	extern int cold;
291 	void endtsleep __P((void *));
292 
293 #ifdef KTRACE
294 	if (KTRPOINT(p, KTR_CSW))
295 		ktrcsw(p->p_tracep, 1, 0);
296 #endif
297 	s = splhigh();
298 	if (cold || panicstr) {
299 		/*
300 		 * After a panic, or during autoconfiguration,
301 		 * just give interrupts a chance, then just return;
302 		 * don't run any other procs or panic below,
303 		 * in case this is the idle process and already asleep.
304 		 */
305 		splx(safepri);
306 		splx(s);
307 		return (0);
308 	}
309 #ifdef DIAGNOSTIC
310 	if (ident == NULL || p->p_stat != SRUN || p->p_back)
311 		panic("tsleep");
312 #endif
313 	p->p_wchan = ident;
314 	p->p_wmesg = wmesg;
315 	p->p_slptime = 0;
316 	p->p_priority = priority & PRIMASK;
317 	qp = &slpque[LOOKUP(ident)];
318 	if (qp->sq_head == 0)
319 		qp->sq_head = p;
320 	else
321 		*qp->sq_tailp = p;
322 	*(qp->sq_tailp = &p->p_forw) = 0;
323 	if (timo)
324 		timeout(endtsleep, (void *)p, timo);
325 	/*
326 	 * We put ourselves on the sleep queue and start our timeout
327 	 * before calling CURSIG, as we could stop there, and a wakeup
328 	 * or a SIGCONT (or both) could occur while we were stopped.
329 	 * A SIGCONT would cause us to be marked as SSLEEP
330 	 * without resuming us, thus we must be ready for sleep
331 	 * when CURSIG is called.  If the wakeup happens while we're
332 	 * stopped, p->p_wchan will be 0 upon return from CURSIG.
333 	 */
334 	if (catch) {
335 		p->p_flag |= P_SINTR;
336 		if (sig = CURSIG(p)) {
337 			if (p->p_wchan)
338 				unsleep(p);
339 			p->p_stat = SRUN;
340 			goto resume;
341 		}
342 		if (p->p_wchan == 0) {
343 			catch = 0;
344 			goto resume;
345 		}
346 	} else
347 		sig = 0;
348 	p->p_stat = SSLEEP;
349 	p->p_stats->p_ru.ru_nvcsw++;
350 	mi_switch();
351 resume:
352 	curpriority = p->p_usrpri;
353 	splx(s);
354 	p->p_flag &= ~P_SINTR;
355 	if (p->p_flag & P_TIMEOUT) {
356 		p->p_flag &= ~P_TIMEOUT;
357 		if (sig == 0) {
358 #ifdef KTRACE
359 			if (KTRPOINT(p, KTR_CSW))
360 				ktrcsw(p->p_tracep, 0, 0);
361 #endif
362 			return (EWOULDBLOCK);
363 		}
364 	} else if (timo)
365 		untimeout(endtsleep, (void *)p);
366 	if (catch && (sig != 0 || (sig = CURSIG(p)))) {
367 #ifdef KTRACE
368 		if (KTRPOINT(p, KTR_CSW))
369 			ktrcsw(p->p_tracep, 0, 0);
370 #endif
371 		if (p->p_sigacts->ps_sigintr & sigmask(sig))
372 			return (EINTR);
373 		return (ERESTART);
374 	}
375 #ifdef KTRACE
376 	if (KTRPOINT(p, KTR_CSW))
377 		ktrcsw(p->p_tracep, 0, 0);
378 #endif
379 	return (0);
380 }
381 
382 /*
383  * Implement timeout for tsleep.
384  * If process hasn't been awakened (wchan non-zero),
385  * set timeout flag and undo the sleep.  If proc
386  * is stopped, just unsleep so it will remain stopped.
387  */
388 void
389 endtsleep(arg)
390 	void *arg;
391 {
392 	register struct proc *p;
393 	int s;
394 
395 	p = (struct proc *)arg;
396 	s = splhigh();
397 	if (p->p_wchan) {
398 		if (p->p_stat == SSLEEP)
399 			setrunnable(p);
400 		else
401 			unsleep(p);
402 		p->p_flag |= P_TIMEOUT;
403 	}
404 	splx(s);
405 }
406 
407 /*
408  * Short-term, non-interruptable sleep.
409  */
410 void
411 sleep(ident, priority)
412 	void *ident;
413 	int priority;
414 {
415 	register struct proc *p = curproc;
416 	register struct slpque *qp;
417 	register s;
418 	extern int cold;
419 
420 #ifdef DIAGNOSTIC
421 	if (priority > PZERO) {
422 		printf("sleep called with priority %d > PZERO, wchan: %x\n",
423 		    priority, ident);
424 		panic("old sleep");
425 	}
426 #endif
427 	s = splhigh();
428 	if (cold || panicstr) {
429 		/*
430 		 * After a panic, or during autoconfiguration,
431 		 * just give interrupts a chance, then just return;
432 		 * don't run any other procs or panic below,
433 		 * in case this is the idle process and already asleep.
434 		 */
435 		splx(safepri);
436 		splx(s);
437 		return;
438 	}
439 #ifdef DIAGNOSTIC
440 	if (ident == NULL || p->p_stat != SRUN || p->p_back)
441 		panic("sleep");
442 #endif
443 	p->p_wchan = ident;
444 	p->p_wmesg = NULL;
445 	p->p_slptime = 0;
446 	p->p_priority = priority;
447 	qp = &slpque[LOOKUP(ident)];
448 	if (qp->sq_head == 0)
449 		qp->sq_head = p;
450 	else
451 		*qp->sq_tailp = p;
452 	*(qp->sq_tailp = &p->p_forw) = 0;
453 	p->p_stat = SSLEEP;
454 	p->p_stats->p_ru.ru_nvcsw++;
455 #ifdef KTRACE
456 	if (KTRPOINT(p, KTR_CSW))
457 		ktrcsw(p->p_tracep, 1, 0);
458 #endif
459 	mi_switch();
460 #ifdef KTRACE
461 	if (KTRPOINT(p, KTR_CSW))
462 		ktrcsw(p->p_tracep, 0, 0);
463 #endif
464 	curpriority = p->p_usrpri;
465 	splx(s);
466 }
467 
468 /*
469  * Remove a process from its wait queue
470  */
471 void
472 unsleep(p)
473 	register struct proc *p;
474 {
475 	register struct slpque *qp;
476 	register struct proc **hp;
477 	int s;
478 
479 	s = splhigh();
480 	if (p->p_wchan) {
481 		hp = &(qp = &slpque[LOOKUP(p->p_wchan)])->sq_head;
482 		while (*hp != p)
483 			hp = &(*hp)->p_forw;
484 		*hp = p->p_forw;
485 		if (qp->sq_tailp == &p->p_forw)
486 			qp->sq_tailp = hp;
487 		p->p_wchan = 0;
488 	}
489 	splx(s);
490 }
491 
492 /*
493  * Make all processes sleeping on the specified identifier runnable.
494  */
495 void
496 wakeup(ident)
497 	register void *ident;
498 {
499 	register struct slpque *qp;
500 	register struct proc *p, **q;
501 	int s;
502 
503 	s = splhigh();
504 	qp = &slpque[LOOKUP(ident)];
505 restart:
506 	for (q = &qp->sq_head; p = *q; ) {
507 #ifdef DIAGNOSTIC
508 		if (p->p_back || p->p_stat != SSLEEP && p->p_stat != SSTOP)
509 			panic("wakeup");
510 #endif
511 		if (p->p_wchan == ident) {
512 			p->p_wchan = 0;
513 			*q = p->p_forw;
514 			if (qp->sq_tailp == &p->p_forw)
515 				qp->sq_tailp = q;
516 			if (p->p_stat == SSLEEP) {
517 				/* OPTIMIZED EXPANSION OF setrunnable(p); */
518 				if (p->p_slptime > 1)
519 					updatepri(p);
520 				p->p_slptime = 0;
521 				p->p_stat = SRUN;
522 				if (p->p_flag & P_INMEM)
523 					setrunqueue(p);
524 				/*
525 				 * Since curpriority is a user priority,
526 				 * p->p_priority is always better than
527 				 * curpriority.
528 				 */
529 				if ((p->p_flag & P_INMEM) == 0)
530 					wakeup((caddr_t)&proc0);
531 				else
532 					need_resched();
533 				/* END INLINE EXPANSION */
534 				goto restart;
535 			}
536 		} else
537 			q = &p->p_forw;
538 	}
539 	splx(s);
540 }
541 
542 /*
543  * The machine independent parts of mi_switch().
544  * Must be called at splstatclock() or higher.
545  */
546 void
547 mi_switch()
548 {
549 	register struct proc *p = curproc;	/* XXX */
550 	register struct rlimit *rlim;
551 	register long s, u;
552 	struct timeval tv;
553 
554 	/*
555 	 * Compute the amount of time during which the current
556 	 * process was running, and add that to its total so far.
557 	 */
558 	microtime(&tv);
559 	u = p->p_rtime.tv_usec + (tv.tv_usec - runtime.tv_usec);
560 	s = p->p_rtime.tv_sec + (tv.tv_sec - runtime.tv_sec);
561 	if (u < 0) {
562 		u += 1000000;
563 		s--;
564 	} else if (u >= 1000000) {
565 		u -= 1000000;
566 		s++;
567 	}
568 	p->p_rtime.tv_usec = u;
569 	p->p_rtime.tv_sec = s;
570 
571 	/*
572 	 * Check if the process exceeds its cpu resource allocation.
573 	 * If over max, kill it.  In any case, if it has run for more
574 	 * than 10 minutes, reduce priority to give others a chance.
575 	 */
576 	rlim = &p->p_rlimit[RLIMIT_CPU];
577 	if (s >= rlim->rlim_cur) {
578 		if (s >= rlim->rlim_max)
579 			psignal(p, SIGKILL);
580 		else {
581 			psignal(p, SIGXCPU);
582 			if (rlim->rlim_cur < rlim->rlim_max)
583 				rlim->rlim_cur += 5;
584 		}
585 	}
586 	if (s > 10 * 60 && p->p_ucred->cr_uid && p->p_nice == NZERO) {
587 		p->p_nice = NZERO + 4;
588 		resetpriority(p);
589 	}
590 
591 	/*
592 	 * Pick a new current process and record its start time.
593 	 */
594 	cnt.v_swtch++;
595 	cpu_switch(p);
596 	microtime(&runtime);
597 }
598 
599 /*
600  * Initialize the (doubly-linked) run queues
601  * to be empty.
602  */
603 void
604 rqinit()
605 {
606 	register int i;
607 
608 	for (i = 0; i < NQS; i++)
609 		qs[i].ph_link = qs[i].ph_rlink = (struct proc *)&qs[i];
610 }
611 
612 /*
613  * Change process state to be runnable,
614  * placing it on the run queue if it is in memory,
615  * and awakening the swapper if it isn't in memory.
616  */
617 void
618 setrunnable(p)
619 	register struct proc *p;
620 {
621 	register int s;
622 
623 	s = splhigh();
624 	switch (p->p_stat) {
625 	case 0:
626 	case SRUN:
627 	case SZOMB:
628 	default:
629 		panic("setrunnable");
630 	case SSTOP:
631 	case SSLEEP:
632 		unsleep(p);		/* e.g. when sending signals */
633 		break;
634 
635 	case SIDL:
636 		break;
637 	}
638 	p->p_stat = SRUN;
639 	if (p->p_flag & P_INMEM)
640 		setrunqueue(p);
641 	splx(s);
642 	if (p->p_slptime > 1)
643 		updatepri(p);
644 	p->p_slptime = 0;
645 	if ((p->p_flag & P_INMEM) == 0)
646 		wakeup((caddr_t)&proc0);
647 	else if (p->p_priority < curpriority)
648 		need_resched();
649 }
650 
651 /*
652  * Compute the priority of a process when running in user mode.
653  * Arrange to reschedule if the resulting priority is better
654  * than that of the current process.
655  */
656 void
657 resetpriority(p)
658 	register struct proc *p;
659 {
660 	register unsigned int newpriority;
661 
662 	newpriority = PUSER + p->p_estcpu / 4 + 2 * p->p_nice;
663 	newpriority = min(newpriority, MAXPRI);
664 	p->p_usrpri = newpriority;
665 	if (newpriority < curpriority)
666 		need_resched();
667 }
668