1 /*- 2 * Copyright (c) 1982, 1986, 1990, 1991, 1993 3 * The Regents of the University of California. All rights reserved. 4 * (c) UNIX System Laboratories, Inc. 5 * All or some portions of this file are derived from material licensed 6 * to the University of California by American Telephone and Telegraph 7 * Co. or Unix System Laboratories, Inc. and are reproduced herein with 8 * the permission of UNIX System Laboratories, Inc. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 3. All advertising materials mentioning features or use of this software 19 * must display the following acknowledgement: 20 * This product includes software developed by the University of 21 * California, Berkeley and its contributors. 22 * 4. Neither the name of the University nor the names of its contributors 23 * may be used to endorse or promote products derived from this software 24 * without specific prior written permission. 25 * 26 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 28 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 29 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 30 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 36 * SUCH DAMAGE. 37 * 38 * @(#)kern_synch.c 8.6 (Berkeley) 1/21/94 39 * $Id: kern_synch.c,v 1.8 1994/10/18 06:55:39 davidg Exp $ 40 */ 41 42 #include <sys/param.h> 43 #include <sys/systm.h> 44 #include <sys/proc.h> 45 #include <sys/kernel.h> 46 #include <sys/buf.h> 47 #include <sys/signalvar.h> 48 #include <sys/resourcevar.h> 49 #include <sys/signalvar.h> 50 #include <vm/vm.h> 51 #ifdef KTRACE 52 #include <sys/ktrace.h> 53 #endif 54 55 #include <machine/cpu.h> 56 57 u_char curpriority; /* usrpri of curproc */ 58 int lbolt; /* once a second sleep address */ 59 60 /* 61 * Force switch among equal priority processes every 100ms. 62 */ 63 /* ARGSUSED */ 64 void 65 roundrobin(arg) 66 void *arg; 67 { 68 69 need_resched(); 70 timeout(roundrobin, NULL, hz / 10); 71 } 72 73 /* 74 * Constants for digital decay and forget: 75 * 90% of (p_estcpu) usage in 5 * loadav time 76 * 95% of (p_pctcpu) usage in 60 seconds (load insensitive) 77 * Note that, as ps(1) mentions, this can let percentages 78 * total over 100% (I've seen 137.9% for 3 processes). 79 * 80 * Note that hardclock updates p_estcpu and p_cpticks independently. 81 * 82 * We wish to decay away 90% of p_estcpu in (5 * loadavg) seconds. 83 * That is, the system wants to compute a value of decay such 84 * that the following for loop: 85 * for (i = 0; i < (5 * loadavg); i++) 86 * p_estcpu *= decay; 87 * will compute 88 * p_estcpu *= 0.1; 89 * for all values of loadavg: 90 * 91 * Mathematically this loop can be expressed by saying: 92 * decay ** (5 * loadavg) ~= .1 93 * 94 * The system computes decay as: 95 * decay = (2 * loadavg) / (2 * loadavg + 1) 96 * 97 * We wish to prove that the system's computation of decay 98 * will always fulfill the equation: 99 * decay ** (5 * loadavg) ~= .1 100 * 101 * If we compute b as: 102 * b = 2 * loadavg 103 * then 104 * decay = b / (b + 1) 105 * 106 * We now need to prove two things: 107 * 1) Given factor ** (5 * loadavg) ~= .1, prove factor == b/(b+1) 108 * 2) Given b/(b+1) ** power ~= .1, prove power == (5 * loadavg) 109 * 110 * Facts: 111 * For x close to zero, exp(x) =~ 1 + x, since 112 * exp(x) = 0! + x**1/1! + x**2/2! + ... . 113 * therefore exp(-1/b) =~ 1 - (1/b) = (b-1)/b. 114 * For x close to zero, ln(1+x) =~ x, since 115 * ln(1+x) = x - x**2/2 + x**3/3 - ... -1 < x < 1 116 * therefore ln(b/(b+1)) = ln(1 - 1/(b+1)) =~ -1/(b+1). 117 * ln(.1) =~ -2.30 118 * 119 * Proof of (1): 120 * Solve (factor)**(power) =~ .1 given power (5*loadav): 121 * solving for factor, 122 * ln(factor) =~ (-2.30/5*loadav), or 123 * factor =~ exp(-1/((5/2.30)*loadav)) =~ exp(-1/(2*loadav)) = 124 * exp(-1/b) =~ (b-1)/b =~ b/(b+1). QED 125 * 126 * Proof of (2): 127 * Solve (factor)**(power) =~ .1 given factor == (b/(b+1)): 128 * solving for power, 129 * power*ln(b/(b+1)) =~ -2.30, or 130 * power =~ 2.3 * (b + 1) = 4.6*loadav + 2.3 =~ 5*loadav. QED 131 * 132 * Actual power values for the implemented algorithm are as follows: 133 * loadav: 1 2 3 4 134 * power: 5.68 10.32 14.94 19.55 135 */ 136 137 /* calculations for digital decay to forget 90% of usage in 5*loadav sec */ 138 #define loadfactor(loadav) (2 * (loadav)) 139 #define decay_cpu(loadfac, cpu) (((loadfac) * (cpu)) / ((loadfac) + FSCALE)) 140 141 /* decay 95% of `p_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */ 142 fixpt_t ccpu = 0.95122942450071400909 * FSCALE; /* exp(-1/20) */ 143 144 /* 145 * If `ccpu' is not equal to `exp(-1/20)' and you still want to use the 146 * faster/more-accurate formula, you'll have to estimate CCPU_SHIFT below 147 * and possibly adjust FSHIFT in "param.h" so that (FSHIFT >= CCPU_SHIFT). 148 * 149 * To estimate CCPU_SHIFT for exp(-1/20), the following formula was used: 150 * 1 - exp(-1/20) ~= 0.0487 ~= 0.0488 == 1 (fixed pt, *11* bits). 151 * 152 * If you dont want to bother with the faster/more-accurate formula, you 153 * can set CCPU_SHIFT to (FSHIFT + 1) which will use a slower/less-accurate 154 * (more general) method of calculating the %age of CPU used by a process. 155 */ 156 #define CCPU_SHIFT 11 157 158 /* 159 * Recompute process priorities, every hz ticks. 160 */ 161 /* ARGSUSED */ 162 void 163 schedcpu(arg) 164 void *arg; 165 { 166 register fixpt_t loadfac = loadfactor(averunnable.ldavg[0]); 167 register struct proc *p; 168 register int s; 169 register unsigned int newcpu; 170 171 wakeup((caddr_t)&lbolt); 172 for (p = (struct proc *)allproc; p != NULL; p = p->p_next) { 173 /* 174 * Increment time in/out of memory and sleep time 175 * (if sleeping). We ignore overflow; with 16-bit int's 176 * (remember them?) overflow takes 45 days. 177 */ 178 p->p_swtime++; 179 if (p->p_stat == SSLEEP || p->p_stat == SSTOP) 180 p->p_slptime++; 181 p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT; 182 /* 183 * If the process has slept the entire second, 184 * stop recalculating its priority until it wakes up. 185 */ 186 if (p->p_slptime > 1) 187 continue; 188 s = splstatclock(); /* prevent state changes */ 189 /* 190 * p_pctcpu is only for ps. 191 */ 192 #if (FSHIFT >= CCPU_SHIFT) 193 p->p_pctcpu += (hz == 100)? 194 ((fixpt_t) p->p_cpticks) << (FSHIFT - CCPU_SHIFT): 195 100 * (((fixpt_t) p->p_cpticks) 196 << (FSHIFT - CCPU_SHIFT)) / hz; 197 #else 198 p->p_pctcpu += ((FSCALE - ccpu) * 199 (p->p_cpticks * FSCALE / hz)) >> FSHIFT; 200 #endif 201 p->p_cpticks = 0; 202 newcpu = (u_int) decay_cpu(loadfac, p->p_estcpu) + p->p_nice; 203 p->p_estcpu = min(newcpu, UCHAR_MAX); 204 resetpriority(p); 205 if (p->p_priority >= PUSER) { 206 #define PPQ (128 / NQS) /* priorities per queue */ 207 if ((p != curproc) && 208 p->p_stat == SRUN && 209 (p->p_flag & P_INMEM) && 210 (p->p_priority / PPQ) != (p->p_usrpri / PPQ)) { 211 remrq(p); 212 p->p_priority = p->p_usrpri; 213 setrunqueue(p); 214 } else 215 p->p_priority = p->p_usrpri; 216 } 217 splx(s); 218 } 219 vmmeter(); 220 timeout(schedcpu, (void *)0, hz); 221 } 222 223 /* 224 * Recalculate the priority of a process after it has slept for a while. 225 * For all load averages >= 1 and max p_estcpu of 255, sleeping for at 226 * least six times the loadfactor will decay p_estcpu to zero. 227 */ 228 void 229 updatepri(p) 230 register struct proc *p; 231 { 232 register unsigned int newcpu = p->p_estcpu; 233 register fixpt_t loadfac = loadfactor(averunnable.ldavg[0]); 234 235 if (p->p_slptime > 5 * loadfac) 236 p->p_estcpu = 0; 237 else { 238 p->p_slptime--; /* the first time was done in schedcpu */ 239 while (newcpu && --p->p_slptime) 240 newcpu = (int) decay_cpu(loadfac, newcpu); 241 p->p_estcpu = min(newcpu, UCHAR_MAX); 242 } 243 resetpriority(p); 244 } 245 246 /* 247 * We're only looking at 7 bits of the address; everything is 248 * aligned to 4, lots of things are aligned to greater powers 249 * of 2. Shift right by 8, i.e. drop the bottom 256 worth. 250 */ 251 #define TABLESIZE 128 252 #define LOOKUP(x) (((int)(x) >> 8) & (TABLESIZE - 1)) 253 struct slpque { 254 struct proc *sq_head; 255 struct proc **sq_tailp; 256 } slpque[TABLESIZE]; 257 258 /* 259 * During autoconfiguration or after a panic, a sleep will simply 260 * lower the priority briefly to allow interrupts, then return. 261 * The priority to be used (safepri) is machine-dependent, thus this 262 * value is initialized and maintained in the machine-dependent layers. 263 * This priority will typically be 0, or the lowest priority 264 * that is safe for use on the interrupt stack; it can be made 265 * higher to block network software interrupts after panics. 266 */ 267 int safepri; 268 269 /* 270 * General sleep call. Suspends the current process until a wakeup is 271 * performed on the specified identifier. The process will then be made 272 * runnable with the specified priority. Sleeps at most timo/hz seconds 273 * (0 means no timeout). If pri includes PCATCH flag, signals are checked 274 * before and after sleeping, else signals are not checked. Returns 0 if 275 * awakened, EWOULDBLOCK if the timeout expires. If PCATCH is set and a 276 * signal needs to be delivered, ERESTART is returned if the current system 277 * call should be restarted if possible, and EINTR is returned if the system 278 * call should be interrupted by the signal (return EINTR). 279 */ 280 int 281 tsleep(ident, priority, wmesg, timo) 282 void *ident; 283 int priority, timo; 284 char *wmesg; 285 { 286 register struct proc *p = curproc; 287 register struct slpque *qp; 288 register s; 289 int sig, catch = priority & PCATCH; 290 extern int cold; 291 void endtsleep __P((void *)); 292 293 #ifdef KTRACE 294 if (KTRPOINT(p, KTR_CSW)) 295 ktrcsw(p->p_tracep, 1, 0); 296 #endif 297 s = splhigh(); 298 if (cold || panicstr) { 299 /* 300 * After a panic, or during autoconfiguration, 301 * just give interrupts a chance, then just return; 302 * don't run any other procs or panic below, 303 * in case this is the idle process and already asleep. 304 */ 305 splx(safepri); 306 splx(s); 307 return (0); 308 } 309 #ifdef DIAGNOSTIC 310 if (ident == NULL || p->p_stat != SRUN || p->p_back) 311 panic("tsleep"); 312 #endif 313 p->p_wchan = ident; 314 p->p_wmesg = wmesg; 315 p->p_slptime = 0; 316 p->p_priority = priority & PRIMASK; 317 qp = &slpque[LOOKUP(ident)]; 318 if (qp->sq_head == 0) 319 qp->sq_head = p; 320 else 321 *qp->sq_tailp = p; 322 *(qp->sq_tailp = &p->p_forw) = 0; 323 if (timo) 324 timeout(endtsleep, (void *)p, timo); 325 /* 326 * We put ourselves on the sleep queue and start our timeout 327 * before calling CURSIG, as we could stop there, and a wakeup 328 * or a SIGCONT (or both) could occur while we were stopped. 329 * A SIGCONT would cause us to be marked as SSLEEP 330 * without resuming us, thus we must be ready for sleep 331 * when CURSIG is called. If the wakeup happens while we're 332 * stopped, p->p_wchan will be 0 upon return from CURSIG. 333 */ 334 if (catch) { 335 p->p_flag |= P_SINTR; 336 if ((sig = CURSIG(p))) { 337 if (p->p_wchan) 338 unsleep(p); 339 p->p_stat = SRUN; 340 goto resume; 341 } 342 if (p->p_wchan == 0) { 343 catch = 0; 344 goto resume; 345 } 346 } else 347 sig = 0; 348 p->p_stat = SSLEEP; 349 p->p_stats->p_ru.ru_nvcsw++; 350 mi_switch(); 351 resume: 352 curpriority = p->p_usrpri; 353 splx(s); 354 p->p_flag &= ~P_SINTR; 355 if (p->p_flag & P_TIMEOUT) { 356 p->p_flag &= ~P_TIMEOUT; 357 if (sig == 0) { 358 #ifdef KTRACE 359 if (KTRPOINT(p, KTR_CSW)) 360 ktrcsw(p->p_tracep, 0, 0); 361 #endif 362 return (EWOULDBLOCK); 363 } 364 } else if (timo) 365 untimeout(endtsleep, (void *)p); 366 if (catch && (sig != 0 || (sig = CURSIG(p)))) { 367 #ifdef KTRACE 368 if (KTRPOINT(p, KTR_CSW)) 369 ktrcsw(p->p_tracep, 0, 0); 370 #endif 371 if (p->p_sigacts->ps_sigintr & sigmask(sig)) 372 return (EINTR); 373 return (ERESTART); 374 } 375 #ifdef KTRACE 376 if (KTRPOINT(p, KTR_CSW)) 377 ktrcsw(p->p_tracep, 0, 0); 378 #endif 379 return (0); 380 } 381 382 /* 383 * Implement timeout for tsleep. 384 * If process hasn't been awakened (wchan non-zero), 385 * set timeout flag and undo the sleep. If proc 386 * is stopped, just unsleep so it will remain stopped. 387 */ 388 void 389 endtsleep(arg) 390 void *arg; 391 { 392 register struct proc *p; 393 int s; 394 395 p = (struct proc *)arg; 396 s = splhigh(); 397 if (p->p_wchan) { 398 if (p->p_stat == SSLEEP) 399 setrunnable(p); 400 else 401 unsleep(p); 402 p->p_flag |= P_TIMEOUT; 403 } 404 splx(s); 405 } 406 407 /* 408 * Short-term, non-interruptable sleep. 409 */ 410 void 411 sleep(ident, priority) 412 void *ident; 413 int priority; 414 { 415 register struct proc *p = curproc; 416 register struct slpque *qp; 417 register s; 418 extern int cold; 419 420 #ifdef DIAGNOSTIC 421 if (priority > PZERO) { 422 printf("sleep called with priority %d > PZERO, wchan: %p\n", 423 priority, ident); 424 panic("old sleep"); 425 } 426 #endif 427 s = splhigh(); 428 if (cold || panicstr) { 429 /* 430 * After a panic, or during autoconfiguration, 431 * just give interrupts a chance, then just return; 432 * don't run any other procs or panic below, 433 * in case this is the idle process and already asleep. 434 */ 435 splx(safepri); 436 splx(s); 437 return; 438 } 439 #ifdef DIAGNOSTIC 440 if (ident == NULL || p->p_stat != SRUN || p->p_back) 441 panic("sleep"); 442 #endif 443 p->p_wchan = ident; 444 p->p_wmesg = NULL; 445 p->p_slptime = 0; 446 p->p_priority = priority; 447 qp = &slpque[LOOKUP(ident)]; 448 if (qp->sq_head == 0) 449 qp->sq_head = p; 450 else 451 *qp->sq_tailp = p; 452 *(qp->sq_tailp = &p->p_forw) = 0; 453 p->p_stat = SSLEEP; 454 p->p_stats->p_ru.ru_nvcsw++; 455 #ifdef KTRACE 456 if (KTRPOINT(p, KTR_CSW)) 457 ktrcsw(p->p_tracep, 1, 0); 458 #endif 459 mi_switch(); 460 #ifdef KTRACE 461 if (KTRPOINT(p, KTR_CSW)) 462 ktrcsw(p->p_tracep, 0, 0); 463 #endif 464 curpriority = p->p_usrpri; 465 splx(s); 466 } 467 468 /* 469 * Remove a process from its wait queue 470 */ 471 void 472 unsleep(p) 473 register struct proc *p; 474 { 475 register struct slpque *qp; 476 register struct proc **hp; 477 int s; 478 479 s = splhigh(); 480 if (p->p_wchan) { 481 hp = &(qp = &slpque[LOOKUP(p->p_wchan)])->sq_head; 482 while (*hp != p) 483 hp = &(*hp)->p_forw; 484 *hp = p->p_forw; 485 if (qp->sq_tailp == &p->p_forw) 486 qp->sq_tailp = hp; 487 p->p_wchan = 0; 488 } 489 splx(s); 490 } 491 492 /* 493 * Make all processes sleeping on the specified identifier runnable. 494 */ 495 void 496 wakeup(ident) 497 register void *ident; 498 { 499 register struct slpque *qp; 500 register struct proc *p, **q; 501 int s; 502 503 s = splhigh(); 504 qp = &slpque[LOOKUP(ident)]; 505 restart: 506 for (q = &qp->sq_head; *q; ) { 507 p = *q; 508 #ifdef DIAGNOSTIC 509 if (p->p_back || (p->p_stat != SSLEEP && p->p_stat != SSTOP)) 510 panic("wakeup"); 511 #endif 512 if (p->p_wchan == ident) { 513 p->p_wchan = 0; 514 *q = p->p_forw; 515 if (qp->sq_tailp == &p->p_forw) 516 qp->sq_tailp = q; 517 if (p->p_stat == SSLEEP) { 518 /* OPTIMIZED EXPANSION OF setrunnable(p); */ 519 if (p->p_slptime > 1) 520 updatepri(p); 521 p->p_slptime = 0; 522 p->p_stat = SRUN; 523 if (p->p_flag & P_INMEM) 524 setrunqueue(p); 525 /* 526 * Since curpriority is a user priority, 527 * p->p_priority is always better than 528 * curpriority. 529 */ 530 if ((p->p_flag & P_INMEM) == 0) 531 wakeup((caddr_t)&proc0); 532 else 533 need_resched(); 534 /* END INLINE EXPANSION */ 535 goto restart; 536 } 537 } else 538 q = &p->p_forw; 539 } 540 splx(s); 541 } 542 543 /* 544 * The machine independent parts of mi_switch(). 545 * Must be called at splstatclock() or higher. 546 */ 547 void 548 mi_switch() 549 { 550 register struct proc *p = curproc; /* XXX */ 551 register struct rlimit *rlim; 552 register long s, u; 553 struct timeval tv; 554 555 /* 556 * Compute the amount of time during which the current 557 * process was running, and add that to its total so far. 558 */ 559 microtime(&tv); 560 u = p->p_rtime.tv_usec + (tv.tv_usec - runtime.tv_usec); 561 s = p->p_rtime.tv_sec + (tv.tv_sec - runtime.tv_sec); 562 if (u < 0) { 563 u += 1000000; 564 s--; 565 } else if (u >= 1000000) { 566 u -= 1000000; 567 s++; 568 } 569 p->p_rtime.tv_usec = u; 570 p->p_rtime.tv_sec = s; 571 572 /* 573 * Check if the process exceeds its cpu resource allocation. 574 * If over max, kill it. In any case, if it has run for more 575 * than 10 minutes, reduce priority to give others a chance. 576 */ 577 if (p->p_stat != SZOMB) { 578 rlim = &p->p_rlimit[RLIMIT_CPU]; 579 if (s >= rlim->rlim_cur) { 580 if (s >= rlim->rlim_max) 581 psignal(p, SIGKILL); 582 else { 583 psignal(p, SIGXCPU); 584 if (rlim->rlim_cur < rlim->rlim_max) 585 rlim->rlim_cur += 5; 586 } 587 } 588 if (s > 10 * 60 && p->p_ucred->cr_uid && p->p_nice == NZERO) { 589 p->p_nice = NZERO + 4; 590 resetpriority(p); 591 } 592 } 593 594 /* 595 * Pick a new current process and record its start time. 596 */ 597 cnt.v_swtch++; 598 cpu_switch(p); 599 microtime(&runtime); 600 } 601 602 /* 603 * Initialize the (doubly-linked) run queues 604 * to be empty. 605 */ 606 void 607 rqinit() 608 { 609 register int i; 610 611 for (i = 0; i < NQS; i++) { 612 qs[i].ph_link = qs[i].ph_rlink = (struct proc *)&qs[i]; 613 rtqs[i].ph_link = rtqs[i].ph_rlink = (struct proc *)&rtqs[i]; 614 idqs[i].ph_link = idqs[i].ph_rlink = (struct proc *)&idqs[i]; 615 } 616 } 617 618 /* 619 * Change process state to be runnable, 620 * placing it on the run queue if it is in memory, 621 * and awakening the swapper if it isn't in memory. 622 */ 623 void 624 setrunnable(p) 625 register struct proc *p; 626 { 627 register int s; 628 629 s = splhigh(); 630 switch (p->p_stat) { 631 case 0: 632 case SRUN: 633 case SZOMB: 634 default: 635 panic("setrunnable"); 636 case SSTOP: 637 case SSLEEP: 638 unsleep(p); /* e.g. when sending signals */ 639 break; 640 641 case SIDL: 642 break; 643 } 644 p->p_stat = SRUN; 645 if (p->p_flag & P_INMEM) 646 setrunqueue(p); 647 splx(s); 648 if (p->p_slptime > 1) 649 updatepri(p); 650 p->p_slptime = 0; 651 if ((p->p_flag & P_INMEM) == 0) 652 wakeup((caddr_t)&proc0); 653 else if (p->p_priority < curpriority) 654 need_resched(); 655 } 656 657 /* 658 * Compute the priority of a process when running in user mode. 659 * Arrange to reschedule if the resulting priority is better 660 * than that of the current process. 661 */ 662 void 663 resetpriority(p) 664 register struct proc *p; 665 { 666 register unsigned int newpriority; 667 668 if (p->p_rtprio.type == RTP_PRIO_NORMAL) { 669 newpriority = PUSER + p->p_estcpu / 4 + 2 * p->p_nice; 670 newpriority = min(newpriority, MAXPRI); 671 p->p_usrpri = newpriority; 672 if (newpriority < curpriority) 673 need_resched(); 674 } else { 675 need_resched(); 676 } 677 } 678