xref: /freebsd/sys/kern/kern_synch.c (revision a316b26e50bbed7cf655fbba726ab87d8ab7599d)
1 /*-
2  * Copyright (c) 1982, 1986, 1990, 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  * (c) UNIX System Laboratories, Inc.
5  * All or some portions of this file are derived from material licensed
6  * to the University of California by American Telephone and Telegraph
7  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8  * the permission of UNIX System Laboratories, Inc.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. All advertising materials mentioning features or use of this software
19  *    must display the following acknowledgement:
20  *	This product includes software developed by the University of
21  *	California, Berkeley and its contributors.
22  * 4. Neither the name of the University nor the names of its contributors
23  *    may be used to endorse or promote products derived from this software
24  *    without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36  * SUCH DAMAGE.
37  *
38  *	@(#)kern_synch.c	8.6 (Berkeley) 1/21/94
39  * $Id: kern_synch.c,v 1.8 1994/10/18 06:55:39 davidg Exp $
40  */
41 
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/proc.h>
45 #include <sys/kernel.h>
46 #include <sys/buf.h>
47 #include <sys/signalvar.h>
48 #include <sys/resourcevar.h>
49 #include <sys/signalvar.h>
50 #include <vm/vm.h>
51 #ifdef KTRACE
52 #include <sys/ktrace.h>
53 #endif
54 
55 #include <machine/cpu.h>
56 
57 u_char	curpriority;		/* usrpri of curproc */
58 int	lbolt;			/* once a second sleep address */
59 
60 /*
61  * Force switch among equal priority processes every 100ms.
62  */
63 /* ARGSUSED */
64 void
65 roundrobin(arg)
66 	void *arg;
67 {
68 
69 	need_resched();
70 	timeout(roundrobin, NULL, hz / 10);
71 }
72 
73 /*
74  * Constants for digital decay and forget:
75  *	90% of (p_estcpu) usage in 5 * loadav time
76  *	95% of (p_pctcpu) usage in 60 seconds (load insensitive)
77  *          Note that, as ps(1) mentions, this can let percentages
78  *          total over 100% (I've seen 137.9% for 3 processes).
79  *
80  * Note that hardclock updates p_estcpu and p_cpticks independently.
81  *
82  * We wish to decay away 90% of p_estcpu in (5 * loadavg) seconds.
83  * That is, the system wants to compute a value of decay such
84  * that the following for loop:
85  * 	for (i = 0; i < (5 * loadavg); i++)
86  * 		p_estcpu *= decay;
87  * will compute
88  * 	p_estcpu *= 0.1;
89  * for all values of loadavg:
90  *
91  * Mathematically this loop can be expressed by saying:
92  * 	decay ** (5 * loadavg) ~= .1
93  *
94  * The system computes decay as:
95  * 	decay = (2 * loadavg) / (2 * loadavg + 1)
96  *
97  * We wish to prove that the system's computation of decay
98  * will always fulfill the equation:
99  * 	decay ** (5 * loadavg) ~= .1
100  *
101  * If we compute b as:
102  * 	b = 2 * loadavg
103  * then
104  * 	decay = b / (b + 1)
105  *
106  * We now need to prove two things:
107  *	1) Given factor ** (5 * loadavg) ~= .1, prove factor == b/(b+1)
108  *	2) Given b/(b+1) ** power ~= .1, prove power == (5 * loadavg)
109  *
110  * Facts:
111  *         For x close to zero, exp(x) =~ 1 + x, since
112  *              exp(x) = 0! + x**1/1! + x**2/2! + ... .
113  *              therefore exp(-1/b) =~ 1 - (1/b) = (b-1)/b.
114  *         For x close to zero, ln(1+x) =~ x, since
115  *              ln(1+x) = x - x**2/2 + x**3/3 - ...     -1 < x < 1
116  *              therefore ln(b/(b+1)) = ln(1 - 1/(b+1)) =~ -1/(b+1).
117  *         ln(.1) =~ -2.30
118  *
119  * Proof of (1):
120  *    Solve (factor)**(power) =~ .1 given power (5*loadav):
121  *	solving for factor,
122  *      ln(factor) =~ (-2.30/5*loadav), or
123  *      factor =~ exp(-1/((5/2.30)*loadav)) =~ exp(-1/(2*loadav)) =
124  *          exp(-1/b) =~ (b-1)/b =~ b/(b+1).                    QED
125  *
126  * Proof of (2):
127  *    Solve (factor)**(power) =~ .1 given factor == (b/(b+1)):
128  *	solving for power,
129  *      power*ln(b/(b+1)) =~ -2.30, or
130  *      power =~ 2.3 * (b + 1) = 4.6*loadav + 2.3 =~ 5*loadav.  QED
131  *
132  * Actual power values for the implemented algorithm are as follows:
133  *      loadav: 1       2       3       4
134  *      power:  5.68    10.32   14.94   19.55
135  */
136 
137 /* calculations for digital decay to forget 90% of usage in 5*loadav sec */
138 #define	loadfactor(loadav)	(2 * (loadav))
139 #define	decay_cpu(loadfac, cpu)	(((loadfac) * (cpu)) / ((loadfac) + FSCALE))
140 
141 /* decay 95% of `p_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */
142 fixpt_t	ccpu = 0.95122942450071400909 * FSCALE;		/* exp(-1/20) */
143 
144 /*
145  * If `ccpu' is not equal to `exp(-1/20)' and you still want to use the
146  * faster/more-accurate formula, you'll have to estimate CCPU_SHIFT below
147  * and possibly adjust FSHIFT in "param.h" so that (FSHIFT >= CCPU_SHIFT).
148  *
149  * To estimate CCPU_SHIFT for exp(-1/20), the following formula was used:
150  *	1 - exp(-1/20) ~= 0.0487 ~= 0.0488 == 1 (fixed pt, *11* bits).
151  *
152  * If you dont want to bother with the faster/more-accurate formula, you
153  * can set CCPU_SHIFT to (FSHIFT + 1) which will use a slower/less-accurate
154  * (more general) method of calculating the %age of CPU used by a process.
155  */
156 #define	CCPU_SHIFT	11
157 
158 /*
159  * Recompute process priorities, every hz ticks.
160  */
161 /* ARGSUSED */
162 void
163 schedcpu(arg)
164 	void *arg;
165 {
166 	register fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
167 	register struct proc *p;
168 	register int s;
169 	register unsigned int newcpu;
170 
171 	wakeup((caddr_t)&lbolt);
172 	for (p = (struct proc *)allproc; p != NULL; p = p->p_next) {
173 		/*
174 		 * Increment time in/out of memory and sleep time
175 		 * (if sleeping).  We ignore overflow; with 16-bit int's
176 		 * (remember them?) overflow takes 45 days.
177 		 */
178 		p->p_swtime++;
179 		if (p->p_stat == SSLEEP || p->p_stat == SSTOP)
180 			p->p_slptime++;
181 		p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT;
182 		/*
183 		 * If the process has slept the entire second,
184 		 * stop recalculating its priority until it wakes up.
185 		 */
186 		if (p->p_slptime > 1)
187 			continue;
188 		s = splstatclock();	/* prevent state changes */
189 		/*
190 		 * p_pctcpu is only for ps.
191 		 */
192 #if	(FSHIFT >= CCPU_SHIFT)
193 		p->p_pctcpu += (hz == 100)?
194 			((fixpt_t) p->p_cpticks) << (FSHIFT - CCPU_SHIFT):
195                 	100 * (((fixpt_t) p->p_cpticks)
196 				<< (FSHIFT - CCPU_SHIFT)) / hz;
197 #else
198 		p->p_pctcpu += ((FSCALE - ccpu) *
199 			(p->p_cpticks * FSCALE / hz)) >> FSHIFT;
200 #endif
201 		p->p_cpticks = 0;
202 		newcpu = (u_int) decay_cpu(loadfac, p->p_estcpu) + p->p_nice;
203 		p->p_estcpu = min(newcpu, UCHAR_MAX);
204 		resetpriority(p);
205 		if (p->p_priority >= PUSER) {
206 #define	PPQ	(128 / NQS)		/* priorities per queue */
207 			if ((p != curproc) &&
208 			    p->p_stat == SRUN &&
209 			    (p->p_flag & P_INMEM) &&
210 			    (p->p_priority / PPQ) != (p->p_usrpri / PPQ)) {
211 				remrq(p);
212 				p->p_priority = p->p_usrpri;
213 				setrunqueue(p);
214 			} else
215 				p->p_priority = p->p_usrpri;
216 		}
217 		splx(s);
218 	}
219 	vmmeter();
220 	timeout(schedcpu, (void *)0, hz);
221 }
222 
223 /*
224  * Recalculate the priority of a process after it has slept for a while.
225  * For all load averages >= 1 and max p_estcpu of 255, sleeping for at
226  * least six times the loadfactor will decay p_estcpu to zero.
227  */
228 void
229 updatepri(p)
230 	register struct proc *p;
231 {
232 	register unsigned int newcpu = p->p_estcpu;
233 	register fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
234 
235 	if (p->p_slptime > 5 * loadfac)
236 		p->p_estcpu = 0;
237 	else {
238 		p->p_slptime--;	/* the first time was done in schedcpu */
239 		while (newcpu && --p->p_slptime)
240 			newcpu = (int) decay_cpu(loadfac, newcpu);
241 		p->p_estcpu = min(newcpu, UCHAR_MAX);
242 	}
243 	resetpriority(p);
244 }
245 
246 /*
247  * We're only looking at 7 bits of the address; everything is
248  * aligned to 4, lots of things are aligned to greater powers
249  * of 2.  Shift right by 8, i.e. drop the bottom 256 worth.
250  */
251 #define TABLESIZE	128
252 #define LOOKUP(x)	(((int)(x) >> 8) & (TABLESIZE - 1))
253 struct slpque {
254 	struct proc *sq_head;
255 	struct proc **sq_tailp;
256 } slpque[TABLESIZE];
257 
258 /*
259  * During autoconfiguration or after a panic, a sleep will simply
260  * lower the priority briefly to allow interrupts, then return.
261  * The priority to be used (safepri) is machine-dependent, thus this
262  * value is initialized and maintained in the machine-dependent layers.
263  * This priority will typically be 0, or the lowest priority
264  * that is safe for use on the interrupt stack; it can be made
265  * higher to block network software interrupts after panics.
266  */
267 int safepri;
268 
269 /*
270  * General sleep call.  Suspends the current process until a wakeup is
271  * performed on the specified identifier.  The process will then be made
272  * runnable with the specified priority.  Sleeps at most timo/hz seconds
273  * (0 means no timeout).  If pri includes PCATCH flag, signals are checked
274  * before and after sleeping, else signals are not checked.  Returns 0 if
275  * awakened, EWOULDBLOCK if the timeout expires.  If PCATCH is set and a
276  * signal needs to be delivered, ERESTART is returned if the current system
277  * call should be restarted if possible, and EINTR is returned if the system
278  * call should be interrupted by the signal (return EINTR).
279  */
280 int
281 tsleep(ident, priority, wmesg, timo)
282 	void *ident;
283 	int priority, timo;
284 	char *wmesg;
285 {
286 	register struct proc *p = curproc;
287 	register struct slpque *qp;
288 	register s;
289 	int sig, catch = priority & PCATCH;
290 	extern int cold;
291 	void endtsleep __P((void *));
292 
293 #ifdef KTRACE
294 	if (KTRPOINT(p, KTR_CSW))
295 		ktrcsw(p->p_tracep, 1, 0);
296 #endif
297 	s = splhigh();
298 	if (cold || panicstr) {
299 		/*
300 		 * After a panic, or during autoconfiguration,
301 		 * just give interrupts a chance, then just return;
302 		 * don't run any other procs or panic below,
303 		 * in case this is the idle process and already asleep.
304 		 */
305 		splx(safepri);
306 		splx(s);
307 		return (0);
308 	}
309 #ifdef DIAGNOSTIC
310 	if (ident == NULL || p->p_stat != SRUN || p->p_back)
311 		panic("tsleep");
312 #endif
313 	p->p_wchan = ident;
314 	p->p_wmesg = wmesg;
315 	p->p_slptime = 0;
316 	p->p_priority = priority & PRIMASK;
317 	qp = &slpque[LOOKUP(ident)];
318 	if (qp->sq_head == 0)
319 		qp->sq_head = p;
320 	else
321 		*qp->sq_tailp = p;
322 	*(qp->sq_tailp = &p->p_forw) = 0;
323 	if (timo)
324 		timeout(endtsleep, (void *)p, timo);
325 	/*
326 	 * We put ourselves on the sleep queue and start our timeout
327 	 * before calling CURSIG, as we could stop there, and a wakeup
328 	 * or a SIGCONT (or both) could occur while we were stopped.
329 	 * A SIGCONT would cause us to be marked as SSLEEP
330 	 * without resuming us, thus we must be ready for sleep
331 	 * when CURSIG is called.  If the wakeup happens while we're
332 	 * stopped, p->p_wchan will be 0 upon return from CURSIG.
333 	 */
334 	if (catch) {
335 		p->p_flag |= P_SINTR;
336 		if ((sig = CURSIG(p))) {
337 			if (p->p_wchan)
338 				unsleep(p);
339 			p->p_stat = SRUN;
340 			goto resume;
341 		}
342 		if (p->p_wchan == 0) {
343 			catch = 0;
344 			goto resume;
345 		}
346 	} else
347 		sig = 0;
348 	p->p_stat = SSLEEP;
349 	p->p_stats->p_ru.ru_nvcsw++;
350 	mi_switch();
351 resume:
352 	curpriority = p->p_usrpri;
353 	splx(s);
354 	p->p_flag &= ~P_SINTR;
355 	if (p->p_flag & P_TIMEOUT) {
356 		p->p_flag &= ~P_TIMEOUT;
357 		if (sig == 0) {
358 #ifdef KTRACE
359 			if (KTRPOINT(p, KTR_CSW))
360 				ktrcsw(p->p_tracep, 0, 0);
361 #endif
362 			return (EWOULDBLOCK);
363 		}
364 	} else if (timo)
365 		untimeout(endtsleep, (void *)p);
366 	if (catch && (sig != 0 || (sig = CURSIG(p)))) {
367 #ifdef KTRACE
368 		if (KTRPOINT(p, KTR_CSW))
369 			ktrcsw(p->p_tracep, 0, 0);
370 #endif
371 		if (p->p_sigacts->ps_sigintr & sigmask(sig))
372 			return (EINTR);
373 		return (ERESTART);
374 	}
375 #ifdef KTRACE
376 	if (KTRPOINT(p, KTR_CSW))
377 		ktrcsw(p->p_tracep, 0, 0);
378 #endif
379 	return (0);
380 }
381 
382 /*
383  * Implement timeout for tsleep.
384  * If process hasn't been awakened (wchan non-zero),
385  * set timeout flag and undo the sleep.  If proc
386  * is stopped, just unsleep so it will remain stopped.
387  */
388 void
389 endtsleep(arg)
390 	void *arg;
391 {
392 	register struct proc *p;
393 	int s;
394 
395 	p = (struct proc *)arg;
396 	s = splhigh();
397 	if (p->p_wchan) {
398 		if (p->p_stat == SSLEEP)
399 			setrunnable(p);
400 		else
401 			unsleep(p);
402 		p->p_flag |= P_TIMEOUT;
403 	}
404 	splx(s);
405 }
406 
407 /*
408  * Short-term, non-interruptable sleep.
409  */
410 void
411 sleep(ident, priority)
412 	void *ident;
413 	int priority;
414 {
415 	register struct proc *p = curproc;
416 	register struct slpque *qp;
417 	register s;
418 	extern int cold;
419 
420 #ifdef DIAGNOSTIC
421 	if (priority > PZERO) {
422 		printf("sleep called with priority %d > PZERO, wchan: %p\n",
423 		    priority, ident);
424 		panic("old sleep");
425 	}
426 #endif
427 	s = splhigh();
428 	if (cold || panicstr) {
429 		/*
430 		 * After a panic, or during autoconfiguration,
431 		 * just give interrupts a chance, then just return;
432 		 * don't run any other procs or panic below,
433 		 * in case this is the idle process and already asleep.
434 		 */
435 		splx(safepri);
436 		splx(s);
437 		return;
438 	}
439 #ifdef DIAGNOSTIC
440 	if (ident == NULL || p->p_stat != SRUN || p->p_back)
441 		panic("sleep");
442 #endif
443 	p->p_wchan = ident;
444 	p->p_wmesg = NULL;
445 	p->p_slptime = 0;
446 	p->p_priority = priority;
447 	qp = &slpque[LOOKUP(ident)];
448 	if (qp->sq_head == 0)
449 		qp->sq_head = p;
450 	else
451 		*qp->sq_tailp = p;
452 	*(qp->sq_tailp = &p->p_forw) = 0;
453 	p->p_stat = SSLEEP;
454 	p->p_stats->p_ru.ru_nvcsw++;
455 #ifdef KTRACE
456 	if (KTRPOINT(p, KTR_CSW))
457 		ktrcsw(p->p_tracep, 1, 0);
458 #endif
459 	mi_switch();
460 #ifdef KTRACE
461 	if (KTRPOINT(p, KTR_CSW))
462 		ktrcsw(p->p_tracep, 0, 0);
463 #endif
464 	curpriority = p->p_usrpri;
465 	splx(s);
466 }
467 
468 /*
469  * Remove a process from its wait queue
470  */
471 void
472 unsleep(p)
473 	register struct proc *p;
474 {
475 	register struct slpque *qp;
476 	register struct proc **hp;
477 	int s;
478 
479 	s = splhigh();
480 	if (p->p_wchan) {
481 		hp = &(qp = &slpque[LOOKUP(p->p_wchan)])->sq_head;
482 		while (*hp != p)
483 			hp = &(*hp)->p_forw;
484 		*hp = p->p_forw;
485 		if (qp->sq_tailp == &p->p_forw)
486 			qp->sq_tailp = hp;
487 		p->p_wchan = 0;
488 	}
489 	splx(s);
490 }
491 
492 /*
493  * Make all processes sleeping on the specified identifier runnable.
494  */
495 void
496 wakeup(ident)
497 	register void *ident;
498 {
499 	register struct slpque *qp;
500 	register struct proc *p, **q;
501 	int s;
502 
503 	s = splhigh();
504 	qp = &slpque[LOOKUP(ident)];
505 restart:
506 	for (q = &qp->sq_head; *q; ) {
507 		p = *q;
508 #ifdef DIAGNOSTIC
509 		if (p->p_back || (p->p_stat != SSLEEP && p->p_stat != SSTOP))
510 			panic("wakeup");
511 #endif
512 		if (p->p_wchan == ident) {
513 			p->p_wchan = 0;
514 			*q = p->p_forw;
515 			if (qp->sq_tailp == &p->p_forw)
516 				qp->sq_tailp = q;
517 			if (p->p_stat == SSLEEP) {
518 				/* OPTIMIZED EXPANSION OF setrunnable(p); */
519 				if (p->p_slptime > 1)
520 					updatepri(p);
521 				p->p_slptime = 0;
522 				p->p_stat = SRUN;
523 				if (p->p_flag & P_INMEM)
524 					setrunqueue(p);
525 				/*
526 				 * Since curpriority is a user priority,
527 				 * p->p_priority is always better than
528 				 * curpriority.
529 				 */
530 				if ((p->p_flag & P_INMEM) == 0)
531 					wakeup((caddr_t)&proc0);
532 				else
533 					need_resched();
534 				/* END INLINE EXPANSION */
535 				goto restart;
536 			}
537 		} else
538 			q = &p->p_forw;
539 	}
540 	splx(s);
541 }
542 
543 /*
544  * The machine independent parts of mi_switch().
545  * Must be called at splstatclock() or higher.
546  */
547 void
548 mi_switch()
549 {
550 	register struct proc *p = curproc;	/* XXX */
551 	register struct rlimit *rlim;
552 	register long s, u;
553 	struct timeval tv;
554 
555 	/*
556 	 * Compute the amount of time during which the current
557 	 * process was running, and add that to its total so far.
558 	 */
559 	microtime(&tv);
560 	u = p->p_rtime.tv_usec + (tv.tv_usec - runtime.tv_usec);
561 	s = p->p_rtime.tv_sec + (tv.tv_sec - runtime.tv_sec);
562 	if (u < 0) {
563 		u += 1000000;
564 		s--;
565 	} else if (u >= 1000000) {
566 		u -= 1000000;
567 		s++;
568 	}
569 	p->p_rtime.tv_usec = u;
570 	p->p_rtime.tv_sec = s;
571 
572 	/*
573 	 * Check if the process exceeds its cpu resource allocation.
574 	 * If over max, kill it.  In any case, if it has run for more
575 	 * than 10 minutes, reduce priority to give others a chance.
576 	 */
577 	if (p->p_stat != SZOMB) {
578 		rlim = &p->p_rlimit[RLIMIT_CPU];
579 		if (s >= rlim->rlim_cur) {
580 			if (s >= rlim->rlim_max)
581 				psignal(p, SIGKILL);
582 			else {
583 				psignal(p, SIGXCPU);
584 				if (rlim->rlim_cur < rlim->rlim_max)
585 					rlim->rlim_cur += 5;
586 			}
587 		}
588 		if (s > 10 * 60 && p->p_ucred->cr_uid && p->p_nice == NZERO) {
589 			p->p_nice = NZERO + 4;
590 			resetpriority(p);
591 		}
592 	}
593 
594 	/*
595 	 * Pick a new current process and record its start time.
596 	 */
597 	cnt.v_swtch++;
598 	cpu_switch(p);
599 	microtime(&runtime);
600 }
601 
602 /*
603  * Initialize the (doubly-linked) run queues
604  * to be empty.
605  */
606 void
607 rqinit()
608 {
609 	register int i;
610 
611 	for (i = 0; i < NQS; i++) {
612 		qs[i].ph_link = qs[i].ph_rlink = (struct proc *)&qs[i];
613 		rtqs[i].ph_link = rtqs[i].ph_rlink = (struct proc *)&rtqs[i];
614 		idqs[i].ph_link = idqs[i].ph_rlink = (struct proc *)&idqs[i];
615 	}
616 }
617 
618 /*
619  * Change process state to be runnable,
620  * placing it on the run queue if it is in memory,
621  * and awakening the swapper if it isn't in memory.
622  */
623 void
624 setrunnable(p)
625 	register struct proc *p;
626 {
627 	register int s;
628 
629 	s = splhigh();
630 	switch (p->p_stat) {
631 	case 0:
632 	case SRUN:
633 	case SZOMB:
634 	default:
635 		panic("setrunnable");
636 	case SSTOP:
637 	case SSLEEP:
638 		unsleep(p);		/* e.g. when sending signals */
639 		break;
640 
641 	case SIDL:
642 		break;
643 	}
644 	p->p_stat = SRUN;
645 	if (p->p_flag & P_INMEM)
646 		setrunqueue(p);
647 	splx(s);
648 	if (p->p_slptime > 1)
649 		updatepri(p);
650 	p->p_slptime = 0;
651 	if ((p->p_flag & P_INMEM) == 0)
652 		wakeup((caddr_t)&proc0);
653 	else if (p->p_priority < curpriority)
654 		need_resched();
655 }
656 
657 /*
658  * Compute the priority of a process when running in user mode.
659  * Arrange to reschedule if the resulting priority is better
660  * than that of the current process.
661  */
662 void
663 resetpriority(p)
664 	register struct proc *p;
665 {
666 	register unsigned int newpriority;
667 
668 	if (p->p_rtprio.type == RTP_PRIO_NORMAL) {
669 		newpriority = PUSER + p->p_estcpu / 4 + 2 * p->p_nice;
670 		newpriority = min(newpriority, MAXPRI);
671 		p->p_usrpri = newpriority;
672 		if (newpriority < curpriority)
673 			need_resched();
674 	} else {
675 		need_resched();
676 	}
677 }
678