xref: /freebsd/sys/kern/kern_synch.c (revision 97cb52fa9aefd90fad38790fded50905aeeb9b9e)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1982, 1986, 1990, 1991, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  * (c) UNIX System Laboratories, Inc.
7  * All or some portions of this file are derived from material licensed
8  * to the University of California by American Telephone and Telegraph
9  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
10  * the permission of UNIX System Laboratories, Inc.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  * 3. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  *	@(#)kern_synch.c	8.9 (Berkeley) 5/19/95
37  */
38 
39 #include <sys/cdefs.h>
40 __FBSDID("$FreeBSD$");
41 
42 #include "opt_ktrace.h"
43 #include "opt_sched.h"
44 
45 #include <sys/param.h>
46 #include <sys/systm.h>
47 #include <sys/condvar.h>
48 #include <sys/kdb.h>
49 #include <sys/kernel.h>
50 #include <sys/ktr.h>
51 #include <sys/lock.h>
52 #include <sys/mutex.h>
53 #include <sys/proc.h>
54 #include <sys/resourcevar.h>
55 #include <sys/sched.h>
56 #include <sys/sdt.h>
57 #include <sys/signalvar.h>
58 #include <sys/sleepqueue.h>
59 #include <sys/smp.h>
60 #include <sys/sx.h>
61 #include <sys/sysctl.h>
62 #include <sys/sysproto.h>
63 #include <sys/vmmeter.h>
64 #ifdef KTRACE
65 #include <sys/uio.h>
66 #include <sys/ktrace.h>
67 #endif
68 
69 #include <machine/cpu.h>
70 
71 static void synch_setup(void *dummy);
72 SYSINIT(synch_setup, SI_SUB_KICK_SCHEDULER, SI_ORDER_FIRST, synch_setup,
73     NULL);
74 
75 int	hogticks;
76 static uint8_t pause_wchan[MAXCPU];
77 
78 static struct callout loadav_callout;
79 
80 struct loadavg averunnable =
81 	{ {0, 0, 0}, FSCALE };	/* load average, of runnable procs */
82 /*
83  * Constants for averages over 1, 5, and 15 minutes
84  * when sampling at 5 second intervals.
85  */
86 static fixpt_t cexp[3] = {
87 	0.9200444146293232 * FSCALE,	/* exp(-1/12) */
88 	0.9834714538216174 * FSCALE,	/* exp(-1/60) */
89 	0.9944598480048967 * FSCALE,	/* exp(-1/180) */
90 };
91 
92 /* kernel uses `FSCALE', userland (SHOULD) use kern.fscale */
93 SYSCTL_INT(_kern, OID_AUTO, fscale, CTLFLAG_RD, SYSCTL_NULL_INT_PTR, FSCALE, "");
94 
95 static void	loadav(void *arg);
96 
97 SDT_PROVIDER_DECLARE(sched);
98 SDT_PROBE_DEFINE(sched, , , preempt);
99 
100 static void
101 sleepinit(void *unused)
102 {
103 
104 	hogticks = (hz / 10) * 2;	/* Default only. */
105 	init_sleepqueues();
106 }
107 
108 /*
109  * vmem tries to lock the sleepq mutexes when free'ing kva, so make sure
110  * it is available.
111  */
112 SYSINIT(sleepinit, SI_SUB_KMEM, SI_ORDER_ANY, sleepinit, 0);
113 
114 /*
115  * General sleep call.  Suspends the current thread until a wakeup is
116  * performed on the specified identifier.  The thread will then be made
117  * runnable with the specified priority.  Sleeps at most sbt units of time
118  * (0 means no timeout).  If pri includes the PCATCH flag, let signals
119  * interrupt the sleep, otherwise ignore them while sleeping.  Returns 0 if
120  * awakened, EWOULDBLOCK if the timeout expires.  If PCATCH is set and a
121  * signal becomes pending, ERESTART is returned if the current system
122  * call should be restarted if possible, and EINTR is returned if the system
123  * call should be interrupted by the signal (return EINTR).
124  *
125  * The lock argument is unlocked before the caller is suspended, and
126  * re-locked before _sleep() returns.  If priority includes the PDROP
127  * flag the lock is not re-locked before returning.
128  */
129 int
130 _sleep(void *ident, struct lock_object *lock, int priority,
131     const char *wmesg, sbintime_t sbt, sbintime_t pr, int flags)
132 {
133 	struct thread *td;
134 	struct proc *p;
135 	struct lock_class *class;
136 	uintptr_t lock_state;
137 	int catch, pri, rval, sleepq_flags;
138 	WITNESS_SAVE_DECL(lock_witness);
139 
140 	td = curthread;
141 	p = td->td_proc;
142 #ifdef KTRACE
143 	if (KTRPOINT(td, KTR_CSW))
144 		ktrcsw(1, 0, wmesg);
145 #endif
146 	WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, lock,
147 	    "Sleeping on \"%s\"", wmesg);
148 	KASSERT(sbt != 0 || mtx_owned(&Giant) || lock != NULL,
149 	    ("sleeping without a lock"));
150 	KASSERT(ident != NULL, ("_sleep: NULL ident"));
151 	KASSERT(TD_IS_RUNNING(td), ("_sleep: curthread not running"));
152 	if (priority & PDROP)
153 		KASSERT(lock != NULL && lock != &Giant.lock_object,
154 		    ("PDROP requires a non-Giant lock"));
155 	if (lock != NULL)
156 		class = LOCK_CLASS(lock);
157 	else
158 		class = NULL;
159 
160 	if (SCHEDULER_STOPPED_TD(td)) {
161 		if (lock != NULL && priority & PDROP)
162 			class->lc_unlock(lock);
163 		return (0);
164 	}
165 	catch = priority & PCATCH;
166 	pri = priority & PRIMASK;
167 
168 	KASSERT(!TD_ON_SLEEPQ(td), ("recursive sleep"));
169 
170 	if ((uint8_t *)ident >= &pause_wchan[0] &&
171 	    (uint8_t *)ident <= &pause_wchan[MAXCPU - 1])
172 		sleepq_flags = SLEEPQ_PAUSE;
173 	else
174 		sleepq_flags = SLEEPQ_SLEEP;
175 	if (catch)
176 		sleepq_flags |= SLEEPQ_INTERRUPTIBLE;
177 
178 	sleepq_lock(ident);
179 	CTR5(KTR_PROC, "sleep: thread %ld (pid %ld, %s) on %s (%p)",
180 	    td->td_tid, p->p_pid, td->td_name, wmesg, ident);
181 
182 	if (lock == &Giant.lock_object)
183 		mtx_assert(&Giant, MA_OWNED);
184 	DROP_GIANT();
185 	if (lock != NULL && lock != &Giant.lock_object &&
186 	    !(class->lc_flags & LC_SLEEPABLE)) {
187 		WITNESS_SAVE(lock, lock_witness);
188 		lock_state = class->lc_unlock(lock);
189 	} else
190 		/* GCC needs to follow the Yellow Brick Road */
191 		lock_state = -1;
192 
193 	/*
194 	 * We put ourselves on the sleep queue and start our timeout
195 	 * before calling thread_suspend_check, as we could stop there,
196 	 * and a wakeup or a SIGCONT (or both) could occur while we were
197 	 * stopped without resuming us.  Thus, we must be ready for sleep
198 	 * when cursig() is called.  If the wakeup happens while we're
199 	 * stopped, then td will no longer be on a sleep queue upon
200 	 * return from cursig().
201 	 */
202 	sleepq_add(ident, lock, wmesg, sleepq_flags, 0);
203 	if (sbt != 0)
204 		sleepq_set_timeout_sbt(ident, sbt, pr, flags);
205 	if (lock != NULL && class->lc_flags & LC_SLEEPABLE) {
206 		sleepq_release(ident);
207 		WITNESS_SAVE(lock, lock_witness);
208 		lock_state = class->lc_unlock(lock);
209 		sleepq_lock(ident);
210 	}
211 	if (sbt != 0 && catch)
212 		rval = sleepq_timedwait_sig(ident, pri);
213 	else if (sbt != 0)
214 		rval = sleepq_timedwait(ident, pri);
215 	else if (catch)
216 		rval = sleepq_wait_sig(ident, pri);
217 	else {
218 		sleepq_wait(ident, pri);
219 		rval = 0;
220 	}
221 #ifdef KTRACE
222 	if (KTRPOINT(td, KTR_CSW))
223 		ktrcsw(0, 0, wmesg);
224 #endif
225 	PICKUP_GIANT();
226 	if (lock != NULL && lock != &Giant.lock_object && !(priority & PDROP)) {
227 		class->lc_lock(lock, lock_state);
228 		WITNESS_RESTORE(lock, lock_witness);
229 	}
230 	return (rval);
231 }
232 
233 int
234 msleep_spin_sbt(void *ident, struct mtx *mtx, const char *wmesg,
235     sbintime_t sbt, sbintime_t pr, int flags)
236 {
237 	struct thread *td;
238 	struct proc *p;
239 	int rval;
240 	WITNESS_SAVE_DECL(mtx);
241 
242 	td = curthread;
243 	p = td->td_proc;
244 	KASSERT(mtx != NULL, ("sleeping without a mutex"));
245 	KASSERT(ident != NULL, ("msleep_spin_sbt: NULL ident"));
246 	KASSERT(TD_IS_RUNNING(td), ("msleep_spin_sbt: curthread not running"));
247 
248 	if (SCHEDULER_STOPPED_TD(td))
249 		return (0);
250 
251 	sleepq_lock(ident);
252 	CTR5(KTR_PROC, "msleep_spin: thread %ld (pid %ld, %s) on %s (%p)",
253 	    td->td_tid, p->p_pid, td->td_name, wmesg, ident);
254 
255 	DROP_GIANT();
256 	mtx_assert(mtx, MA_OWNED | MA_NOTRECURSED);
257 	WITNESS_SAVE(&mtx->lock_object, mtx);
258 	mtx_unlock_spin(mtx);
259 
260 	/*
261 	 * We put ourselves on the sleep queue and start our timeout.
262 	 */
263 	sleepq_add(ident, &mtx->lock_object, wmesg, SLEEPQ_SLEEP, 0);
264 	if (sbt != 0)
265 		sleepq_set_timeout_sbt(ident, sbt, pr, flags);
266 
267 	/*
268 	 * Can't call ktrace with any spin locks held so it can lock the
269 	 * ktrace_mtx lock, and WITNESS_WARN considers it an error to hold
270 	 * any spin lock.  Thus, we have to drop the sleepq spin lock while
271 	 * we handle those requests.  This is safe since we have placed our
272 	 * thread on the sleep queue already.
273 	 */
274 #ifdef KTRACE
275 	if (KTRPOINT(td, KTR_CSW)) {
276 		sleepq_release(ident);
277 		ktrcsw(1, 0, wmesg);
278 		sleepq_lock(ident);
279 	}
280 #endif
281 #ifdef WITNESS
282 	sleepq_release(ident);
283 	WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, "Sleeping on \"%s\"",
284 	    wmesg);
285 	sleepq_lock(ident);
286 #endif
287 	if (sbt != 0)
288 		rval = sleepq_timedwait(ident, 0);
289 	else {
290 		sleepq_wait(ident, 0);
291 		rval = 0;
292 	}
293 #ifdef KTRACE
294 	if (KTRPOINT(td, KTR_CSW))
295 		ktrcsw(0, 0, wmesg);
296 #endif
297 	PICKUP_GIANT();
298 	mtx_lock_spin(mtx);
299 	WITNESS_RESTORE(&mtx->lock_object, mtx);
300 	return (rval);
301 }
302 
303 /*
304  * pause() delays the calling thread by the given number of system ticks.
305  * During cold bootup, pause() uses the DELAY() function instead of
306  * the tsleep() function to do the waiting. The "timo" argument must be
307  * greater than or equal to zero. A "timo" value of zero is equivalent
308  * to a "timo" value of one.
309  */
310 int
311 pause_sbt(const char *wmesg, sbintime_t sbt, sbintime_t pr, int flags)
312 {
313 	KASSERT(sbt >= 0, ("pause: timeout must be >= 0"));
314 
315 	/* silently convert invalid timeouts */
316 	if (sbt == 0)
317 		sbt = tick_sbt;
318 
319 	if ((cold && curthread == &thread0) || kdb_active ||
320 	    SCHEDULER_STOPPED()) {
321 		/*
322 		 * We delay one second at a time to avoid overflowing the
323 		 * system specific DELAY() function(s):
324 		 */
325 		while (sbt >= SBT_1S) {
326 			DELAY(1000000);
327 			sbt -= SBT_1S;
328 		}
329 		/* Do the delay remainder, if any */
330 		sbt = howmany(sbt, SBT_1US);
331 		if (sbt > 0)
332 			DELAY(sbt);
333 		return (0);
334 	}
335 	return (_sleep(&pause_wchan[curcpu], NULL, 0, wmesg, sbt, pr, flags));
336 }
337 
338 /*
339  * Make all threads sleeping on the specified identifier runnable.
340  */
341 void
342 wakeup(void *ident)
343 {
344 	int wakeup_swapper;
345 
346 	sleepq_lock(ident);
347 	wakeup_swapper = sleepq_broadcast(ident, SLEEPQ_SLEEP, 0, 0);
348 	sleepq_release(ident);
349 	if (wakeup_swapper) {
350 		KASSERT(ident != &proc0,
351 		    ("wakeup and wakeup_swapper and proc0"));
352 		kick_proc0();
353 	}
354 }
355 
356 /*
357  * Make a thread sleeping on the specified identifier runnable.
358  * May wake more than one thread if a target thread is currently
359  * swapped out.
360  */
361 void
362 wakeup_one(void *ident)
363 {
364 	int wakeup_swapper;
365 
366 	sleepq_lock(ident);
367 	wakeup_swapper = sleepq_signal(ident, SLEEPQ_SLEEP, 0, 0);
368 	sleepq_release(ident);
369 	if (wakeup_swapper)
370 		kick_proc0();
371 }
372 
373 static void
374 kdb_switch(void)
375 {
376 	thread_unlock(curthread);
377 	kdb_backtrace();
378 	kdb_reenter();
379 	panic("%s: did not reenter debugger", __func__);
380 }
381 
382 /*
383  * The machine independent parts of context switching.
384  */
385 void
386 mi_switch(int flags, struct thread *newtd)
387 {
388 	uint64_t runtime, new_switchtime;
389 	struct thread *td;
390 
391 	td = curthread;			/* XXX */
392 	THREAD_LOCK_ASSERT(td, MA_OWNED | MA_NOTRECURSED);
393 	KASSERT(!TD_ON_RUNQ(td), ("mi_switch: called by old code"));
394 #ifdef INVARIANTS
395 	if (!TD_ON_LOCK(td) && !TD_IS_RUNNING(td))
396 		mtx_assert(&Giant, MA_NOTOWNED);
397 #endif
398 	KASSERT(td->td_critnest == 1 || panicstr,
399 	    ("mi_switch: switch in a critical section"));
400 	KASSERT((flags & (SW_INVOL | SW_VOL)) != 0,
401 	    ("mi_switch: switch must be voluntary or involuntary"));
402 	KASSERT(newtd != curthread, ("mi_switch: preempting back to ourself"));
403 
404 	/*
405 	 * Don't perform context switches from the debugger.
406 	 */
407 	if (kdb_active)
408 		kdb_switch();
409 	if (SCHEDULER_STOPPED_TD(td))
410 		return;
411 	if (flags & SW_VOL) {
412 		td->td_ru.ru_nvcsw++;
413 		td->td_swvoltick = ticks;
414 	} else {
415 		td->td_ru.ru_nivcsw++;
416 		td->td_swinvoltick = ticks;
417 	}
418 #ifdef SCHED_STATS
419 	SCHED_STAT_INC(sched_switch_stats[flags & SW_TYPE_MASK]);
420 #endif
421 	/*
422 	 * Compute the amount of time during which the current
423 	 * thread was running, and add that to its total so far.
424 	 */
425 	new_switchtime = cpu_ticks();
426 	runtime = new_switchtime - PCPU_GET(switchtime);
427 	td->td_runtime += runtime;
428 	td->td_incruntime += runtime;
429 	PCPU_SET(switchtime, new_switchtime);
430 	td->td_generation++;	/* bump preempt-detect counter */
431 	VM_CNT_INC(v_swtch);
432 	PCPU_SET(switchticks, ticks);
433 	CTR4(KTR_PROC, "mi_switch: old thread %ld (td_sched %p, pid %ld, %s)",
434 	    td->td_tid, td_get_sched(td), td->td_proc->p_pid, td->td_name);
435 #ifdef KDTRACE_HOOKS
436 	if ((flags & SW_PREEMPT) != 0 || ((flags & SW_INVOL) != 0 &&
437 	    (flags & SW_TYPE_MASK) == SWT_NEEDRESCHED))
438 		SDT_PROBE0(sched, , , preempt);
439 #endif
440 	sched_switch(td, newtd, flags);
441 	CTR4(KTR_PROC, "mi_switch: new thread %ld (td_sched %p, pid %ld, %s)",
442 	    td->td_tid, td_get_sched(td), td->td_proc->p_pid, td->td_name);
443 
444 	/*
445 	 * If the last thread was exiting, finish cleaning it up.
446 	 */
447 	if ((td = PCPU_GET(deadthread))) {
448 		PCPU_SET(deadthread, NULL);
449 		thread_stash(td);
450 	}
451 }
452 
453 /*
454  * Change thread state to be runnable, placing it on the run queue if
455  * it is in memory.  If it is swapped out, return true so our caller
456  * will know to awaken the swapper.
457  */
458 int
459 setrunnable(struct thread *td)
460 {
461 
462 	THREAD_LOCK_ASSERT(td, MA_OWNED);
463 	KASSERT(td->td_proc->p_state != PRS_ZOMBIE,
464 	    ("setrunnable: pid %d is a zombie", td->td_proc->p_pid));
465 	switch (td->td_state) {
466 	case TDS_RUNNING:
467 	case TDS_RUNQ:
468 		return (0);
469 	case TDS_INHIBITED:
470 		/*
471 		 * If we are only inhibited because we are swapped out
472 		 * then arange to swap in this process. Otherwise just return.
473 		 */
474 		if (td->td_inhibitors != TDI_SWAPPED)
475 			return (0);
476 		/* FALLTHROUGH */
477 	case TDS_CAN_RUN:
478 		break;
479 	default:
480 		printf("state is 0x%x", td->td_state);
481 		panic("setrunnable(2)");
482 	}
483 	if ((td->td_flags & TDF_INMEM) == 0) {
484 		if ((td->td_flags & TDF_SWAPINREQ) == 0) {
485 			td->td_flags |= TDF_SWAPINREQ;
486 			return (1);
487 		}
488 	} else
489 		sched_wakeup(td);
490 	return (0);
491 }
492 
493 /*
494  * Compute a tenex style load average of a quantity on
495  * 1, 5 and 15 minute intervals.
496  */
497 static void
498 loadav(void *arg)
499 {
500 	int i, nrun;
501 	struct loadavg *avg;
502 
503 	nrun = sched_load();
504 	avg = &averunnable;
505 
506 	for (i = 0; i < 3; i++)
507 		avg->ldavg[i] = (cexp[i] * avg->ldavg[i] +
508 		    nrun * FSCALE * (FSCALE - cexp[i])) >> FSHIFT;
509 
510 	/*
511 	 * Schedule the next update to occur after 5 seconds, but add a
512 	 * random variation to avoid synchronisation with processes that
513 	 * run at regular intervals.
514 	 */
515 	callout_reset_sbt(&loadav_callout,
516 	    SBT_1US * (4000000 + (int)(random() % 2000001)), SBT_1US,
517 	    loadav, NULL, C_DIRECT_EXEC | C_PREL(32));
518 }
519 
520 /* ARGSUSED */
521 static void
522 synch_setup(void *dummy)
523 {
524 	callout_init(&loadav_callout, 1);
525 
526 	/* Kick off timeout driven events by calling first time. */
527 	loadav(NULL);
528 }
529 
530 int
531 should_yield(void)
532 {
533 
534 	return ((u_int)ticks - (u_int)curthread->td_swvoltick >= hogticks);
535 }
536 
537 void
538 maybe_yield(void)
539 {
540 
541 	if (should_yield())
542 		kern_yield(PRI_USER);
543 }
544 
545 void
546 kern_yield(int prio)
547 {
548 	struct thread *td;
549 
550 	td = curthread;
551 	DROP_GIANT();
552 	thread_lock(td);
553 	if (prio == PRI_USER)
554 		prio = td->td_user_pri;
555 	if (prio >= 0)
556 		sched_prio(td, prio);
557 	mi_switch(SW_VOL | SWT_RELINQUISH, NULL);
558 	thread_unlock(td);
559 	PICKUP_GIANT();
560 }
561 
562 /*
563  * General purpose yield system call.
564  */
565 int
566 sys_yield(struct thread *td, struct yield_args *uap)
567 {
568 
569 	thread_lock(td);
570 	if (PRI_BASE(td->td_pri_class) == PRI_TIMESHARE)
571 		sched_prio(td, PRI_MAX_TIMESHARE);
572 	mi_switch(SW_VOL | SWT_RELINQUISH, NULL);
573 	thread_unlock(td);
574 	td->td_retval[0] = 0;
575 	return (0);
576 }
577