1 /*- 2 * Copyright (c) 1982, 1986, 1990, 1991, 1993 3 * The Regents of the University of California. All rights reserved. 4 * (c) UNIX System Laboratories, Inc. 5 * All or some portions of this file are derived from material licensed 6 * to the University of California by American Telephone and Telegraph 7 * Co. or Unix System Laboratories, Inc. and are reproduced herein with 8 * the permission of UNIX System Laboratories, Inc. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 3. All advertising materials mentioning features or use of this software 19 * must display the following acknowledgement: 20 * This product includes software developed by the University of 21 * California, Berkeley and its contributors. 22 * 4. Neither the name of the University nor the names of its contributors 23 * may be used to endorse or promote products derived from this software 24 * without specific prior written permission. 25 * 26 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 28 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 29 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 30 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 36 * SUCH DAMAGE. 37 * 38 * @(#)kern_synch.c 8.6 (Berkeley) 1/21/94 39 * $Id: kern_synch.c,v 1.12 1995/08/28 09:18:45 julian Exp $ 40 */ 41 42 #include <sys/param.h> 43 #include <sys/systm.h> 44 #include <sys/proc.h> 45 #include <sys/kernel.h> 46 #include <sys/buf.h> 47 #include <sys/signalvar.h> 48 #include <sys/resourcevar.h> 49 #include <sys/signalvar.h> 50 #include <vm/vm.h> 51 #ifdef KTRACE 52 #include <sys/ktrace.h> 53 #endif 54 55 #include <machine/cpu.h> 56 57 58 /* 59 * System initialization 60 */ 61 62 static void rqinit __P((void *)); 63 SYSINIT(runqueue, SI_SUB_RUN_QUEUE, SI_ORDER_FIRST, rqinit, NULL) 64 65 66 67 u_char curpriority; /* usrpri of curproc */ 68 int lbolt; /* once a second sleep address */ 69 70 void endtsleep __P((void *)); 71 72 /* 73 * Force switch among equal priority processes every 100ms. 74 */ 75 /* ARGSUSED */ 76 void 77 roundrobin(arg) 78 void *arg; 79 { 80 81 need_resched(); 82 timeout(roundrobin, NULL, hz / 10); 83 } 84 85 /* 86 * Constants for digital decay and forget: 87 * 90% of (p_estcpu) usage in 5 * loadav time 88 * 95% of (p_pctcpu) usage in 60 seconds (load insensitive) 89 * Note that, as ps(1) mentions, this can let percentages 90 * total over 100% (I've seen 137.9% for 3 processes). 91 * 92 * Note that hardclock updates p_estcpu and p_cpticks independently. 93 * 94 * We wish to decay away 90% of p_estcpu in (5 * loadavg) seconds. 95 * That is, the system wants to compute a value of decay such 96 * that the following for loop: 97 * for (i = 0; i < (5 * loadavg); i++) 98 * p_estcpu *= decay; 99 * will compute 100 * p_estcpu *= 0.1; 101 * for all values of loadavg: 102 * 103 * Mathematically this loop can be expressed by saying: 104 * decay ** (5 * loadavg) ~= .1 105 * 106 * The system computes decay as: 107 * decay = (2 * loadavg) / (2 * loadavg + 1) 108 * 109 * We wish to prove that the system's computation of decay 110 * will always fulfill the equation: 111 * decay ** (5 * loadavg) ~= .1 112 * 113 * If we compute b as: 114 * b = 2 * loadavg 115 * then 116 * decay = b / (b + 1) 117 * 118 * We now need to prove two things: 119 * 1) Given factor ** (5 * loadavg) ~= .1, prove factor == b/(b+1) 120 * 2) Given b/(b+1) ** power ~= .1, prove power == (5 * loadavg) 121 * 122 * Facts: 123 * For x close to zero, exp(x) =~ 1 + x, since 124 * exp(x) = 0! + x**1/1! + x**2/2! + ... . 125 * therefore exp(-1/b) =~ 1 - (1/b) = (b-1)/b. 126 * For x close to zero, ln(1+x) =~ x, since 127 * ln(1+x) = x - x**2/2 + x**3/3 - ... -1 < x < 1 128 * therefore ln(b/(b+1)) = ln(1 - 1/(b+1)) =~ -1/(b+1). 129 * ln(.1) =~ -2.30 130 * 131 * Proof of (1): 132 * Solve (factor)**(power) =~ .1 given power (5*loadav): 133 * solving for factor, 134 * ln(factor) =~ (-2.30/5*loadav), or 135 * factor =~ exp(-1/((5/2.30)*loadav)) =~ exp(-1/(2*loadav)) = 136 * exp(-1/b) =~ (b-1)/b =~ b/(b+1). QED 137 * 138 * Proof of (2): 139 * Solve (factor)**(power) =~ .1 given factor == (b/(b+1)): 140 * solving for power, 141 * power*ln(b/(b+1)) =~ -2.30, or 142 * power =~ 2.3 * (b + 1) = 4.6*loadav + 2.3 =~ 5*loadav. QED 143 * 144 * Actual power values for the implemented algorithm are as follows: 145 * loadav: 1 2 3 4 146 * power: 5.68 10.32 14.94 19.55 147 */ 148 149 /* calculations for digital decay to forget 90% of usage in 5*loadav sec */ 150 #define loadfactor(loadav) (2 * (loadav)) 151 #define decay_cpu(loadfac, cpu) (((loadfac) * (cpu)) / ((loadfac) + FSCALE)) 152 153 /* decay 95% of `p_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */ 154 fixpt_t ccpu = 0.95122942450071400909 * FSCALE; /* exp(-1/20) */ 155 156 /* 157 * If `ccpu' is not equal to `exp(-1/20)' and you still want to use the 158 * faster/more-accurate formula, you'll have to estimate CCPU_SHIFT below 159 * and possibly adjust FSHIFT in "param.h" so that (FSHIFT >= CCPU_SHIFT). 160 * 161 * To estimate CCPU_SHIFT for exp(-1/20), the following formula was used: 162 * 1 - exp(-1/20) ~= 0.0487 ~= 0.0488 == 1 (fixed pt, *11* bits). 163 * 164 * If you dont want to bother with the faster/more-accurate formula, you 165 * can set CCPU_SHIFT to (FSHIFT + 1) which will use a slower/less-accurate 166 * (more general) method of calculating the %age of CPU used by a process. 167 */ 168 #define CCPU_SHIFT 11 169 170 /* 171 * Recompute process priorities, every hz ticks. 172 */ 173 /* ARGSUSED */ 174 void 175 schedcpu(arg) 176 void *arg; 177 { 178 register fixpt_t loadfac = loadfactor(averunnable.ldavg[0]); 179 register struct proc *p; 180 register int s; 181 register unsigned int newcpu; 182 183 wakeup((caddr_t)&lbolt); 184 for (p = (struct proc *)allproc; p != NULL; p = p->p_next) { 185 /* 186 * Increment time in/out of memory and sleep time 187 * (if sleeping). We ignore overflow; with 16-bit int's 188 * (remember them?) overflow takes 45 days. 189 */ 190 p->p_swtime++; 191 if (p->p_stat == SSLEEP || p->p_stat == SSTOP) 192 p->p_slptime++; 193 p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT; 194 /* 195 * If the process has slept the entire second, 196 * stop recalculating its priority until it wakes up. 197 */ 198 if (p->p_slptime > 1) 199 continue; 200 s = splstatclock(); /* prevent state changes */ 201 /* 202 * p_pctcpu is only for ps. 203 */ 204 #if (FSHIFT >= CCPU_SHIFT) 205 p->p_pctcpu += (hz == 100)? 206 ((fixpt_t) p->p_cpticks) << (FSHIFT - CCPU_SHIFT): 207 100 * (((fixpt_t) p->p_cpticks) 208 << (FSHIFT - CCPU_SHIFT)) / hz; 209 #else 210 p->p_pctcpu += ((FSCALE - ccpu) * 211 (p->p_cpticks * FSCALE / hz)) >> FSHIFT; 212 #endif 213 p->p_cpticks = 0; 214 newcpu = (u_int) decay_cpu(loadfac, p->p_estcpu) + p->p_nice; 215 p->p_estcpu = min(newcpu, UCHAR_MAX); 216 resetpriority(p); 217 if (p->p_priority >= PUSER) { 218 #define PPQ (128 / NQS) /* priorities per queue */ 219 if ((p != curproc) && 220 p->p_stat == SRUN && 221 (p->p_flag & P_INMEM) && 222 (p->p_priority / PPQ) != (p->p_usrpri / PPQ)) { 223 remrq(p); 224 p->p_priority = p->p_usrpri; 225 setrunqueue(p); 226 } else 227 p->p_priority = p->p_usrpri; 228 } 229 splx(s); 230 } 231 vmmeter(); 232 timeout(schedcpu, (void *)0, hz); 233 } 234 235 /* 236 * Recalculate the priority of a process after it has slept for a while. 237 * For all load averages >= 1 and max p_estcpu of 255, sleeping for at 238 * least six times the loadfactor will decay p_estcpu to zero. 239 */ 240 void 241 updatepri(p) 242 register struct proc *p; 243 { 244 register unsigned int newcpu = p->p_estcpu; 245 register fixpt_t loadfac = loadfactor(averunnable.ldavg[0]); 246 247 if (p->p_slptime > 5 * loadfac) 248 p->p_estcpu = 0; 249 else { 250 p->p_slptime--; /* the first time was done in schedcpu */ 251 while (newcpu && --p->p_slptime) 252 newcpu = (int) decay_cpu(loadfac, newcpu); 253 p->p_estcpu = min(newcpu, UCHAR_MAX); 254 } 255 resetpriority(p); 256 } 257 258 /* 259 * We're only looking at 7 bits of the address; everything is 260 * aligned to 4, lots of things are aligned to greater powers 261 * of 2. Shift right by 8, i.e. drop the bottom 256 worth. 262 */ 263 #define TABLESIZE 128 264 #define LOOKUP(x) (((int)(x) >> 8) & (TABLESIZE - 1)) 265 struct slpque { 266 struct proc *sq_head; 267 struct proc **sq_tailp; 268 } slpque[TABLESIZE]; 269 270 /* 271 * During autoconfiguration or after a panic, a sleep will simply 272 * lower the priority briefly to allow interrupts, then return. 273 * The priority to be used (safepri) is machine-dependent, thus this 274 * value is initialized and maintained in the machine-dependent layers. 275 * This priority will typically be 0, or the lowest priority 276 * that is safe for use on the interrupt stack; it can be made 277 * higher to block network software interrupts after panics. 278 */ 279 int safepri; 280 281 /* 282 * General sleep call. Suspends the current process until a wakeup is 283 * performed on the specified identifier. The process will then be made 284 * runnable with the specified priority. Sleeps at most timo/hz seconds 285 * (0 means no timeout). If pri includes PCATCH flag, signals are checked 286 * before and after sleeping, else signals are not checked. Returns 0 if 287 * awakened, EWOULDBLOCK if the timeout expires. If PCATCH is set and a 288 * signal needs to be delivered, ERESTART is returned if the current system 289 * call should be restarted if possible, and EINTR is returned if the system 290 * call should be interrupted by the signal (return EINTR). 291 */ 292 int 293 tsleep(ident, priority, wmesg, timo) 294 void *ident; 295 int priority, timo; 296 char *wmesg; 297 { 298 register struct proc *p = curproc; 299 register struct slpque *qp; 300 register s; 301 int sig, catch = priority & PCATCH; 302 303 #ifdef KTRACE 304 if (KTRPOINT(p, KTR_CSW)) 305 ktrcsw(p->p_tracep, 1, 0); 306 #endif 307 s = splhigh(); 308 if (cold || panicstr) { 309 /* 310 * After a panic, or during autoconfiguration, 311 * just give interrupts a chance, then just return; 312 * don't run any other procs or panic below, 313 * in case this is the idle process and already asleep. 314 */ 315 splx(safepri); 316 splx(s); 317 return (0); 318 } 319 #ifdef DIAGNOSTIC 320 if (ident == NULL || p->p_stat != SRUN || p->p_back) 321 panic("tsleep"); 322 #endif 323 p->p_wchan = ident; 324 p->p_wmesg = wmesg; 325 p->p_slptime = 0; 326 p->p_priority = priority & PRIMASK; 327 qp = &slpque[LOOKUP(ident)]; 328 if (qp->sq_head == 0) 329 qp->sq_head = p; 330 else 331 *qp->sq_tailp = p; 332 *(qp->sq_tailp = &p->p_forw) = 0; 333 if (timo) 334 timeout(endtsleep, (void *)p, timo); 335 /* 336 * We put ourselves on the sleep queue and start our timeout 337 * before calling CURSIG, as we could stop there, and a wakeup 338 * or a SIGCONT (or both) could occur while we were stopped. 339 * A SIGCONT would cause us to be marked as SSLEEP 340 * without resuming us, thus we must be ready for sleep 341 * when CURSIG is called. If the wakeup happens while we're 342 * stopped, p->p_wchan will be 0 upon return from CURSIG. 343 */ 344 if (catch) { 345 p->p_flag |= P_SINTR; 346 if ((sig = CURSIG(p))) { 347 if (p->p_wchan) 348 unsleep(p); 349 p->p_stat = SRUN; 350 goto resume; 351 } 352 if (p->p_wchan == 0) { 353 catch = 0; 354 goto resume; 355 } 356 } else 357 sig = 0; 358 p->p_stat = SSLEEP; 359 p->p_stats->p_ru.ru_nvcsw++; 360 mi_switch(); 361 resume: 362 curpriority = p->p_usrpri; 363 splx(s); 364 p->p_flag &= ~P_SINTR; 365 if (p->p_flag & P_TIMEOUT) { 366 p->p_flag &= ~P_TIMEOUT; 367 if (sig == 0) { 368 #ifdef KTRACE 369 if (KTRPOINT(p, KTR_CSW)) 370 ktrcsw(p->p_tracep, 0, 0); 371 #endif 372 return (EWOULDBLOCK); 373 } 374 } else if (timo) 375 untimeout(endtsleep, (void *)p); 376 if (catch && (sig != 0 || (sig = CURSIG(p)))) { 377 #ifdef KTRACE 378 if (KTRPOINT(p, KTR_CSW)) 379 ktrcsw(p->p_tracep, 0, 0); 380 #endif 381 if (p->p_sigacts->ps_sigintr & sigmask(sig)) 382 return (EINTR); 383 return (ERESTART); 384 } 385 #ifdef KTRACE 386 if (KTRPOINT(p, KTR_CSW)) 387 ktrcsw(p->p_tracep, 0, 0); 388 #endif 389 return (0); 390 } 391 392 /* 393 * Implement timeout for tsleep. 394 * If process hasn't been awakened (wchan non-zero), 395 * set timeout flag and undo the sleep. If proc 396 * is stopped, just unsleep so it will remain stopped. 397 */ 398 void 399 endtsleep(arg) 400 void *arg; 401 { 402 register struct proc *p; 403 int s; 404 405 p = (struct proc *)arg; 406 s = splhigh(); 407 if (p->p_wchan) { 408 if (p->p_stat == SSLEEP) 409 setrunnable(p); 410 else 411 unsleep(p); 412 p->p_flag |= P_TIMEOUT; 413 } 414 splx(s); 415 } 416 417 /* 418 * Short-term, non-interruptable sleep. 419 */ 420 void 421 sleep(ident, priority) 422 void *ident; 423 int priority; 424 { 425 register struct proc *p = curproc; 426 register struct slpque *qp; 427 register s; 428 429 #ifdef DIAGNOSTIC 430 if (priority > PZERO) { 431 printf("sleep called with priority %d > PZERO, wchan: %p\n", 432 priority, ident); 433 panic("old sleep"); 434 } 435 #endif 436 s = splhigh(); 437 if (cold || panicstr) { 438 /* 439 * After a panic, or during autoconfiguration, 440 * just give interrupts a chance, then just return; 441 * don't run any other procs or panic below, 442 * in case this is the idle process and already asleep. 443 */ 444 splx(safepri); 445 splx(s); 446 return; 447 } 448 #ifdef DIAGNOSTIC 449 if (ident == NULL || p->p_stat != SRUN || p->p_back) 450 panic("sleep"); 451 #endif 452 p->p_wchan = ident; 453 p->p_wmesg = NULL; 454 p->p_slptime = 0; 455 p->p_priority = priority; 456 qp = &slpque[LOOKUP(ident)]; 457 if (qp->sq_head == 0) 458 qp->sq_head = p; 459 else 460 *qp->sq_tailp = p; 461 *(qp->sq_tailp = &p->p_forw) = 0; 462 p->p_stat = SSLEEP; 463 p->p_stats->p_ru.ru_nvcsw++; 464 #ifdef KTRACE 465 if (KTRPOINT(p, KTR_CSW)) 466 ktrcsw(p->p_tracep, 1, 0); 467 #endif 468 mi_switch(); 469 #ifdef KTRACE 470 if (KTRPOINT(p, KTR_CSW)) 471 ktrcsw(p->p_tracep, 0, 0); 472 #endif 473 curpriority = p->p_usrpri; 474 splx(s); 475 } 476 477 /* 478 * Remove a process from its wait queue 479 */ 480 void 481 unsleep(p) 482 register struct proc *p; 483 { 484 register struct slpque *qp; 485 register struct proc **hp; 486 int s; 487 488 s = splhigh(); 489 if (p->p_wchan) { 490 hp = &(qp = &slpque[LOOKUP(p->p_wchan)])->sq_head; 491 while (*hp != p) 492 hp = &(*hp)->p_forw; 493 *hp = p->p_forw; 494 if (qp->sq_tailp == &p->p_forw) 495 qp->sq_tailp = hp; 496 p->p_wchan = 0; 497 } 498 splx(s); 499 } 500 501 /* 502 * Make all processes sleeping on the specified identifier runnable. 503 */ 504 void 505 wakeup(ident) 506 register void *ident; 507 { 508 register struct slpque *qp; 509 register struct proc *p, **q; 510 int s; 511 512 s = splhigh(); 513 qp = &slpque[LOOKUP(ident)]; 514 restart: 515 for (q = &qp->sq_head; *q; ) { 516 p = *q; 517 #ifdef DIAGNOSTIC 518 if (p->p_back || (p->p_stat != SSLEEP && p->p_stat != SSTOP)) 519 panic("wakeup"); 520 #endif 521 if (p->p_wchan == ident) { 522 p->p_wchan = 0; 523 *q = p->p_forw; 524 if (qp->sq_tailp == &p->p_forw) 525 qp->sq_tailp = q; 526 if (p->p_stat == SSLEEP) { 527 /* OPTIMIZED EXPANSION OF setrunnable(p); */ 528 if (p->p_slptime > 1) 529 updatepri(p); 530 p->p_slptime = 0; 531 p->p_stat = SRUN; 532 if (p->p_flag & P_INMEM) 533 setrunqueue(p); 534 /* 535 * Since curpriority is a user priority, 536 * p->p_priority is always better than 537 * curpriority. 538 */ 539 if ((p->p_flag & P_INMEM) == 0) 540 wakeup((caddr_t)&proc0); 541 else 542 need_resched(); 543 /* END INLINE EXPANSION */ 544 goto restart; 545 } 546 } else 547 q = &p->p_forw; 548 } 549 splx(s); 550 } 551 552 /* 553 * The machine independent parts of mi_switch(). 554 * Must be called at splstatclock() or higher. 555 */ 556 void 557 mi_switch() 558 { 559 register struct proc *p = curproc; /* XXX */ 560 register struct rlimit *rlim; 561 register long s, u; 562 struct timeval tv; 563 564 /* 565 * Compute the amount of time during which the current 566 * process was running, and add that to its total so far. 567 */ 568 microtime(&tv); 569 u = p->p_rtime.tv_usec + (tv.tv_usec - runtime.tv_usec); 570 s = p->p_rtime.tv_sec + (tv.tv_sec - runtime.tv_sec); 571 if (u < 0) { 572 u += 1000000; 573 s--; 574 } else if (u >= 1000000) { 575 u -= 1000000; 576 s++; 577 } 578 p->p_rtime.tv_usec = u; 579 p->p_rtime.tv_sec = s; 580 581 /* 582 * Check if the process exceeds its cpu resource allocation. 583 * If over max, kill it. In any case, if it has run for more 584 * than 10 minutes, reduce priority to give others a chance. 585 */ 586 if (p->p_stat != SZOMB) { 587 rlim = &p->p_rlimit[RLIMIT_CPU]; 588 if (s >= rlim->rlim_cur) { 589 if (s >= rlim->rlim_max) 590 psignal(p, SIGKILL); 591 else { 592 psignal(p, SIGXCPU); 593 if (rlim->rlim_cur < rlim->rlim_max) 594 rlim->rlim_cur += 5; 595 } 596 } 597 if (s > 10 * 60 && p->p_ucred->cr_uid && p->p_nice == NZERO) { 598 p->p_nice = NZERO + 4; 599 resetpriority(p); 600 } 601 } 602 603 /* 604 * Pick a new current process and record its start time. 605 */ 606 cnt.v_swtch++; 607 cpu_switch(p); 608 microtime(&runtime); 609 } 610 611 /* 612 * Initialize the (doubly-linked) run queues 613 * to be empty. 614 */ 615 /* ARGSUSED*/ 616 static void 617 rqinit(udata) 618 void *udata; /* not used*/ 619 { 620 register int i; 621 622 for (i = 0; i < NQS; i++) { 623 qs[i].ph_link = qs[i].ph_rlink = (struct proc *)&qs[i]; 624 rtqs[i].ph_link = rtqs[i].ph_rlink = (struct proc *)&rtqs[i]; 625 idqs[i].ph_link = idqs[i].ph_rlink = (struct proc *)&idqs[i]; 626 } 627 } 628 629 /* 630 * Change process state to be runnable, 631 * placing it on the run queue if it is in memory, 632 * and awakening the swapper if it isn't in memory. 633 */ 634 void 635 setrunnable(p) 636 register struct proc *p; 637 { 638 register int s; 639 640 s = splhigh(); 641 switch (p->p_stat) { 642 case 0: 643 case SRUN: 644 case SZOMB: 645 default: 646 panic("setrunnable"); 647 case SSTOP: 648 case SSLEEP: 649 unsleep(p); /* e.g. when sending signals */ 650 break; 651 652 case SIDL: 653 break; 654 } 655 p->p_stat = SRUN; 656 if (p->p_flag & P_INMEM) 657 setrunqueue(p); 658 splx(s); 659 if (p->p_slptime > 1) 660 updatepri(p); 661 p->p_slptime = 0; 662 if ((p->p_flag & P_INMEM) == 0) 663 wakeup((caddr_t)&proc0); 664 else if (p->p_priority < curpriority) 665 need_resched(); 666 } 667 668 /* 669 * Compute the priority of a process when running in user mode. 670 * Arrange to reschedule if the resulting priority is better 671 * than that of the current process. 672 */ 673 void 674 resetpriority(p) 675 register struct proc *p; 676 { 677 register unsigned int newpriority; 678 679 if (p->p_rtprio.type == RTP_PRIO_NORMAL) { 680 newpriority = PUSER + p->p_estcpu / 4 + 2 * p->p_nice; 681 newpriority = min(newpriority, MAXPRI); 682 p->p_usrpri = newpriority; 683 if (newpriority < curpriority) 684 need_resched(); 685 } else { 686 need_resched(); 687 } 688 } 689