xref: /freebsd/sys/kern/kern_synch.c (revision 729362425c09cf6b362366aabc6fb547eee8035a)
1 /*-
2  * Copyright (c) 1982, 1986, 1990, 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  * (c) UNIX System Laboratories, Inc.
5  * All or some portions of this file are derived from material licensed
6  * to the University of California by American Telephone and Telegraph
7  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8  * the permission of UNIX System Laboratories, Inc.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. All advertising materials mentioning features or use of this software
19  *    must display the following acknowledgement:
20  *	This product includes software developed by the University of
21  *	California, Berkeley and its contributors.
22  * 4. Neither the name of the University nor the names of its contributors
23  *    may be used to endorse or promote products derived from this software
24  *    without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36  * SUCH DAMAGE.
37  *
38  *	@(#)kern_synch.c	8.9 (Berkeley) 5/19/95
39  * $FreeBSD$
40  */
41 
42 #include "opt_ddb.h"
43 #include "opt_ktrace.h"
44 
45 #include <sys/param.h>
46 #include <sys/systm.h>
47 #include <sys/condvar.h>
48 #include <sys/kernel.h>
49 #include <sys/ktr.h>
50 #include <sys/lock.h>
51 #include <sys/mutex.h>
52 #include <sys/proc.h>
53 #include <sys/resourcevar.h>
54 #include <sys/sched.h>
55 #include <sys/signalvar.h>
56 #include <sys/smp.h>
57 #include <sys/sx.h>
58 #include <sys/sysctl.h>
59 #include <sys/sysproto.h>
60 #include <sys/vmmeter.h>
61 #ifdef DDB
62 #include <ddb/ddb.h>
63 #endif
64 #ifdef KTRACE
65 #include <sys/uio.h>
66 #include <sys/ktrace.h>
67 #endif
68 
69 #include <machine/cpu.h>
70 
71 static void sched_setup(void *dummy);
72 SYSINIT(sched_setup, SI_SUB_KICK_SCHEDULER, SI_ORDER_FIRST, sched_setup, NULL)
73 
74 int	hogticks;
75 int	lbolt;
76 
77 static struct callout loadav_callout;
78 static struct callout lbolt_callout;
79 
80 struct loadavg averunnable =
81 	{ {0, 0, 0}, FSCALE };	/* load average, of runnable procs */
82 /*
83  * Constants for averages over 1, 5, and 15 minutes
84  * when sampling at 5 second intervals.
85  */
86 static fixpt_t cexp[3] = {
87 	0.9200444146293232 * FSCALE,	/* exp(-1/12) */
88 	0.9834714538216174 * FSCALE,	/* exp(-1/60) */
89 	0.9944598480048967 * FSCALE,	/* exp(-1/180) */
90 };
91 
92 /* kernel uses `FSCALE', userland (SHOULD) use kern.fscale */
93 static int      fscale __unused = FSCALE;
94 SYSCTL_INT(_kern, OID_AUTO, fscale, CTLFLAG_RD, 0, FSCALE, "");
95 
96 static void	endtsleep(void *);
97 static void	loadav(void *arg);
98 static void	lboltcb(void *arg);
99 
100 /*
101  * We're only looking at 7 bits of the address; everything is
102  * aligned to 4, lots of things are aligned to greater powers
103  * of 2.  Shift right by 8, i.e. drop the bottom 256 worth.
104  */
105 #define TABLESIZE	128
106 static TAILQ_HEAD(slpquehead, thread) slpque[TABLESIZE];
107 #define LOOKUP(x)	(((intptr_t)(x) >> 8) & (TABLESIZE - 1))
108 
109 void
110 sleepinit(void)
111 {
112 	int i;
113 
114 	hogticks = (hz / 10) * 2;	/* Default only. */
115 	for (i = 0; i < TABLESIZE; i++)
116 		TAILQ_INIT(&slpque[i]);
117 }
118 
119 /*
120  * General sleep call.  Suspends the current process until a wakeup is
121  * performed on the specified identifier.  The process will then be made
122  * runnable with the specified priority.  Sleeps at most timo/hz seconds
123  * (0 means no timeout).  If pri includes PCATCH flag, signals are checked
124  * before and after sleeping, else signals are not checked.  Returns 0 if
125  * awakened, EWOULDBLOCK if the timeout expires.  If PCATCH is set and a
126  * signal needs to be delivered, ERESTART is returned if the current system
127  * call should be restarted if possible, and EINTR is returned if the system
128  * call should be interrupted by the signal (return EINTR).
129  *
130  * The mutex argument is exited before the caller is suspended, and
131  * entered before msleep returns.  If priority includes the PDROP
132  * flag the mutex is not entered before returning.
133  */
134 
135 int
136 msleep(ident, mtx, priority, wmesg, timo)
137 	void *ident;
138 	struct mtx *mtx;
139 	int priority, timo;
140 	const char *wmesg;
141 {
142 	struct thread *td = curthread;
143 	struct proc *p = td->td_proc;
144 	int sig, catch = priority & PCATCH;
145 	int rval = 0;
146 	WITNESS_SAVE_DECL(mtx);
147 
148 #ifdef KTRACE
149 	if (KTRPOINT(td, KTR_CSW))
150 		ktrcsw(1, 0);
151 #endif
152 	WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, &mtx->mtx_object,
153 	    "Sleeping on \"%s\"", wmesg);
154 	KASSERT(timo != 0 || mtx_owned(&Giant) || mtx != NULL,
155 	    ("sleeping without a mutex"));
156 	/*
157 	 * If we are capable of async syscalls and there isn't already
158 	 * another one ready to return, start a new thread
159 	 * and queue it as ready to run. Note that there is danger here
160 	 * because we need to make sure that we don't sleep allocating
161 	 * the thread (recursion here might be bad).
162 	 * Hence the TDF_INMSLEEP flag.
163 	 */
164 	if (p->p_flag & P_THREADED) {
165 		/*
166 		 * Just don't bother if we are exiting
167 		 * and not the exiting thread or thread was marked as
168 		 * interrupted.
169 		 */
170 		if (catch &&
171 		    (((p->p_flag & P_WEXIT) && (p->p_singlethread != td)) ||
172 		     (td->td_flags & TDF_INTERRUPT))) {
173 			td->td_flags &= ~TDF_INTERRUPT;
174 			return (EINTR);
175 		}
176 	}
177 	mtx_lock_spin(&sched_lock);
178 	if (cold ) {
179 		/*
180 		 * During autoconfiguration, just give interrupts
181 		 * a chance, then just return.
182 		 * Don't run any other procs or panic below,
183 		 * in case this is the idle process and already asleep.
184 		 */
185 		if (mtx != NULL && priority & PDROP)
186 			mtx_unlock(mtx);
187 		mtx_unlock_spin(&sched_lock);
188 		return (0);
189 	}
190 
191 	DROP_GIANT();
192 
193 	if (mtx != NULL) {
194 		mtx_assert(mtx, MA_OWNED | MA_NOTRECURSED);
195 		WITNESS_SAVE(&mtx->mtx_object, mtx);
196 		mtx_unlock(mtx);
197 		if (priority & PDROP)
198 			mtx = NULL;
199 	}
200 
201 	KASSERT(p != NULL, ("msleep1"));
202 	KASSERT(ident != NULL && TD_IS_RUNNING(td), ("msleep"));
203 
204 	CTR5(KTR_PROC, "msleep: thread %p (pid %d, %s) on %s (%p)",
205 	    td, p->p_pid, p->p_comm, wmesg, ident);
206 
207 	td->td_wchan = ident;
208 	td->td_wmesg = wmesg;
209 	TAILQ_INSERT_TAIL(&slpque[LOOKUP(ident)], td, td_slpq);
210 	TD_SET_ON_SLEEPQ(td);
211 	if (timo)
212 		callout_reset(&td->td_slpcallout, timo, endtsleep, td);
213 	/*
214 	 * We put ourselves on the sleep queue and start our timeout
215 	 * before calling thread_suspend_check, as we could stop there, and
216 	 * a wakeup or a SIGCONT (or both) could occur while we were stopped.
217 	 * without resuming us, thus we must be ready for sleep
218 	 * when cursig is called.  If the wakeup happens while we're
219 	 * stopped, td->td_wchan will be 0 upon return from cursig.
220 	 */
221 	if (catch) {
222 		CTR3(KTR_PROC, "msleep caught: thread %p (pid %d, %s)", td,
223 		    p->p_pid, p->p_comm);
224 		td->td_flags |= TDF_SINTR;
225 		mtx_unlock_spin(&sched_lock);
226 		PROC_LOCK(p);
227 		sig = cursig(td);
228 		if (sig == 0 && thread_suspend_check(1))
229 			sig = SIGSTOP;
230 		mtx_lock_spin(&sched_lock);
231 		PROC_UNLOCK(p);
232 		if (sig != 0) {
233 			if (TD_ON_SLEEPQ(td))
234 				unsleep(td);
235 		} else if (!TD_ON_SLEEPQ(td))
236 			catch = 0;
237 	} else
238 		sig = 0;
239 
240 	/*
241 	 * Let the scheduler know we're about to voluntarily go to sleep.
242 	 */
243 	sched_sleep(td, priority & PRIMASK);
244 
245 	if (TD_ON_SLEEPQ(td)) {
246 		p->p_stats->p_ru.ru_nvcsw++;
247 		TD_SET_SLEEPING(td);
248 		mi_switch();
249 	}
250 	/*
251 	 * We're awake from voluntary sleep.
252 	 */
253 	CTR3(KTR_PROC, "msleep resume: thread %p (pid %d, %s)", td, p->p_pid,
254 	    p->p_comm);
255 	KASSERT(TD_IS_RUNNING(td), ("running but not TDS_RUNNING"));
256 	td->td_flags &= ~TDF_SINTR;
257 	if (td->td_flags & TDF_TIMEOUT) {
258 		td->td_flags &= ~TDF_TIMEOUT;
259 		if (sig == 0)
260 			rval = EWOULDBLOCK;
261 	} else if (td->td_flags & TDF_TIMOFAIL) {
262 		td->td_flags &= ~TDF_TIMOFAIL;
263 	} else if (timo && callout_stop(&td->td_slpcallout) == 0) {
264 		/*
265 		 * This isn't supposed to be pretty.  If we are here, then
266 		 * the endtsleep() callout is currently executing on another
267 		 * CPU and is either spinning on the sched_lock or will be
268 		 * soon.  If we don't synchronize here, there is a chance
269 		 * that this process may msleep() again before the callout
270 		 * has a chance to run and the callout may end up waking up
271 		 * the wrong msleep().  Yuck.
272 		 */
273 		TD_SET_SLEEPING(td);
274 		p->p_stats->p_ru.ru_nivcsw++;
275 		mi_switch();
276 		td->td_flags &= ~TDF_TIMOFAIL;
277 	}
278 	if ((td->td_flags & TDF_INTERRUPT) && (priority & PCATCH) &&
279 	    (rval == 0)) {
280 		td->td_flags &= ~TDF_INTERRUPT;
281 		rval = EINTR;
282 	}
283 	mtx_unlock_spin(&sched_lock);
284 
285 	if (rval == 0 && catch) {
286 		PROC_LOCK(p);
287 		/* XXX: shouldn't we always be calling cursig() */
288 		if (sig != 0 || (sig = cursig(td))) {
289 			if (SIGISMEMBER(p->p_sigacts->ps_sigintr, sig))
290 				rval = EINTR;
291 			else
292 				rval = ERESTART;
293 		}
294 		PROC_UNLOCK(p);
295 	}
296 #ifdef KTRACE
297 	if (KTRPOINT(td, KTR_CSW))
298 		ktrcsw(0, 0);
299 #endif
300 	PICKUP_GIANT();
301 	if (mtx != NULL) {
302 		mtx_lock(mtx);
303 		WITNESS_RESTORE(&mtx->mtx_object, mtx);
304 	}
305 	return (rval);
306 }
307 
308 /*
309  * Implement timeout for msleep()
310  *
311  * If process hasn't been awakened (wchan non-zero),
312  * set timeout flag and undo the sleep.  If proc
313  * is stopped, just unsleep so it will remain stopped.
314  * MP-safe, called without the Giant mutex.
315  */
316 static void
317 endtsleep(arg)
318 	void *arg;
319 {
320 	register struct thread *td = arg;
321 
322 	CTR3(KTR_PROC, "endtsleep: thread %p (pid %d, %s)",
323 	    td, td->td_proc->p_pid, td->td_proc->p_comm);
324 	mtx_lock_spin(&sched_lock);
325 	/*
326 	 * This is the other half of the synchronization with msleep()
327 	 * described above.  If the TDS_TIMEOUT flag is set, we lost the
328 	 * race and just need to put the process back on the runqueue.
329 	 */
330 	if (TD_ON_SLEEPQ(td)) {
331 		TAILQ_REMOVE(&slpque[LOOKUP(td->td_wchan)], td, td_slpq);
332 		TD_CLR_ON_SLEEPQ(td);
333 		td->td_flags |= TDF_TIMEOUT;
334 		td->td_wmesg = NULL;
335 	} else {
336 		td->td_flags |= TDF_TIMOFAIL;
337 	}
338 	TD_CLR_SLEEPING(td);
339 	setrunnable(td);
340 	mtx_unlock_spin(&sched_lock);
341 }
342 
343 /*
344  * Abort a thread, as if an interrupt had occured.  Only abort
345  * interruptable waits (unfortunatly it isn't only safe to abort others).
346  * This is about identical to cv_abort().
347  * Think about merging them?
348  * Also, whatever the signal code does...
349  */
350 void
351 abortsleep(struct thread *td)
352 {
353 
354 	mtx_assert(&sched_lock, MA_OWNED);
355 	/*
356 	 * If the TDF_TIMEOUT flag is set, just leave. A
357 	 * timeout is scheduled anyhow.
358 	 */
359 	if ((td->td_flags & (TDF_TIMEOUT | TDF_SINTR)) == TDF_SINTR) {
360 		if (TD_ON_SLEEPQ(td)) {
361 			unsleep(td);
362 			TD_CLR_SLEEPING(td);
363 			setrunnable(td);
364 		}
365 	}
366 }
367 
368 /*
369  * Remove a process from its wait queue
370  */
371 void
372 unsleep(struct thread *td)
373 {
374 
375 	mtx_lock_spin(&sched_lock);
376 	if (TD_ON_SLEEPQ(td)) {
377 		TAILQ_REMOVE(&slpque[LOOKUP(td->td_wchan)], td, td_slpq);
378 		TD_CLR_ON_SLEEPQ(td);
379 		td->td_wmesg = NULL;
380 	}
381 	mtx_unlock_spin(&sched_lock);
382 }
383 
384 /*
385  * Make all processes sleeping on the specified identifier runnable.
386  */
387 void
388 wakeup(ident)
389 	register void *ident;
390 {
391 	register struct slpquehead *qp;
392 	register struct thread *td;
393 	struct thread *ntd;
394 	struct proc *p;
395 
396 	mtx_lock_spin(&sched_lock);
397 	qp = &slpque[LOOKUP(ident)];
398 restart:
399 	for (td = TAILQ_FIRST(qp); td != NULL; td = ntd) {
400 		ntd = TAILQ_NEXT(td, td_slpq);
401 		if (td->td_wchan == ident) {
402 			unsleep(td);
403 			TD_CLR_SLEEPING(td);
404 			setrunnable(td);
405 			p = td->td_proc;
406 			CTR3(KTR_PROC,"wakeup: thread %p (pid %d, %s)",
407 			    td, p->p_pid, p->p_comm);
408 			goto restart;
409 		}
410 	}
411 	mtx_unlock_spin(&sched_lock);
412 }
413 
414 /*
415  * Make a process sleeping on the specified identifier runnable.
416  * May wake more than one process if a target process is currently
417  * swapped out.
418  */
419 void
420 wakeup_one(ident)
421 	register void *ident;
422 {
423 	register struct slpquehead *qp;
424 	register struct thread *td;
425 	register struct proc *p;
426 	struct thread *ntd;
427 
428 	mtx_lock_spin(&sched_lock);
429 	qp = &slpque[LOOKUP(ident)];
430 	for (td = TAILQ_FIRST(qp); td != NULL; td = ntd) {
431 		ntd = TAILQ_NEXT(td, td_slpq);
432 		if (td->td_wchan == ident) {
433 			unsleep(td);
434 			TD_CLR_SLEEPING(td);
435 			setrunnable(td);
436 			p = td->td_proc;
437 			CTR3(KTR_PROC,"wakeup1: thread %p (pid %d, %s)",
438 			    td, p->p_pid, p->p_comm);
439 			break;
440 		}
441 	}
442 	mtx_unlock_spin(&sched_lock);
443 }
444 
445 /*
446  * The machine independent parts of mi_switch().
447  */
448 void
449 mi_switch(void)
450 {
451 	struct bintime new_switchtime;
452 	struct thread *td = curthread;	/* XXX */
453 	struct proc *p = td->td_proc;	/* XXX */
454 	u_int sched_nest;
455 
456 	mtx_assert(&sched_lock, MA_OWNED | MA_NOTRECURSED);
457 
458 	KASSERT(!TD_ON_RUNQ(td), ("mi_switch: called by old code"));
459 #ifdef INVARIANTS
460 	if (!TD_ON_LOCK(td) &&
461 	    !TD_ON_RUNQ(td) &&
462 	    !TD_IS_RUNNING(td))
463 		mtx_assert(&Giant, MA_NOTOWNED);
464 #endif
465 	KASSERT(td->td_critnest == 1,
466 	    ("mi_switch: switch in a critical section"));
467 
468 	/*
469 	 * Compute the amount of time during which the current
470 	 * process was running, and add that to its total so far.
471 	 */
472 	binuptime(&new_switchtime);
473 	bintime_add(&p->p_runtime, &new_switchtime);
474 	bintime_sub(&p->p_runtime, PCPU_PTR(switchtime));
475 
476 #ifdef DDB
477 	/*
478 	 * Don't perform context switches from the debugger.
479 	 */
480 	if (db_active) {
481 		mtx_unlock_spin(&sched_lock);
482 		db_print_backtrace();
483 		db_error("Context switches not allowed in the debugger.");
484 	}
485 #endif
486 
487 	/*
488 	 * Check if the process exceeds its cpu resource allocation.  If
489 	 * over max, arrange to kill the process in ast().
490 	 */
491 	if (p->p_cpulimit != RLIM_INFINITY &&
492 	    p->p_runtime.sec > p->p_cpulimit) {
493 		p->p_sflag |= PS_XCPU;
494 		td->td_flags |= TDF_ASTPENDING;
495 	}
496 
497 	/*
498 	 * Finish up stats for outgoing thread.
499 	 */
500 	cnt.v_swtch++;
501 	PCPU_SET(switchtime, new_switchtime);
502 	CTR3(KTR_PROC, "mi_switch: old thread %p (pid %d, %s)", td, p->p_pid,
503 	    p->p_comm);
504 	sched_nest = sched_lock.mtx_recurse;
505 	if (td->td_proc->p_flag & P_THREADED)
506 		thread_switchout(td);
507 	sched_switchout(td);
508 
509 	cpu_switch();		/* SHAZAM!!*/
510 
511 	sched_lock.mtx_recurse = sched_nest;
512 	sched_lock.mtx_lock = (uintptr_t)td;
513 	sched_switchin(td);
514 
515 	/*
516 	 * Start setting up stats etc. for the incoming thread.
517 	 * Similar code in fork_exit() is returned to by cpu_switch()
518 	 * in the case of a new thread/process.
519 	 */
520 	CTR3(KTR_PROC, "mi_switch: new thread %p (pid %d, %s)", td, p->p_pid,
521 	    p->p_comm);
522 	if (PCPU_GET(switchtime.sec) == 0)
523 		binuptime(PCPU_PTR(switchtime));
524 	PCPU_SET(switchticks, ticks);
525 
526 	/*
527 	 * Call the switchin function while still holding the scheduler lock
528 	 * (used by the idlezero code and the general page-zeroing code)
529 	 */
530 	if (td->td_switchin)
531 		td->td_switchin();
532 
533 	/*
534 	 * If the last thread was exiting, finish cleaning it up.
535 	 */
536 	if ((td = PCPU_GET(deadthread))) {
537 		PCPU_SET(deadthread, NULL);
538 		thread_stash(td);
539 	}
540 }
541 
542 /*
543  * Change process state to be runnable,
544  * placing it on the run queue if it is in memory,
545  * and awakening the swapper if it isn't in memory.
546  */
547 void
548 setrunnable(struct thread *td)
549 {
550 	struct proc *p = td->td_proc;
551 
552 	mtx_assert(&sched_lock, MA_OWNED);
553 	switch (p->p_state) {
554 	case PRS_ZOMBIE:
555 		panic("setrunnable(1)");
556 	default:
557 		break;
558 	}
559 	switch (td->td_state) {
560 	case TDS_RUNNING:
561 	case TDS_RUNQ:
562 		return;
563 	case TDS_INHIBITED:
564 		/*
565 		 * If we are only inhibited because we are swapped out
566 		 * then arange to swap in this process. Otherwise just return.
567 		 */
568 		if (td->td_inhibitors != TDI_SWAPPED)
569 			return;
570 	case TDS_CAN_RUN:
571 		break;
572 	default:
573 		printf("state is 0x%x", td->td_state);
574 		panic("setrunnable(2)");
575 	}
576 	if ((p->p_sflag & PS_INMEM) == 0) {
577 		if ((p->p_sflag & PS_SWAPPINGIN) == 0) {
578 			p->p_sflag |= PS_SWAPINREQ;
579 			wakeup(&proc0);
580 		}
581 	} else
582 		sched_wakeup(td);
583 }
584 
585 /*
586  * Compute a tenex style load average of a quantity on
587  * 1, 5 and 15 minute intervals.
588  * XXXKSE   Needs complete rewrite when correct info is available.
589  * Completely Bogus.. only works with 1:1 (but compiles ok now :-)
590  */
591 static void
592 loadav(void *arg)
593 {
594 	int i, nrun;
595 	struct loadavg *avg;
596 	struct proc *p;
597 	struct thread *td;
598 
599 	avg = &averunnable;
600 	sx_slock(&allproc_lock);
601 	nrun = 0;
602 	FOREACH_PROC_IN_SYSTEM(p) {
603 		FOREACH_THREAD_IN_PROC(p, td) {
604 			switch (td->td_state) {
605 			case TDS_RUNQ:
606 			case TDS_RUNNING:
607 				if ((p->p_flag & P_NOLOAD) != 0)
608 					goto nextproc;
609 				nrun++; /* XXXKSE */
610 			default:
611 				break;
612 			}
613 nextproc:
614 			continue;
615 		}
616 	}
617 	sx_sunlock(&allproc_lock);
618 	for (i = 0; i < 3; i++)
619 		avg->ldavg[i] = (cexp[i] * avg->ldavg[i] +
620 		    nrun * FSCALE * (FSCALE - cexp[i])) >> FSHIFT;
621 
622 	/*
623 	 * Schedule the next update to occur after 5 seconds, but add a
624 	 * random variation to avoid synchronisation with processes that
625 	 * run at regular intervals.
626 	 */
627 	callout_reset(&loadav_callout, hz * 4 + (int)(random() % (hz * 2 + 1)),
628 	    loadav, NULL);
629 }
630 
631 static void
632 lboltcb(void *arg)
633 {
634 	wakeup(&lbolt);
635 	callout_reset(&lbolt_callout, hz, lboltcb, NULL);
636 }
637 
638 /* ARGSUSED */
639 static void
640 sched_setup(dummy)
641 	void *dummy;
642 {
643 	callout_init(&loadav_callout, 0);
644 	callout_init(&lbolt_callout, 1);
645 
646 	/* Kick off timeout driven events by calling first time. */
647 	loadav(NULL);
648 	lboltcb(NULL);
649 }
650 
651 /*
652  * General purpose yield system call
653  */
654 int
655 yield(struct thread *td, struct yield_args *uap)
656 {
657 	struct ksegrp *kg = td->td_ksegrp;
658 
659 	mtx_assert(&Giant, MA_NOTOWNED);
660 	mtx_lock_spin(&sched_lock);
661 	kg->kg_proc->p_stats->p_ru.ru_nvcsw++;
662 	sched_prio(td, PRI_MAX_TIMESHARE);
663 	mi_switch();
664 	mtx_unlock_spin(&sched_lock);
665 	td->td_retval[0] = 0;
666 
667 	return (0);
668 }
669 
670