xref: /freebsd/sys/kern/kern_synch.c (revision 70e0bbedef95258a4dadc996d641a9bebd3f107d)
1 /*-
2  * Copyright (c) 1982, 1986, 1990, 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  * (c) UNIX System Laboratories, Inc.
5  * All or some portions of this file are derived from material licensed
6  * to the University of California by American Telephone and Telegraph
7  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8  * the permission of UNIX System Laboratories, Inc.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 4. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  *	@(#)kern_synch.c	8.9 (Berkeley) 5/19/95
35  */
36 
37 #include <sys/cdefs.h>
38 __FBSDID("$FreeBSD$");
39 
40 #include "opt_ktrace.h"
41 #include "opt_sched.h"
42 
43 #include <sys/param.h>
44 #include <sys/systm.h>
45 #include <sys/condvar.h>
46 #include <sys/kdb.h>
47 #include <sys/kernel.h>
48 #include <sys/ktr.h>
49 #include <sys/lock.h>
50 #include <sys/mutex.h>
51 #include <sys/proc.h>
52 #include <sys/resourcevar.h>
53 #include <sys/sched.h>
54 #include <sys/signalvar.h>
55 #include <sys/sleepqueue.h>
56 #include <sys/smp.h>
57 #include <sys/sx.h>
58 #include <sys/sysctl.h>
59 #include <sys/sysproto.h>
60 #include <sys/vmmeter.h>
61 #ifdef KTRACE
62 #include <sys/uio.h>
63 #include <sys/ktrace.h>
64 #endif
65 
66 #include <machine/cpu.h>
67 
68 #ifdef XEN
69 #include <vm/vm.h>
70 #include <vm/vm_param.h>
71 #include <vm/pmap.h>
72 #endif
73 
74 #define	KTDSTATE(td)							\
75 	(((td)->td_inhibitors & TDI_SLEEPING) != 0 ? "sleep"  :		\
76 	((td)->td_inhibitors & TDI_SUSPENDED) != 0 ? "suspended" :	\
77 	((td)->td_inhibitors & TDI_SWAPPED) != 0 ? "swapped" :		\
78 	((td)->td_inhibitors & TDI_LOCK) != 0 ? "blocked" :		\
79 	((td)->td_inhibitors & TDI_IWAIT) != 0 ? "iwait" : "yielding")
80 
81 static void synch_setup(void *dummy);
82 SYSINIT(synch_setup, SI_SUB_KICK_SCHEDULER, SI_ORDER_FIRST, synch_setup,
83     NULL);
84 
85 int	hogticks;
86 static int pause_wchan;
87 
88 static struct callout loadav_callout;
89 
90 struct loadavg averunnable =
91 	{ {0, 0, 0}, FSCALE };	/* load average, of runnable procs */
92 /*
93  * Constants for averages over 1, 5, and 15 minutes
94  * when sampling at 5 second intervals.
95  */
96 static fixpt_t cexp[3] = {
97 	0.9200444146293232 * FSCALE,	/* exp(-1/12) */
98 	0.9834714538216174 * FSCALE,	/* exp(-1/60) */
99 	0.9944598480048967 * FSCALE,	/* exp(-1/180) */
100 };
101 
102 /* kernel uses `FSCALE', userland (SHOULD) use kern.fscale */
103 static int      fscale __unused = FSCALE;
104 SYSCTL_INT(_kern, OID_AUTO, fscale, CTLFLAG_RD, 0, FSCALE, "");
105 
106 static void	loadav(void *arg);
107 
108 void
109 sleepinit(void)
110 {
111 
112 	hogticks = (hz / 10) * 2;	/* Default only. */
113 	init_sleepqueues();
114 }
115 
116 /*
117  * General sleep call.  Suspends the current thread until a wakeup is
118  * performed on the specified identifier.  The thread will then be made
119  * runnable with the specified priority.  Sleeps at most timo/hz seconds
120  * (0 means no timeout).  If pri includes PCATCH flag, signals are checked
121  * before and after sleeping, else signals are not checked.  Returns 0 if
122  * awakened, EWOULDBLOCK if the timeout expires.  If PCATCH is set and a
123  * signal needs to be delivered, ERESTART is returned if the current system
124  * call should be restarted if possible, and EINTR is returned if the system
125  * call should be interrupted by the signal (return EINTR).
126  *
127  * The lock argument is unlocked before the caller is suspended, and
128  * re-locked before _sleep() returns.  If priority includes the PDROP
129  * flag the lock is not re-locked before returning.
130  */
131 int
132 _sleep(void *ident, struct lock_object *lock, int priority,
133     const char *wmesg, int timo)
134 {
135 	struct thread *td;
136 	struct proc *p;
137 	struct lock_class *class;
138 	int catch, flags, lock_state, pri, rval;
139 	WITNESS_SAVE_DECL(lock_witness);
140 
141 	td = curthread;
142 	p = td->td_proc;
143 #ifdef KTRACE
144 	if (KTRPOINT(td, KTR_CSW))
145 		ktrcsw(1, 0);
146 #endif
147 	WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, lock,
148 	    "Sleeping on \"%s\"", wmesg);
149 	KASSERT(timo != 0 || mtx_owned(&Giant) || lock != NULL,
150 	    ("sleeping without a lock"));
151 	KASSERT(p != NULL, ("msleep1"));
152 	KASSERT(ident != NULL && TD_IS_RUNNING(td), ("msleep"));
153 	if (priority & PDROP)
154 		KASSERT(lock != NULL && lock != &Giant.lock_object,
155 		    ("PDROP requires a non-Giant lock"));
156 	if (lock != NULL)
157 		class = LOCK_CLASS(lock);
158 	else
159 		class = NULL;
160 
161 	if (cold || SCHEDULER_STOPPED()) {
162 		/*
163 		 * During autoconfiguration, just return;
164 		 * don't run any other threads or panic below,
165 		 * in case this is the idle thread and already asleep.
166 		 * XXX: this used to do "s = splhigh(); splx(safepri);
167 		 * splx(s);" to give interrupts a chance, but there is
168 		 * no way to give interrupts a chance now.
169 		 */
170 		if (lock != NULL && priority & PDROP)
171 			class->lc_unlock(lock);
172 		return (0);
173 	}
174 	catch = priority & PCATCH;
175 	pri = priority & PRIMASK;
176 
177 	/*
178 	 * If we are already on a sleep queue, then remove us from that
179 	 * sleep queue first.  We have to do this to handle recursive
180 	 * sleeps.
181 	 */
182 	if (TD_ON_SLEEPQ(td))
183 		sleepq_remove(td, td->td_wchan);
184 
185 	if (ident == &pause_wchan)
186 		flags = SLEEPQ_PAUSE;
187 	else
188 		flags = SLEEPQ_SLEEP;
189 	if (catch)
190 		flags |= SLEEPQ_INTERRUPTIBLE;
191 	if (priority & PBDRY)
192 		flags |= SLEEPQ_STOP_ON_BDRY;
193 
194 	sleepq_lock(ident);
195 	CTR5(KTR_PROC, "sleep: thread %ld (pid %ld, %s) on %s (%p)",
196 	    td->td_tid, p->p_pid, td->td_name, wmesg, ident);
197 
198 	if (lock == &Giant.lock_object)
199 		mtx_assert(&Giant, MA_OWNED);
200 	DROP_GIANT();
201 	if (lock != NULL && lock != &Giant.lock_object &&
202 	    !(class->lc_flags & LC_SLEEPABLE)) {
203 		WITNESS_SAVE(lock, lock_witness);
204 		lock_state = class->lc_unlock(lock);
205 	} else
206 		/* GCC needs to follow the Yellow Brick Road */
207 		lock_state = -1;
208 
209 	/*
210 	 * We put ourselves on the sleep queue and start our timeout
211 	 * before calling thread_suspend_check, as we could stop there,
212 	 * and a wakeup or a SIGCONT (or both) could occur while we were
213 	 * stopped without resuming us.  Thus, we must be ready for sleep
214 	 * when cursig() is called.  If the wakeup happens while we're
215 	 * stopped, then td will no longer be on a sleep queue upon
216 	 * return from cursig().
217 	 */
218 	sleepq_add(ident, lock, wmesg, flags, 0);
219 	if (timo)
220 		sleepq_set_timeout(ident, timo);
221 	if (lock != NULL && class->lc_flags & LC_SLEEPABLE) {
222 		sleepq_release(ident);
223 		WITNESS_SAVE(lock, lock_witness);
224 		lock_state = class->lc_unlock(lock);
225 		sleepq_lock(ident);
226 	}
227 	if (timo && catch)
228 		rval = sleepq_timedwait_sig(ident, pri);
229 	else if (timo)
230 		rval = sleepq_timedwait(ident, pri);
231 	else if (catch)
232 		rval = sleepq_wait_sig(ident, pri);
233 	else {
234 		sleepq_wait(ident, pri);
235 		rval = 0;
236 	}
237 #ifdef KTRACE
238 	if (KTRPOINT(td, KTR_CSW))
239 		ktrcsw(0, 0);
240 #endif
241 	PICKUP_GIANT();
242 	if (lock != NULL && lock != &Giant.lock_object && !(priority & PDROP)) {
243 		class->lc_lock(lock, lock_state);
244 		WITNESS_RESTORE(lock, lock_witness);
245 	}
246 	return (rval);
247 }
248 
249 int
250 msleep_spin(void *ident, struct mtx *mtx, const char *wmesg, int timo)
251 {
252 	struct thread *td;
253 	struct proc *p;
254 	int rval;
255 	WITNESS_SAVE_DECL(mtx);
256 
257 	td = curthread;
258 	p = td->td_proc;
259 	KASSERT(mtx != NULL, ("sleeping without a mutex"));
260 	KASSERT(p != NULL, ("msleep1"));
261 	KASSERT(ident != NULL && TD_IS_RUNNING(td), ("msleep"));
262 
263 	if (cold || SCHEDULER_STOPPED()) {
264 		/*
265 		 * During autoconfiguration, just return;
266 		 * don't run any other threads or panic below,
267 		 * in case this is the idle thread and already asleep.
268 		 * XXX: this used to do "s = splhigh(); splx(safepri);
269 		 * splx(s);" to give interrupts a chance, but there is
270 		 * no way to give interrupts a chance now.
271 		 */
272 		return (0);
273 	}
274 
275 	sleepq_lock(ident);
276 	CTR5(KTR_PROC, "msleep_spin: thread %ld (pid %ld, %s) on %s (%p)",
277 	    td->td_tid, p->p_pid, td->td_name, wmesg, ident);
278 
279 	DROP_GIANT();
280 	mtx_assert(mtx, MA_OWNED | MA_NOTRECURSED);
281 	WITNESS_SAVE(&mtx->lock_object, mtx);
282 	mtx_unlock_spin(mtx);
283 
284 	/*
285 	 * We put ourselves on the sleep queue and start our timeout.
286 	 */
287 	sleepq_add(ident, &mtx->lock_object, wmesg, SLEEPQ_SLEEP, 0);
288 	if (timo)
289 		sleepq_set_timeout(ident, timo);
290 
291 	/*
292 	 * Can't call ktrace with any spin locks held so it can lock the
293 	 * ktrace_mtx lock, and WITNESS_WARN considers it an error to hold
294 	 * any spin lock.  Thus, we have to drop the sleepq spin lock while
295 	 * we handle those requests.  This is safe since we have placed our
296 	 * thread on the sleep queue already.
297 	 */
298 #ifdef KTRACE
299 	if (KTRPOINT(td, KTR_CSW)) {
300 		sleepq_release(ident);
301 		ktrcsw(1, 0);
302 		sleepq_lock(ident);
303 	}
304 #endif
305 #ifdef WITNESS
306 	sleepq_release(ident);
307 	WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, "Sleeping on \"%s\"",
308 	    wmesg);
309 	sleepq_lock(ident);
310 #endif
311 	if (timo)
312 		rval = sleepq_timedwait(ident, 0);
313 	else {
314 		sleepq_wait(ident, 0);
315 		rval = 0;
316 	}
317 #ifdef KTRACE
318 	if (KTRPOINT(td, KTR_CSW))
319 		ktrcsw(0, 0);
320 #endif
321 	PICKUP_GIANT();
322 	mtx_lock_spin(mtx);
323 	WITNESS_RESTORE(&mtx->lock_object, mtx);
324 	return (rval);
325 }
326 
327 /*
328  * pause() delays the calling thread by the given number of system ticks.
329  * During cold bootup, pause() uses the DELAY() function instead of
330  * the tsleep() function to do the waiting. The "timo" argument must be
331  * greater than or equal to zero. A "timo" value of zero is equivalent
332  * to a "timo" value of one.
333  */
334 int
335 pause(const char *wmesg, int timo)
336 {
337 	KASSERT(timo >= 0, ("pause: timo must be >= 0"));
338 
339 	/* silently convert invalid timeouts */
340 	if (timo < 1)
341 		timo = 1;
342 
343 	if (cold) {
344 		/*
345 		 * We delay one HZ at a time to avoid overflowing the
346 		 * system specific DELAY() function(s):
347 		 */
348 		while (timo >= hz) {
349 			DELAY(1000000);
350 			timo -= hz;
351 		}
352 		if (timo > 0)
353 			DELAY(timo * tick);
354 		return (0);
355 	}
356 	return (tsleep(&pause_wchan, 0, wmesg, timo));
357 }
358 
359 /*
360  * Make all threads sleeping on the specified identifier runnable.
361  */
362 void
363 wakeup(void *ident)
364 {
365 	int wakeup_swapper;
366 
367 	sleepq_lock(ident);
368 	wakeup_swapper = sleepq_broadcast(ident, SLEEPQ_SLEEP, 0, 0);
369 	sleepq_release(ident);
370 	if (wakeup_swapper) {
371 		KASSERT(ident != &proc0,
372 		    ("wakeup and wakeup_swapper and proc0"));
373 		kick_proc0();
374 	}
375 }
376 
377 /*
378  * Make a thread sleeping on the specified identifier runnable.
379  * May wake more than one thread if a target thread is currently
380  * swapped out.
381  */
382 void
383 wakeup_one(void *ident)
384 {
385 	int wakeup_swapper;
386 
387 	sleepq_lock(ident);
388 	wakeup_swapper = sleepq_signal(ident, SLEEPQ_SLEEP, 0, 0);
389 	sleepq_release(ident);
390 	if (wakeup_swapper)
391 		kick_proc0();
392 }
393 
394 static void
395 kdb_switch(void)
396 {
397 	thread_unlock(curthread);
398 	kdb_backtrace();
399 	kdb_reenter();
400 	panic("%s: did not reenter debugger", __func__);
401 }
402 
403 /*
404  * The machine independent parts of context switching.
405  */
406 void
407 mi_switch(int flags, struct thread *newtd)
408 {
409 	uint64_t runtime, new_switchtime;
410 	struct thread *td;
411 	struct proc *p;
412 
413 	td = curthread;			/* XXX */
414 	THREAD_LOCK_ASSERT(td, MA_OWNED | MA_NOTRECURSED);
415 	p = td->td_proc;		/* XXX */
416 	KASSERT(!TD_ON_RUNQ(td), ("mi_switch: called by old code"));
417 #ifdef INVARIANTS
418 	if (!TD_ON_LOCK(td) && !TD_IS_RUNNING(td))
419 		mtx_assert(&Giant, MA_NOTOWNED);
420 #endif
421 	KASSERT(td->td_critnest == 1 || panicstr,
422 	    ("mi_switch: switch in a critical section"));
423 	KASSERT((flags & (SW_INVOL | SW_VOL)) != 0,
424 	    ("mi_switch: switch must be voluntary or involuntary"));
425 	KASSERT(newtd != curthread, ("mi_switch: preempting back to ourself"));
426 
427 	/*
428 	 * Don't perform context switches from the debugger.
429 	 */
430 	if (kdb_active)
431 		kdb_switch();
432 	if (SCHEDULER_STOPPED())
433 		return;
434 	if (flags & SW_VOL) {
435 		td->td_ru.ru_nvcsw++;
436 		td->td_swvoltick = ticks;
437 	} else
438 		td->td_ru.ru_nivcsw++;
439 #ifdef SCHED_STATS
440 	SCHED_STAT_INC(sched_switch_stats[flags & SW_TYPE_MASK]);
441 #endif
442 	/*
443 	 * Compute the amount of time during which the current
444 	 * thread was running, and add that to its total so far.
445 	 */
446 	new_switchtime = cpu_ticks();
447 	runtime = new_switchtime - PCPU_GET(switchtime);
448 	td->td_runtime += runtime;
449 	td->td_incruntime += runtime;
450 	PCPU_SET(switchtime, new_switchtime);
451 	td->td_generation++;	/* bump preempt-detect counter */
452 	PCPU_INC(cnt.v_swtch);
453 	PCPU_SET(switchticks, ticks);
454 	CTR4(KTR_PROC, "mi_switch: old thread %ld (td_sched %p, pid %ld, %s)",
455 	    td->td_tid, td->td_sched, p->p_pid, td->td_name);
456 #if (KTR_COMPILE & KTR_SCHED) != 0
457 	if (TD_IS_IDLETHREAD(td))
458 		KTR_STATE1(KTR_SCHED, "thread", sched_tdname(td), "idle",
459 		    "prio:%d", td->td_priority);
460 	else
461 		KTR_STATE3(KTR_SCHED, "thread", sched_tdname(td), KTDSTATE(td),
462 		    "prio:%d", td->td_priority, "wmesg:\"%s\"", td->td_wmesg,
463 		    "lockname:\"%s\"", td->td_lockname);
464 #endif
465 #ifdef XEN
466 	PT_UPDATES_FLUSH();
467 #endif
468 	sched_switch(td, newtd, flags);
469 	KTR_STATE1(KTR_SCHED, "thread", sched_tdname(td), "running",
470 	    "prio:%d", td->td_priority);
471 
472 	CTR4(KTR_PROC, "mi_switch: new thread %ld (td_sched %p, pid %ld, %s)",
473 	    td->td_tid, td->td_sched, p->p_pid, td->td_name);
474 
475 	/*
476 	 * If the last thread was exiting, finish cleaning it up.
477 	 */
478 	if ((td = PCPU_GET(deadthread))) {
479 		PCPU_SET(deadthread, NULL);
480 		thread_stash(td);
481 	}
482 }
483 
484 /*
485  * Change thread state to be runnable, placing it on the run queue if
486  * it is in memory.  If it is swapped out, return true so our caller
487  * will know to awaken the swapper.
488  */
489 int
490 setrunnable(struct thread *td)
491 {
492 
493 	THREAD_LOCK_ASSERT(td, MA_OWNED);
494 	KASSERT(td->td_proc->p_state != PRS_ZOMBIE,
495 	    ("setrunnable: pid %d is a zombie", td->td_proc->p_pid));
496 	switch (td->td_state) {
497 	case TDS_RUNNING:
498 	case TDS_RUNQ:
499 		return (0);
500 	case TDS_INHIBITED:
501 		/*
502 		 * If we are only inhibited because we are swapped out
503 		 * then arange to swap in this process. Otherwise just return.
504 		 */
505 		if (td->td_inhibitors != TDI_SWAPPED)
506 			return (0);
507 		/* FALLTHROUGH */
508 	case TDS_CAN_RUN:
509 		break;
510 	default:
511 		printf("state is 0x%x", td->td_state);
512 		panic("setrunnable(2)");
513 	}
514 	if ((td->td_flags & TDF_INMEM) == 0) {
515 		if ((td->td_flags & TDF_SWAPINREQ) == 0) {
516 			td->td_flags |= TDF_SWAPINREQ;
517 			return (1);
518 		}
519 	} else
520 		sched_wakeup(td);
521 	return (0);
522 }
523 
524 /*
525  * Compute a tenex style load average of a quantity on
526  * 1, 5 and 15 minute intervals.
527  */
528 static void
529 loadav(void *arg)
530 {
531 	int i, nrun;
532 	struct loadavg *avg;
533 
534 	nrun = sched_load();
535 	avg = &averunnable;
536 
537 	for (i = 0; i < 3; i++)
538 		avg->ldavg[i] = (cexp[i] * avg->ldavg[i] +
539 		    nrun * FSCALE * (FSCALE - cexp[i])) >> FSHIFT;
540 
541 	/*
542 	 * Schedule the next update to occur after 5 seconds, but add a
543 	 * random variation to avoid synchronisation with processes that
544 	 * run at regular intervals.
545 	 */
546 	callout_reset(&loadav_callout, hz * 4 + (int)(random() % (hz * 2 + 1)),
547 	    loadav, NULL);
548 }
549 
550 /* ARGSUSED */
551 static void
552 synch_setup(void *dummy)
553 {
554 	callout_init(&loadav_callout, CALLOUT_MPSAFE);
555 
556 	/* Kick off timeout driven events by calling first time. */
557 	loadav(NULL);
558 }
559 
560 int
561 should_yield(void)
562 {
563 
564 	return (ticks - curthread->td_swvoltick >= hogticks);
565 }
566 
567 void
568 maybe_yield(void)
569 {
570 
571 	if (should_yield())
572 		kern_yield(PRI_USER);
573 }
574 
575 void
576 kern_yield(int prio)
577 {
578 	struct thread *td;
579 
580 	td = curthread;
581 	DROP_GIANT();
582 	thread_lock(td);
583 	if (prio == PRI_USER)
584 		prio = td->td_user_pri;
585 	if (prio >= 0)
586 		sched_prio(td, prio);
587 	mi_switch(SW_VOL | SWT_RELINQUISH, NULL);
588 	thread_unlock(td);
589 	PICKUP_GIANT();
590 }
591 
592 /*
593  * General purpose yield system call.
594  */
595 int
596 sys_yield(struct thread *td, struct yield_args *uap)
597 {
598 
599 	thread_lock(td);
600 	if (PRI_BASE(td->td_pri_class) == PRI_TIMESHARE)
601 		sched_prio(td, PRI_MAX_TIMESHARE);
602 	mi_switch(SW_VOL | SWT_RELINQUISH, NULL);
603 	thread_unlock(td);
604 	td->td_retval[0] = 0;
605 	return (0);
606 }
607