1 /*- 2 * Copyright (c) 1982, 1986, 1990, 1991, 1993 3 * The Regents of the University of California. All rights reserved. 4 * (c) UNIX System Laboratories, Inc. 5 * All or some portions of this file are derived from material licensed 6 * to the University of California by American Telephone and Telegraph 7 * Co. or Unix System Laboratories, Inc. and are reproduced herein with 8 * the permission of UNIX System Laboratories, Inc. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 3. All advertising materials mentioning features or use of this software 19 * must display the following acknowledgement: 20 * This product includes software developed by the University of 21 * California, Berkeley and its contributors. 22 * 4. Neither the name of the University nor the names of its contributors 23 * may be used to endorse or promote products derived from this software 24 * without specific prior written permission. 25 * 26 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 28 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 29 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 30 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 36 * SUCH DAMAGE. 37 * 38 * @(#)kern_synch.c 8.9 (Berkeley) 5/19/95 39 * $Id: kern_synch.c,v 1.75 1999/03/03 18:15:29 julian Exp $ 40 */ 41 42 #include "opt_ktrace.h" 43 44 #include <sys/param.h> 45 #include <sys/systm.h> 46 #include <sys/proc.h> 47 #include <sys/kernel.h> 48 #include <sys/signalvar.h> 49 #include <sys/resourcevar.h> 50 #include <sys/vmmeter.h> 51 #include <sys/sysctl.h> 52 #include <vm/vm.h> 53 #include <vm/vm_extern.h> 54 #ifdef KTRACE 55 #include <sys/uio.h> 56 #include <sys/ktrace.h> 57 #endif 58 59 #include <machine/cpu.h> 60 #ifdef SMP 61 #include <machine/smp.h> 62 #endif 63 #include <machine/limits.h> /* for UCHAR_MAX = typeof(p_priority)_MAX */ 64 65 static void rqinit __P((void *)); 66 SYSINIT(runqueue, SI_SUB_RUN_QUEUE, SI_ORDER_FIRST, rqinit, NULL) 67 static void sched_setup __P((void *dummy)); 68 SYSINIT(sched_setup, SI_SUB_KICK_SCHEDULER, SI_ORDER_FIRST, sched_setup, NULL) 69 70 u_char curpriority; 71 int hogticks; 72 int lbolt; 73 int sched_quantum; /* Roundrobin scheduling quantum in ticks. */ 74 75 static void endtsleep __P((void *)); 76 static void roundrobin __P((void *arg)); 77 static void schedcpu __P((void *arg)); 78 static void updatepri __P((struct proc *p)); 79 80 static int 81 sysctl_kern_quantum SYSCTL_HANDLER_ARGS 82 { 83 int error, new_val; 84 85 new_val = sched_quantum * tick; 86 error = sysctl_handle_int(oidp, &new_val, 0, req); 87 if (error != 0 || req->newptr == NULL) 88 return (error); 89 if (new_val < tick) 90 return (EINVAL); 91 sched_quantum = new_val / tick; 92 hogticks = 2 * sched_quantum; 93 return (0); 94 } 95 96 SYSCTL_PROC(_kern, OID_AUTO, quantum, CTLTYPE_INT|CTLFLAG_RW, 97 0, sizeof sched_quantum, sysctl_kern_quantum, "I", ""); 98 99 /* maybe_resched: Decide if you need to reschedule or not 100 * taking the priorities and schedulers into account. 101 */ 102 static void maybe_resched(struct proc *chk) 103 { 104 struct proc *p = curproc; /* XXX */ 105 106 /* 107 * Compare priorities if the new process is on the same scheduler, 108 * otherwise the one on the more realtimeish scheduler wins. 109 * 110 * XXX idle scheduler still broken because proccess stays on idle 111 * scheduler during waits (such as when getting FS locks). If a 112 * standard process becomes runaway cpu-bound, the system can lockup 113 * due to idle-scheduler processes in wakeup never getting any cpu. 114 */ 115 if (p == 0 || 116 (chk->p_priority < curpriority && RTP_PRIO_BASE(p->p_rtprio.type) == RTP_PRIO_BASE(chk->p_rtprio.type)) || 117 RTP_PRIO_BASE(chk->p_rtprio.type) < RTP_PRIO_BASE(p->p_rtprio.type) 118 ) { 119 need_resched(); 120 } 121 } 122 123 int 124 roundrobin_interval(void) 125 { 126 return (sched_quantum); 127 } 128 129 /* 130 * Force switch among equal priority processes every 100ms. 131 */ 132 /* ARGSUSED */ 133 static void 134 roundrobin(arg) 135 void *arg; 136 { 137 #ifndef SMP 138 struct proc *p = curproc; /* XXX */ 139 #endif 140 141 #ifdef SMP 142 need_resched(); 143 forward_roundrobin(); 144 #else 145 if (p == 0 || RTP_PRIO_NEED_RR(p->p_rtprio.type)) 146 need_resched(); 147 #endif 148 149 timeout(roundrobin, NULL, sched_quantum); 150 } 151 152 /* 153 * Constants for digital decay and forget: 154 * 90% of (p_estcpu) usage in 5 * loadav time 155 * 95% of (p_pctcpu) usage in 60 seconds (load insensitive) 156 * Note that, as ps(1) mentions, this can let percentages 157 * total over 100% (I've seen 137.9% for 3 processes). 158 * 159 * Note that statclock() updates p_estcpu and p_cpticks asynchronously. 160 * 161 * We wish to decay away 90% of p_estcpu in (5 * loadavg) seconds. 162 * That is, the system wants to compute a value of decay such 163 * that the following for loop: 164 * for (i = 0; i < (5 * loadavg); i++) 165 * p_estcpu *= decay; 166 * will compute 167 * p_estcpu *= 0.1; 168 * for all values of loadavg: 169 * 170 * Mathematically this loop can be expressed by saying: 171 * decay ** (5 * loadavg) ~= .1 172 * 173 * The system computes decay as: 174 * decay = (2 * loadavg) / (2 * loadavg + 1) 175 * 176 * We wish to prove that the system's computation of decay 177 * will always fulfill the equation: 178 * decay ** (5 * loadavg) ~= .1 179 * 180 * If we compute b as: 181 * b = 2 * loadavg 182 * then 183 * decay = b / (b + 1) 184 * 185 * We now need to prove two things: 186 * 1) Given factor ** (5 * loadavg) ~= .1, prove factor == b/(b+1) 187 * 2) Given b/(b+1) ** power ~= .1, prove power == (5 * loadavg) 188 * 189 * Facts: 190 * For x close to zero, exp(x) =~ 1 + x, since 191 * exp(x) = 0! + x**1/1! + x**2/2! + ... . 192 * therefore exp(-1/b) =~ 1 - (1/b) = (b-1)/b. 193 * For x close to zero, ln(1+x) =~ x, since 194 * ln(1+x) = x - x**2/2 + x**3/3 - ... -1 < x < 1 195 * therefore ln(b/(b+1)) = ln(1 - 1/(b+1)) =~ -1/(b+1). 196 * ln(.1) =~ -2.30 197 * 198 * Proof of (1): 199 * Solve (factor)**(power) =~ .1 given power (5*loadav): 200 * solving for factor, 201 * ln(factor) =~ (-2.30/5*loadav), or 202 * factor =~ exp(-1/((5/2.30)*loadav)) =~ exp(-1/(2*loadav)) = 203 * exp(-1/b) =~ (b-1)/b =~ b/(b+1). QED 204 * 205 * Proof of (2): 206 * Solve (factor)**(power) =~ .1 given factor == (b/(b+1)): 207 * solving for power, 208 * power*ln(b/(b+1)) =~ -2.30, or 209 * power =~ 2.3 * (b + 1) = 4.6*loadav + 2.3 =~ 5*loadav. QED 210 * 211 * Actual power values for the implemented algorithm are as follows: 212 * loadav: 1 2 3 4 213 * power: 5.68 10.32 14.94 19.55 214 */ 215 216 /* calculations for digital decay to forget 90% of usage in 5*loadav sec */ 217 #define loadfactor(loadav) (2 * (loadav)) 218 #define decay_cpu(loadfac, cpu) (((loadfac) * (cpu)) / ((loadfac) + FSCALE)) 219 220 /* decay 95% of `p_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */ 221 static fixpt_t ccpu = 0.95122942450071400909 * FSCALE; /* exp(-1/20) */ 222 SYSCTL_INT(_kern, OID_AUTO, ccpu, CTLFLAG_RD, &ccpu, 0, ""); 223 224 /* kernel uses `FSCALE', userland (SHOULD) use kern.fscale */ 225 static int fscale __unused = FSCALE; 226 SYSCTL_INT(_kern, OID_AUTO, fscale, CTLFLAG_RD, 0, FSCALE, ""); 227 228 /* 229 * If `ccpu' is not equal to `exp(-1/20)' and you still want to use the 230 * faster/more-accurate formula, you'll have to estimate CCPU_SHIFT below 231 * and possibly adjust FSHIFT in "param.h" so that (FSHIFT >= CCPU_SHIFT). 232 * 233 * To estimate CCPU_SHIFT for exp(-1/20), the following formula was used: 234 * 1 - exp(-1/20) ~= 0.0487 ~= 0.0488 == 1 (fixed pt, *11* bits). 235 * 236 * If you don't want to bother with the faster/more-accurate formula, you 237 * can set CCPU_SHIFT to (FSHIFT + 1) which will use a slower/less-accurate 238 * (more general) method of calculating the %age of CPU used by a process. 239 */ 240 #define CCPU_SHIFT 11 241 242 /* 243 * Recompute process priorities, every hz ticks. 244 */ 245 /* ARGSUSED */ 246 static void 247 schedcpu(arg) 248 void *arg; 249 { 250 register fixpt_t loadfac = loadfactor(averunnable.ldavg[0]); 251 register struct proc *p; 252 register int realstathz, s; 253 register unsigned int newcpu; 254 255 realstathz = stathz ? stathz : hz; 256 for (p = allproc.lh_first; p != 0; p = p->p_list.le_next) { 257 /* 258 * Increment time in/out of memory and sleep time 259 * (if sleeping). We ignore overflow; with 16-bit int's 260 * (remember them?) overflow takes 45 days. 261 */ 262 p->p_swtime++; 263 if (p->p_stat == SSLEEP || p->p_stat == SSTOP) 264 p->p_slptime++; 265 p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT; 266 /* 267 * If the process has slept the entire second, 268 * stop recalculating its priority until it wakes up. 269 */ 270 if (p->p_slptime > 1) 271 continue; 272 s = splhigh(); /* prevent state changes and protect run queue */ 273 /* 274 * p_pctcpu is only for ps. 275 */ 276 #if (FSHIFT >= CCPU_SHIFT) 277 p->p_pctcpu += (realstathz == 100)? 278 ((fixpt_t) p->p_cpticks) << (FSHIFT - CCPU_SHIFT): 279 100 * (((fixpt_t) p->p_cpticks) 280 << (FSHIFT - CCPU_SHIFT)) / realstathz; 281 #else 282 p->p_pctcpu += ((FSCALE - ccpu) * 283 (p->p_cpticks * FSCALE / realstathz)) >> FSHIFT; 284 #endif 285 p->p_cpticks = 0; 286 newcpu = (u_int) decay_cpu(loadfac, p->p_estcpu) + p->p_nice; 287 p->p_estcpu = min(newcpu, UCHAR_MAX); 288 resetpriority(p); 289 if (p->p_priority >= PUSER) { 290 #define PPQ (128 / NQS) /* priorities per queue */ 291 if ((p != curproc) && 292 #ifdef SMP 293 p->p_oncpu == 0xff && /* idle */ 294 #endif 295 p->p_stat == SRUN && 296 (p->p_flag & P_INMEM) && 297 (p->p_priority / PPQ) != (p->p_usrpri / PPQ)) { 298 remrq(p); 299 p->p_priority = p->p_usrpri; 300 setrunqueue(p); 301 } else 302 p->p_priority = p->p_usrpri; 303 } 304 splx(s); 305 } 306 vmmeter(); 307 wakeup((caddr_t)&lbolt); 308 timeout(schedcpu, (void *)0, hz); 309 } 310 311 /* 312 * Recalculate the priority of a process after it has slept for a while. 313 * For all load averages >= 1 and max p_estcpu of 255, sleeping for at 314 * least six times the loadfactor will decay p_estcpu to zero. 315 */ 316 static void 317 updatepri(p) 318 register struct proc *p; 319 { 320 register unsigned int newcpu = p->p_estcpu; 321 register fixpt_t loadfac = loadfactor(averunnable.ldavg[0]); 322 323 if (p->p_slptime > 5 * loadfac) 324 p->p_estcpu = 0; 325 else { 326 p->p_slptime--; /* the first time was done in schedcpu */ 327 while (newcpu && --p->p_slptime) 328 newcpu = (int) decay_cpu(loadfac, newcpu); 329 p->p_estcpu = min(newcpu, UCHAR_MAX); 330 } 331 resetpriority(p); 332 } 333 334 /* 335 * We're only looking at 7 bits of the address; everything is 336 * aligned to 4, lots of things are aligned to greater powers 337 * of 2. Shift right by 8, i.e. drop the bottom 256 worth. 338 */ 339 #define TABLESIZE 128 340 static TAILQ_HEAD(slpquehead, proc) slpque[TABLESIZE]; 341 #define LOOKUP(x) (((intptr_t)(x) >> 8) & (TABLESIZE - 1)) 342 343 /* 344 * During autoconfiguration or after a panic, a sleep will simply 345 * lower the priority briefly to allow interrupts, then return. 346 * The priority to be used (safepri) is machine-dependent, thus this 347 * value is initialized and maintained in the machine-dependent layers. 348 * This priority will typically be 0, or the lowest priority 349 * that is safe for use on the interrupt stack; it can be made 350 * higher to block network software interrupts after panics. 351 */ 352 int safepri; 353 354 void 355 sleepinit(void) 356 { 357 int i; 358 359 sched_quantum = hz/10; 360 hogticks = 2 * sched_quantum; 361 for (i = 0; i < TABLESIZE; i++) 362 TAILQ_INIT(&slpque[i]); 363 } 364 365 /* 366 * General sleep call. Suspends the current process until a wakeup is 367 * performed on the specified identifier. The process will then be made 368 * runnable with the specified priority. Sleeps at most timo/hz seconds 369 * (0 means no timeout). If pri includes PCATCH flag, signals are checked 370 * before and after sleeping, else signals are not checked. Returns 0 if 371 * awakened, EWOULDBLOCK if the timeout expires. If PCATCH is set and a 372 * signal needs to be delivered, ERESTART is returned if the current system 373 * call should be restarted if possible, and EINTR is returned if the system 374 * call should be interrupted by the signal (return EINTR). 375 */ 376 int 377 tsleep(ident, priority, wmesg, timo) 378 void *ident; 379 int priority, timo; 380 const char *wmesg; 381 { 382 struct proc *p = curproc; 383 int s, sig, catch = priority & PCATCH; 384 struct callout_handle thandle; 385 386 #ifdef KTRACE 387 if (KTRPOINT(p, KTR_CSW)) 388 ktrcsw(p->p_tracep, 1, 0); 389 #endif 390 s = splhigh(); 391 if (cold || panicstr) { 392 /* 393 * After a panic, or during autoconfiguration, 394 * just give interrupts a chance, then just return; 395 * don't run any other procs or panic below, 396 * in case this is the idle process and already asleep. 397 */ 398 splx(safepri); 399 splx(s); 400 return (0); 401 } 402 KASSERT(p != NULL, ("tsleep1")); 403 KASSERT(ident != NULL && p->p_stat == SRUN, ("tsleep")); 404 /* 405 * Process may be sitting on a slpque if asleep() was called, remove 406 * it before re-adding. 407 */ 408 if (p->p_wchan != NULL) 409 unsleep(p); 410 411 p->p_wchan = ident; 412 p->p_wmesg = wmesg; 413 p->p_slptime = 0; 414 p->p_priority = priority & PRIMASK; 415 TAILQ_INSERT_TAIL(&slpque[LOOKUP(ident)], p, p_procq); 416 if (timo) 417 thandle = timeout(endtsleep, (void *)p, timo); 418 /* 419 * We put ourselves on the sleep queue and start our timeout 420 * before calling CURSIG, as we could stop there, and a wakeup 421 * or a SIGCONT (or both) could occur while we were stopped. 422 * A SIGCONT would cause us to be marked as SSLEEP 423 * without resuming us, thus we must be ready for sleep 424 * when CURSIG is called. If the wakeup happens while we're 425 * stopped, p->p_wchan will be 0 upon return from CURSIG. 426 */ 427 if (catch) { 428 p->p_flag |= P_SINTR; 429 if ((sig = CURSIG(p))) { 430 if (p->p_wchan) 431 unsleep(p); 432 p->p_stat = SRUN; 433 goto resume; 434 } 435 if (p->p_wchan == 0) { 436 catch = 0; 437 goto resume; 438 } 439 } else 440 sig = 0; 441 p->p_stat = SSLEEP; 442 p->p_stats->p_ru.ru_nvcsw++; 443 mi_switch(); 444 resume: 445 curpriority = p->p_usrpri; 446 splx(s); 447 p->p_flag &= ~P_SINTR; 448 if (p->p_flag & P_TIMEOUT) { 449 p->p_flag &= ~P_TIMEOUT; 450 if (sig == 0) { 451 #ifdef KTRACE 452 if (KTRPOINT(p, KTR_CSW)) 453 ktrcsw(p->p_tracep, 0, 0); 454 #endif 455 return (EWOULDBLOCK); 456 } 457 } else if (timo) 458 untimeout(endtsleep, (void *)p, thandle); 459 if (catch && (sig != 0 || (sig = CURSIG(p)))) { 460 #ifdef KTRACE 461 if (KTRPOINT(p, KTR_CSW)) 462 ktrcsw(p->p_tracep, 0, 0); 463 #endif 464 if (p->p_sigacts->ps_sigintr & sigmask(sig)) 465 return (EINTR); 466 return (ERESTART); 467 } 468 #ifdef KTRACE 469 if (KTRPOINT(p, KTR_CSW)) 470 ktrcsw(p->p_tracep, 0, 0); 471 #endif 472 return (0); 473 } 474 475 /* 476 * asleep() - async sleep call. Place process on wait queue and return 477 * immediately without blocking. The process stays runnable until await() 478 * is called. If ident is NULL, remove process from wait queue if it is still 479 * on one. 480 * 481 * Only the most recent sleep condition is effective when making successive 482 * calls to asleep() or when calling tsleep(). 483 * 484 * The timeout, if any, is not initiated until await() is called. The sleep 485 * priority, signal, and timeout is specified in the asleep() call but may be 486 * overriden in the await() call. 487 * 488 * <<<<<<<< EXPERIMENTAL, UNTESTED >>>>>>>>>> 489 */ 490 491 int 492 asleep(void *ident, int priority, const char *wmesg, int timo) 493 { 494 struct proc *p = curproc; 495 int s; 496 497 /* 498 * splhigh() while manipulating sleep structures and slpque. 499 * 500 * Remove preexisting wait condition (if any) and place process 501 * on appropriate slpque, but do not put process to sleep. 502 */ 503 504 s = splhigh(); 505 506 if (p->p_wchan != NULL) 507 unsleep(p); 508 509 if (ident) { 510 p->p_wchan = ident; 511 p->p_wmesg = wmesg; 512 p->p_slptime = 0; 513 p->p_asleep.as_priority = priority; 514 p->p_asleep.as_timo = timo; 515 TAILQ_INSERT_TAIL(&slpque[LOOKUP(ident)], p, p_procq); 516 } 517 518 splx(s); 519 520 return(0); 521 } 522 523 /* 524 * await() - wait for async condition to occur. The process blocks until 525 * wakeup() is called on the most recent asleep() address. If wakeup is called 526 * priority to await(), await() winds up being a NOP. 527 * 528 * If await() is called more then once (without an intervening asleep() call), 529 * await() is still effectively a NOP but it calls mi_switch() to give other 530 * processes some cpu before returning. The process is left runnable. 531 * 532 * <<<<<<<< EXPERIMENTAL, UNTESTED >>>>>>>>>> 533 */ 534 535 int 536 await(int priority, int timo) 537 { 538 struct proc *p = curproc; 539 int s; 540 541 s = splhigh(); 542 543 if (p->p_wchan != NULL) { 544 struct callout_handle thandle; 545 int sig; 546 int catch; 547 548 /* 549 * The call to await() can override defaults specified in 550 * the original asleep(). 551 */ 552 if (priority < 0) 553 priority = p->p_asleep.as_priority; 554 if (timo < 0) 555 timo = p->p_asleep.as_timo; 556 557 /* 558 * Install timeout 559 */ 560 561 if (timo) 562 thandle = timeout(endtsleep, (void *)p, timo); 563 564 sig = 0; 565 catch = priority & PCATCH; 566 567 if (catch) { 568 p->p_flag |= P_SINTR; 569 if ((sig = CURSIG(p))) { 570 if (p->p_wchan) 571 unsleep(p); 572 p->p_stat = SRUN; 573 goto resume; 574 } 575 if (p->p_wchan == NULL) { 576 catch = 0; 577 goto resume; 578 } 579 } 580 p->p_stat = SSLEEP; 581 p->p_stats->p_ru.ru_nvcsw++; 582 mi_switch(); 583 resume: 584 curpriority = p->p_usrpri; 585 586 splx(s); 587 p->p_flag &= ~P_SINTR; 588 if (p->p_flag & P_TIMEOUT) { 589 p->p_flag &= ~P_TIMEOUT; 590 if (sig == 0) { 591 #ifdef KTRACE 592 if (KTRPOINT(p, KTR_CSW)) 593 ktrcsw(p->p_tracep, 0, 0); 594 #endif 595 return (EWOULDBLOCK); 596 } 597 } else if (timo) 598 untimeout(endtsleep, (void *)p, thandle); 599 if (catch && (sig != 0 || (sig = CURSIG(p)))) { 600 #ifdef KTRACE 601 if (KTRPOINT(p, KTR_CSW)) 602 ktrcsw(p->p_tracep, 0, 0); 603 #endif 604 if (p->p_sigacts->ps_sigintr & sigmask(sig)) 605 return (EINTR); 606 return (ERESTART); 607 } 608 #ifdef KTRACE 609 if (KTRPOINT(p, KTR_CSW)) 610 ktrcsw(p->p_tracep, 0, 0); 611 #endif 612 } else { 613 /* 614 * If as_priority is 0, await() has been called without an 615 * intervening asleep(). We are still effectively a NOP, 616 * but we call mi_switch() for safety. 617 */ 618 619 if (p->p_asleep.as_priority == 0) { 620 p->p_stats->p_ru.ru_nvcsw++; 621 mi_switch(); 622 } 623 splx(s); 624 } 625 626 /* 627 * clear p_asleep.as_priority as an indication that await() has been 628 * called. If await() is called again without an intervening asleep(), 629 * await() is still effectively a NOP but the above mi_switch() code 630 * is triggered as a safety. 631 */ 632 p->p_asleep.as_priority = 0; 633 634 return (0); 635 } 636 637 /* 638 * Implement timeout for tsleep or asleep()/await() 639 * 640 * If process hasn't been awakened (wchan non-zero), 641 * set timeout flag and undo the sleep. If proc 642 * is stopped, just unsleep so it will remain stopped. 643 */ 644 static void 645 endtsleep(arg) 646 void *arg; 647 { 648 register struct proc *p; 649 int s; 650 651 p = (struct proc *)arg; 652 s = splhigh(); 653 if (p->p_wchan) { 654 if (p->p_stat == SSLEEP) 655 setrunnable(p); 656 else 657 unsleep(p); 658 p->p_flag |= P_TIMEOUT; 659 } 660 splx(s); 661 } 662 663 /* 664 * Remove a process from its wait queue 665 */ 666 void 667 unsleep(p) 668 register struct proc *p; 669 { 670 int s; 671 672 s = splhigh(); 673 if (p->p_wchan) { 674 TAILQ_REMOVE(&slpque[LOOKUP(p->p_wchan)], p, p_procq); 675 p->p_wchan = 0; 676 } 677 splx(s); 678 } 679 680 /* 681 * Make all processes sleeping on the specified identifier runnable. 682 */ 683 void 684 wakeup(ident) 685 register void *ident; 686 { 687 register struct slpquehead *qp; 688 register struct proc *p; 689 int s; 690 691 s = splhigh(); 692 qp = &slpque[LOOKUP(ident)]; 693 restart: 694 for (p = qp->tqh_first; p != NULL; p = p->p_procq.tqe_next) { 695 if (p->p_wchan == ident) { 696 TAILQ_REMOVE(qp, p, p_procq); 697 p->p_wchan = 0; 698 if (p->p_stat == SSLEEP) { 699 /* OPTIMIZED EXPANSION OF setrunnable(p); */ 700 if (p->p_slptime > 1) 701 updatepri(p); 702 p->p_slptime = 0; 703 p->p_stat = SRUN; 704 if (p->p_flag & P_INMEM) { 705 setrunqueue(p); 706 maybe_resched(p); 707 } else { 708 p->p_flag |= P_SWAPINREQ; 709 wakeup((caddr_t)&proc0); 710 } 711 /* END INLINE EXPANSION */ 712 goto restart; 713 } 714 } 715 } 716 splx(s); 717 } 718 719 /* 720 * Make a process sleeping on the specified identifier runnable. 721 * May wake more than one process if a target prcoess is currently 722 * swapped out. 723 */ 724 void 725 wakeup_one(ident) 726 register void *ident; 727 { 728 register struct slpquehead *qp; 729 register struct proc *p; 730 int s; 731 732 s = splhigh(); 733 qp = &slpque[LOOKUP(ident)]; 734 735 for (p = qp->tqh_first; p != NULL; p = p->p_procq.tqe_next) { 736 if (p->p_wchan == ident) { 737 TAILQ_REMOVE(qp, p, p_procq); 738 p->p_wchan = 0; 739 if (p->p_stat == SSLEEP) { 740 /* OPTIMIZED EXPANSION OF setrunnable(p); */ 741 if (p->p_slptime > 1) 742 updatepri(p); 743 p->p_slptime = 0; 744 p->p_stat = SRUN; 745 if (p->p_flag & P_INMEM) { 746 setrunqueue(p); 747 maybe_resched(p); 748 break; 749 } else { 750 p->p_flag |= P_SWAPINREQ; 751 wakeup((caddr_t)&proc0); 752 } 753 /* END INLINE EXPANSION */ 754 } 755 } 756 } 757 splx(s); 758 } 759 760 /* 761 * The machine independent parts of mi_switch(). 762 * Must be called at splstatclock() or higher. 763 */ 764 void 765 mi_switch() 766 { 767 struct timeval new_switchtime; 768 register struct proc *p = curproc; /* XXX */ 769 register struct rlimit *rlim; 770 int x; 771 772 /* 773 * XXX this spl is almost unnecessary. It is partly to allow for 774 * sloppy callers that don't do it (issignal() via CURSIG() is the 775 * main offender). It is partly to work around a bug in the i386 776 * cpu_switch() (the ipl is not preserved). We ran for years 777 * without it. I think there was only a interrupt latency problem. 778 * The main caller, tsleep(), does an splx() a couple of instructions 779 * after calling here. The buggy caller, issignal(), usually calls 780 * here at spl0() and sometimes returns at splhigh(). The process 781 * then runs for a little too long at splhigh(). The ipl gets fixed 782 * when the process returns to user mode (or earlier). 783 * 784 * It would probably be better to always call here at spl0(). Callers 785 * are prepared to give up control to another process, so they must 786 * be prepared to be interrupted. The clock stuff here may not 787 * actually need splstatclock(). 788 */ 789 x = splstatclock(); 790 791 #ifdef SIMPLELOCK_DEBUG 792 if (p->p_simple_locks) 793 printf("sleep: holding simple lock\n"); 794 #endif 795 /* 796 * Compute the amount of time during which the current 797 * process was running, and add that to its total so far. 798 */ 799 microuptime(&new_switchtime); 800 p->p_runtime += (new_switchtime.tv_usec - switchtime.tv_usec) + 801 (new_switchtime.tv_sec - switchtime.tv_sec) * (int64_t)1000000; 802 803 /* 804 * Check if the process exceeds its cpu resource allocation. 805 * If over max, kill it. 806 */ 807 if (p->p_stat != SZOMB && p->p_limit->p_cpulimit != RLIM_INFINITY && 808 p->p_runtime > p->p_limit->p_cpulimit) { 809 rlim = &p->p_rlimit[RLIMIT_CPU]; 810 if (p->p_runtime / (rlim_t)1000000 >= rlim->rlim_max) { 811 killproc(p, "exceeded maximum CPU limit"); 812 } else { 813 psignal(p, SIGXCPU); 814 if (rlim->rlim_cur < rlim->rlim_max) { 815 /* XXX: we should make a private copy */ 816 rlim->rlim_cur += 5; 817 } 818 } 819 } 820 821 /* 822 * Pick a new current process and record its start time. 823 */ 824 cnt.v_swtch++; 825 switchtime = new_switchtime; 826 cpu_switch(p); 827 if (switchtime.tv_sec == 0) 828 microuptime(&switchtime); 829 switchticks = ticks; 830 831 splx(x); 832 } 833 834 /* 835 * Initialize the (doubly-linked) run queues 836 * to be empty. 837 */ 838 /* ARGSUSED*/ 839 static void 840 rqinit(dummy) 841 void *dummy; 842 { 843 register int i; 844 845 for (i = 0; i < NQS; i++) { 846 qs[i].ph_link = qs[i].ph_rlink = (struct proc *)&qs[i]; 847 rtqs[i].ph_link = rtqs[i].ph_rlink = (struct proc *)&rtqs[i]; 848 idqs[i].ph_link = idqs[i].ph_rlink = (struct proc *)&idqs[i]; 849 } 850 } 851 852 /* 853 * Change process state to be runnable, 854 * placing it on the run queue if it is in memory, 855 * and awakening the swapper if it isn't in memory. 856 */ 857 void 858 setrunnable(p) 859 register struct proc *p; 860 { 861 register int s; 862 863 s = splhigh(); 864 switch (p->p_stat) { 865 case 0: 866 case SRUN: 867 case SZOMB: 868 default: 869 panic("setrunnable"); 870 case SSTOP: 871 case SSLEEP: 872 unsleep(p); /* e.g. when sending signals */ 873 break; 874 875 case SIDL: 876 break; 877 } 878 p->p_stat = SRUN; 879 if (p->p_flag & P_INMEM) 880 setrunqueue(p); 881 splx(s); 882 if (p->p_slptime > 1) 883 updatepri(p); 884 p->p_slptime = 0; 885 if ((p->p_flag & P_INMEM) == 0) { 886 p->p_flag |= P_SWAPINREQ; 887 wakeup((caddr_t)&proc0); 888 } 889 else 890 maybe_resched(p); 891 } 892 893 /* 894 * Compute the priority of a process when running in user mode. 895 * Arrange to reschedule if the resulting priority is better 896 * than that of the current process. 897 */ 898 void 899 resetpriority(p) 900 register struct proc *p; 901 { 902 register unsigned int newpriority; 903 904 if (p->p_rtprio.type == RTP_PRIO_NORMAL) { 905 newpriority = PUSER + p->p_estcpu / 4 + 2 * p->p_nice; 906 newpriority = min(newpriority, MAXPRI); 907 p->p_usrpri = newpriority; 908 } 909 maybe_resched(p); 910 } 911 912 /* ARGSUSED */ 913 static void 914 sched_setup(dummy) 915 void *dummy; 916 { 917 /* Kick off timeout driven events by calling first time. */ 918 roundrobin(NULL); 919 schedcpu(NULL); 920 } 921 922