xref: /freebsd/sys/kern/kern_synch.c (revision 69718b786d3943ea9a99eeeb5f5f6162f11c78b7)
1 /*-
2  * Copyright (c) 1982, 1986, 1990, 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  * (c) UNIX System Laboratories, Inc.
5  * All or some portions of this file are derived from material licensed
6  * to the University of California by American Telephone and Telegraph
7  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8  * the permission of UNIX System Laboratories, Inc.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  *	@(#)kern_synch.c	8.9 (Berkeley) 5/19/95
35  */
36 
37 #include <sys/cdefs.h>
38 __FBSDID("$FreeBSD$");
39 
40 #include "opt_ktrace.h"
41 #include "opt_sched.h"
42 
43 #include <sys/param.h>
44 #include <sys/systm.h>
45 #include <sys/condvar.h>
46 #include <sys/kdb.h>
47 #include <sys/kernel.h>
48 #include <sys/ktr.h>
49 #include <sys/lock.h>
50 #include <sys/mutex.h>
51 #include <sys/proc.h>
52 #include <sys/resourcevar.h>
53 #include <sys/sched.h>
54 #include <sys/sdt.h>
55 #include <sys/signalvar.h>
56 #include <sys/sleepqueue.h>
57 #include <sys/smp.h>
58 #include <sys/sx.h>
59 #include <sys/sysctl.h>
60 #include <sys/sysproto.h>
61 #include <sys/vmmeter.h>
62 #ifdef KTRACE
63 #include <sys/uio.h>
64 #include <sys/ktrace.h>
65 #endif
66 
67 #include <machine/cpu.h>
68 
69 #define	KTDSTATE(td)							\
70 	(((td)->td_inhibitors & TDI_SLEEPING) != 0 ? "sleep"  :		\
71 	((td)->td_inhibitors & TDI_SUSPENDED) != 0 ? "suspended" :	\
72 	((td)->td_inhibitors & TDI_SWAPPED) != 0 ? "swapped" :		\
73 	((td)->td_inhibitors & TDI_LOCK) != 0 ? "blocked" :		\
74 	((td)->td_inhibitors & TDI_IWAIT) != 0 ? "iwait" : "yielding")
75 
76 static void synch_setup(void *dummy);
77 SYSINIT(synch_setup, SI_SUB_KICK_SCHEDULER, SI_ORDER_FIRST, synch_setup,
78     NULL);
79 
80 int	hogticks;
81 static uint8_t pause_wchan[MAXCPU];
82 
83 static struct callout loadav_callout;
84 
85 struct loadavg averunnable =
86 	{ {0, 0, 0}, FSCALE };	/* load average, of runnable procs */
87 /*
88  * Constants for averages over 1, 5, and 15 minutes
89  * when sampling at 5 second intervals.
90  */
91 static fixpt_t cexp[3] = {
92 	0.9200444146293232 * FSCALE,	/* exp(-1/12) */
93 	0.9834714538216174 * FSCALE,	/* exp(-1/60) */
94 	0.9944598480048967 * FSCALE,	/* exp(-1/180) */
95 };
96 
97 /* kernel uses `FSCALE', userland (SHOULD) use kern.fscale */
98 SYSCTL_INT(_kern, OID_AUTO, fscale, CTLFLAG_RD, SYSCTL_NULL_INT_PTR, FSCALE, "");
99 
100 static void	loadav(void *arg);
101 
102 SDT_PROVIDER_DECLARE(sched);
103 SDT_PROBE_DEFINE(sched, , , preempt);
104 
105 static void
106 sleepinit(void *unused)
107 {
108 
109 	hogticks = (hz / 10) * 2;	/* Default only. */
110 	init_sleepqueues();
111 }
112 
113 /*
114  * vmem tries to lock the sleepq mutexes when free'ing kva, so make sure
115  * it is available.
116  */
117 SYSINIT(sleepinit, SI_SUB_KMEM, SI_ORDER_ANY, sleepinit, 0);
118 
119 /*
120  * General sleep call.  Suspends the current thread until a wakeup is
121  * performed on the specified identifier.  The thread will then be made
122  * runnable with the specified priority.  Sleeps at most sbt units of time
123  * (0 means no timeout).  If pri includes the PCATCH flag, let signals
124  * interrupt the sleep, otherwise ignore them while sleeping.  Returns 0 if
125  * awakened, EWOULDBLOCK if the timeout expires.  If PCATCH is set and a
126  * signal becomes pending, ERESTART is returned if the current system
127  * call should be restarted if possible, and EINTR is returned if the system
128  * call should be interrupted by the signal (return EINTR).
129  *
130  * The lock argument is unlocked before the caller is suspended, and
131  * re-locked before _sleep() returns.  If priority includes the PDROP
132  * flag the lock is not re-locked before returning.
133  */
134 int
135 _sleep(void *ident, struct lock_object *lock, int priority,
136     const char *wmesg, sbintime_t sbt, sbintime_t pr, int flags)
137 {
138 	struct thread *td;
139 	struct proc *p;
140 	struct lock_class *class;
141 	uintptr_t lock_state;
142 	int catch, pri, rval, sleepq_flags;
143 	WITNESS_SAVE_DECL(lock_witness);
144 
145 	td = curthread;
146 	p = td->td_proc;
147 #ifdef KTRACE
148 	if (KTRPOINT(td, KTR_CSW))
149 		ktrcsw(1, 0, wmesg);
150 #endif
151 	WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, lock,
152 	    "Sleeping on \"%s\"", wmesg);
153 	KASSERT(sbt != 0 || mtx_owned(&Giant) || lock != NULL,
154 	    ("sleeping without a lock"));
155 	KASSERT(p != NULL, ("msleep1"));
156 	KASSERT(ident != NULL && TD_IS_RUNNING(td), ("msleep"));
157 	if (priority & PDROP)
158 		KASSERT(lock != NULL && lock != &Giant.lock_object,
159 		    ("PDROP requires a non-Giant lock"));
160 	if (lock != NULL)
161 		class = LOCK_CLASS(lock);
162 	else
163 		class = NULL;
164 
165 	if (SCHEDULER_STOPPED()) {
166 		if (lock != NULL && priority & PDROP)
167 			class->lc_unlock(lock);
168 		return (0);
169 	}
170 	catch = priority & PCATCH;
171 	pri = priority & PRIMASK;
172 
173 	KASSERT(!TD_ON_SLEEPQ(td), ("recursive sleep"));
174 
175 	if ((uint8_t *)ident >= &pause_wchan[0] &&
176 	    (uint8_t *)ident <= &pause_wchan[MAXCPU - 1])
177 		sleepq_flags = SLEEPQ_PAUSE;
178 	else
179 		sleepq_flags = SLEEPQ_SLEEP;
180 	if (catch)
181 		sleepq_flags |= SLEEPQ_INTERRUPTIBLE;
182 
183 	sleepq_lock(ident);
184 	CTR5(KTR_PROC, "sleep: thread %ld (pid %ld, %s) on %s (%p)",
185 	    td->td_tid, p->p_pid, td->td_name, wmesg, ident);
186 
187 	if (lock == &Giant.lock_object)
188 		mtx_assert(&Giant, MA_OWNED);
189 	DROP_GIANT();
190 	if (lock != NULL && lock != &Giant.lock_object &&
191 	    !(class->lc_flags & LC_SLEEPABLE)) {
192 		WITNESS_SAVE(lock, lock_witness);
193 		lock_state = class->lc_unlock(lock);
194 	} else
195 		/* GCC needs to follow the Yellow Brick Road */
196 		lock_state = -1;
197 
198 	/*
199 	 * We put ourselves on the sleep queue and start our timeout
200 	 * before calling thread_suspend_check, as we could stop there,
201 	 * and a wakeup or a SIGCONT (or both) could occur while we were
202 	 * stopped without resuming us.  Thus, we must be ready for sleep
203 	 * when cursig() is called.  If the wakeup happens while we're
204 	 * stopped, then td will no longer be on a sleep queue upon
205 	 * return from cursig().
206 	 */
207 	sleepq_add(ident, lock, wmesg, sleepq_flags, 0);
208 	if (sbt != 0)
209 		sleepq_set_timeout_sbt(ident, sbt, pr, flags);
210 	if (lock != NULL && class->lc_flags & LC_SLEEPABLE) {
211 		sleepq_release(ident);
212 		WITNESS_SAVE(lock, lock_witness);
213 		lock_state = class->lc_unlock(lock);
214 		sleepq_lock(ident);
215 	}
216 	if (sbt != 0 && catch)
217 		rval = sleepq_timedwait_sig(ident, pri);
218 	else if (sbt != 0)
219 		rval = sleepq_timedwait(ident, pri);
220 	else if (catch)
221 		rval = sleepq_wait_sig(ident, pri);
222 	else {
223 		sleepq_wait(ident, pri);
224 		rval = 0;
225 	}
226 #ifdef KTRACE
227 	if (KTRPOINT(td, KTR_CSW))
228 		ktrcsw(0, 0, wmesg);
229 #endif
230 	PICKUP_GIANT();
231 	if (lock != NULL && lock != &Giant.lock_object && !(priority & PDROP)) {
232 		class->lc_lock(lock, lock_state);
233 		WITNESS_RESTORE(lock, lock_witness);
234 	}
235 	return (rval);
236 }
237 
238 int
239 msleep_spin_sbt(void *ident, struct mtx *mtx, const char *wmesg,
240     sbintime_t sbt, sbintime_t pr, int flags)
241 {
242 	struct thread *td;
243 	struct proc *p;
244 	int rval;
245 	WITNESS_SAVE_DECL(mtx);
246 
247 	td = curthread;
248 	p = td->td_proc;
249 	KASSERT(mtx != NULL, ("sleeping without a mutex"));
250 	KASSERT(p != NULL, ("msleep1"));
251 	KASSERT(ident != NULL && TD_IS_RUNNING(td), ("msleep"));
252 
253 	if (SCHEDULER_STOPPED())
254 		return (0);
255 
256 	sleepq_lock(ident);
257 	CTR5(KTR_PROC, "msleep_spin: thread %ld (pid %ld, %s) on %s (%p)",
258 	    td->td_tid, p->p_pid, td->td_name, wmesg, ident);
259 
260 	DROP_GIANT();
261 	mtx_assert(mtx, MA_OWNED | MA_NOTRECURSED);
262 	WITNESS_SAVE(&mtx->lock_object, mtx);
263 	mtx_unlock_spin(mtx);
264 
265 	/*
266 	 * We put ourselves on the sleep queue and start our timeout.
267 	 */
268 	sleepq_add(ident, &mtx->lock_object, wmesg, SLEEPQ_SLEEP, 0);
269 	if (sbt != 0)
270 		sleepq_set_timeout_sbt(ident, sbt, pr, flags);
271 
272 	/*
273 	 * Can't call ktrace with any spin locks held so it can lock the
274 	 * ktrace_mtx lock, and WITNESS_WARN considers it an error to hold
275 	 * any spin lock.  Thus, we have to drop the sleepq spin lock while
276 	 * we handle those requests.  This is safe since we have placed our
277 	 * thread on the sleep queue already.
278 	 */
279 #ifdef KTRACE
280 	if (KTRPOINT(td, KTR_CSW)) {
281 		sleepq_release(ident);
282 		ktrcsw(1, 0, wmesg);
283 		sleepq_lock(ident);
284 	}
285 #endif
286 #ifdef WITNESS
287 	sleepq_release(ident);
288 	WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, "Sleeping on \"%s\"",
289 	    wmesg);
290 	sleepq_lock(ident);
291 #endif
292 	if (sbt != 0)
293 		rval = sleepq_timedwait(ident, 0);
294 	else {
295 		sleepq_wait(ident, 0);
296 		rval = 0;
297 	}
298 #ifdef KTRACE
299 	if (KTRPOINT(td, KTR_CSW))
300 		ktrcsw(0, 0, wmesg);
301 #endif
302 	PICKUP_GIANT();
303 	mtx_lock_spin(mtx);
304 	WITNESS_RESTORE(&mtx->lock_object, mtx);
305 	return (rval);
306 }
307 
308 /*
309  * pause() delays the calling thread by the given number of system ticks.
310  * During cold bootup, pause() uses the DELAY() function instead of
311  * the tsleep() function to do the waiting. The "timo" argument must be
312  * greater than or equal to zero. A "timo" value of zero is equivalent
313  * to a "timo" value of one.
314  */
315 int
316 pause_sbt(const char *wmesg, sbintime_t sbt, sbintime_t pr, int flags)
317 {
318 	KASSERT(sbt >= 0, ("pause: timeout must be >= 0"));
319 
320 	/* silently convert invalid timeouts */
321 	if (sbt == 0)
322 		sbt = tick_sbt;
323 
324 	if (cold || kdb_active || SCHEDULER_STOPPED()) {
325 		/*
326 		 * We delay one second at a time to avoid overflowing the
327 		 * system specific DELAY() function(s):
328 		 */
329 		while (sbt >= SBT_1S) {
330 			DELAY(1000000);
331 			sbt -= SBT_1S;
332 		}
333 		/* Do the delay remainder, if any */
334 		sbt = howmany(sbt, SBT_1US);
335 		if (sbt > 0)
336 			DELAY(sbt);
337 		return (0);
338 	}
339 	return (_sleep(&pause_wchan[curcpu], NULL, 0, wmesg, sbt, pr, flags));
340 }
341 
342 /*
343  * Make all threads sleeping on the specified identifier runnable.
344  */
345 void
346 wakeup(void *ident)
347 {
348 	int wakeup_swapper;
349 
350 	sleepq_lock(ident);
351 	wakeup_swapper = sleepq_broadcast(ident, SLEEPQ_SLEEP, 0, 0);
352 	sleepq_release(ident);
353 	if (wakeup_swapper) {
354 		KASSERT(ident != &proc0,
355 		    ("wakeup and wakeup_swapper and proc0"));
356 		kick_proc0();
357 	}
358 }
359 
360 /*
361  * Make a thread sleeping on the specified identifier runnable.
362  * May wake more than one thread if a target thread is currently
363  * swapped out.
364  */
365 void
366 wakeup_one(void *ident)
367 {
368 	int wakeup_swapper;
369 
370 	sleepq_lock(ident);
371 	wakeup_swapper = sleepq_signal(ident, SLEEPQ_SLEEP, 0, 0);
372 	sleepq_release(ident);
373 	if (wakeup_swapper)
374 		kick_proc0();
375 }
376 
377 static void
378 kdb_switch(void)
379 {
380 	thread_unlock(curthread);
381 	kdb_backtrace();
382 	kdb_reenter();
383 	panic("%s: did not reenter debugger", __func__);
384 }
385 
386 /*
387  * The machine independent parts of context switching.
388  */
389 void
390 mi_switch(int flags, struct thread *newtd)
391 {
392 	uint64_t runtime, new_switchtime;
393 	struct thread *td;
394 
395 	td = curthread;			/* XXX */
396 	THREAD_LOCK_ASSERT(td, MA_OWNED | MA_NOTRECURSED);
397 	KASSERT(!TD_ON_RUNQ(td), ("mi_switch: called by old code"));
398 #ifdef INVARIANTS
399 	if (!TD_ON_LOCK(td) && !TD_IS_RUNNING(td))
400 		mtx_assert(&Giant, MA_NOTOWNED);
401 #endif
402 	KASSERT(td->td_critnest == 1 || panicstr,
403 	    ("mi_switch: switch in a critical section"));
404 	KASSERT((flags & (SW_INVOL | SW_VOL)) != 0,
405 	    ("mi_switch: switch must be voluntary or involuntary"));
406 	KASSERT(newtd != curthread, ("mi_switch: preempting back to ourself"));
407 
408 	/*
409 	 * Don't perform context switches from the debugger.
410 	 */
411 	if (kdb_active)
412 		kdb_switch();
413 	if (SCHEDULER_STOPPED())
414 		return;
415 	if (flags & SW_VOL) {
416 		td->td_ru.ru_nvcsw++;
417 		td->td_swvoltick = ticks;
418 	} else {
419 		td->td_ru.ru_nivcsw++;
420 		td->td_swinvoltick = ticks;
421 	}
422 #ifdef SCHED_STATS
423 	SCHED_STAT_INC(sched_switch_stats[flags & SW_TYPE_MASK]);
424 #endif
425 	/*
426 	 * Compute the amount of time during which the current
427 	 * thread was running, and add that to its total so far.
428 	 */
429 	new_switchtime = cpu_ticks();
430 	runtime = new_switchtime - PCPU_GET(switchtime);
431 	td->td_runtime += runtime;
432 	td->td_incruntime += runtime;
433 	PCPU_SET(switchtime, new_switchtime);
434 	td->td_generation++;	/* bump preempt-detect counter */
435 	PCPU_INC(cnt.v_swtch);
436 	PCPU_SET(switchticks, ticks);
437 	CTR4(KTR_PROC, "mi_switch: old thread %ld (td_sched %p, pid %ld, %s)",
438 	    td->td_tid, td_get_sched(td), td->td_proc->p_pid, td->td_name);
439 #if (KTR_COMPILE & KTR_SCHED) != 0
440 	if (TD_IS_IDLETHREAD(td))
441 		KTR_STATE1(KTR_SCHED, "thread", sched_tdname(td), "idle",
442 		    "prio:%d", td->td_priority);
443 	else
444 		KTR_STATE3(KTR_SCHED, "thread", sched_tdname(td), KTDSTATE(td),
445 		    "prio:%d", td->td_priority, "wmesg:\"%s\"", td->td_wmesg,
446 		    "lockname:\"%s\"", td->td_lockname);
447 #endif
448 	SDT_PROBE0(sched, , , preempt);
449 	sched_switch(td, newtd, flags);
450 	KTR_STATE1(KTR_SCHED, "thread", sched_tdname(td), "running",
451 	    "prio:%d", td->td_priority);
452 
453 	CTR4(KTR_PROC, "mi_switch: new thread %ld (td_sched %p, pid %ld, %s)",
454 	    td->td_tid, td_get_sched(td), td->td_proc->p_pid, td->td_name);
455 
456 	/*
457 	 * If the last thread was exiting, finish cleaning it up.
458 	 */
459 	if ((td = PCPU_GET(deadthread))) {
460 		PCPU_SET(deadthread, NULL);
461 		thread_stash(td);
462 	}
463 }
464 
465 /*
466  * Change thread state to be runnable, placing it on the run queue if
467  * it is in memory.  If it is swapped out, return true so our caller
468  * will know to awaken the swapper.
469  */
470 int
471 setrunnable(struct thread *td)
472 {
473 
474 	THREAD_LOCK_ASSERT(td, MA_OWNED);
475 	KASSERT(td->td_proc->p_state != PRS_ZOMBIE,
476 	    ("setrunnable: pid %d is a zombie", td->td_proc->p_pid));
477 	switch (td->td_state) {
478 	case TDS_RUNNING:
479 	case TDS_RUNQ:
480 		return (0);
481 	case TDS_INHIBITED:
482 		/*
483 		 * If we are only inhibited because we are swapped out
484 		 * then arange to swap in this process. Otherwise just return.
485 		 */
486 		if (td->td_inhibitors != TDI_SWAPPED)
487 			return (0);
488 		/* FALLTHROUGH */
489 	case TDS_CAN_RUN:
490 		break;
491 	default:
492 		printf("state is 0x%x", td->td_state);
493 		panic("setrunnable(2)");
494 	}
495 	if ((td->td_flags & TDF_INMEM) == 0) {
496 		if ((td->td_flags & TDF_SWAPINREQ) == 0) {
497 			td->td_flags |= TDF_SWAPINREQ;
498 			return (1);
499 		}
500 	} else
501 		sched_wakeup(td);
502 	return (0);
503 }
504 
505 /*
506  * Compute a tenex style load average of a quantity on
507  * 1, 5 and 15 minute intervals.
508  */
509 static void
510 loadav(void *arg)
511 {
512 	int i, nrun;
513 	struct loadavg *avg;
514 
515 	nrun = sched_load();
516 	avg = &averunnable;
517 
518 	for (i = 0; i < 3; i++)
519 		avg->ldavg[i] = (cexp[i] * avg->ldavg[i] +
520 		    nrun * FSCALE * (FSCALE - cexp[i])) >> FSHIFT;
521 
522 	/*
523 	 * Schedule the next update to occur after 5 seconds, but add a
524 	 * random variation to avoid synchronisation with processes that
525 	 * run at regular intervals.
526 	 */
527 	callout_reset_sbt(&loadav_callout,
528 	    SBT_1US * (4000000 + (int)(random() % 2000001)), SBT_1US,
529 	    loadav, NULL, C_DIRECT_EXEC | C_PREL(32));
530 }
531 
532 /* ARGSUSED */
533 static void
534 synch_setup(void *dummy)
535 {
536 	callout_init(&loadav_callout, 1);
537 
538 	/* Kick off timeout driven events by calling first time. */
539 	loadav(NULL);
540 }
541 
542 int
543 should_yield(void)
544 {
545 
546 	return ((u_int)ticks - (u_int)curthread->td_swvoltick >= hogticks);
547 }
548 
549 void
550 maybe_yield(void)
551 {
552 
553 	if (should_yield())
554 		kern_yield(PRI_USER);
555 }
556 
557 void
558 kern_yield(int prio)
559 {
560 	struct thread *td;
561 
562 	td = curthread;
563 	DROP_GIANT();
564 	thread_lock(td);
565 	if (prio == PRI_USER)
566 		prio = td->td_user_pri;
567 	if (prio >= 0)
568 		sched_prio(td, prio);
569 	mi_switch(SW_VOL | SWT_RELINQUISH, NULL);
570 	thread_unlock(td);
571 	PICKUP_GIANT();
572 }
573 
574 /*
575  * General purpose yield system call.
576  */
577 int
578 sys_yield(struct thread *td, struct yield_args *uap)
579 {
580 
581 	thread_lock(td);
582 	if (PRI_BASE(td->td_pri_class) == PRI_TIMESHARE)
583 		sched_prio(td, PRI_MAX_TIMESHARE);
584 	mi_switch(SW_VOL | SWT_RELINQUISH, NULL);
585 	thread_unlock(td);
586 	td->td_retval[0] = 0;
587 	return (0);
588 }
589