xref: /freebsd/sys/kern/kern_synch.c (revision 5ebc7e6281887681c3a348a5a4c902e262ccd656)
1 /*-
2  * Copyright (c) 1982, 1986, 1990, 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  * (c) UNIX System Laboratories, Inc.
5  * All or some portions of this file are derived from material licensed
6  * to the University of California by American Telephone and Telegraph
7  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8  * the permission of UNIX System Laboratories, Inc.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. All advertising materials mentioning features or use of this software
19  *    must display the following acknowledgement:
20  *	This product includes software developed by the University of
21  *	California, Berkeley and its contributors.
22  * 4. Neither the name of the University nor the names of its contributors
23  *    may be used to endorse or promote products derived from this software
24  *    without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36  * SUCH DAMAGE.
37  *
38  *	@(#)kern_synch.c	8.6 (Berkeley) 1/21/94
39  * $Id: kern_synch.c,v 1.9 1994/12/12 06:04:27 davidg Exp $
40  */
41 
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/proc.h>
45 #include <sys/kernel.h>
46 #include <sys/buf.h>
47 #include <sys/signalvar.h>
48 #include <sys/resourcevar.h>
49 #include <sys/signalvar.h>
50 #include <vm/vm.h>
51 #ifdef KTRACE
52 #include <sys/ktrace.h>
53 #endif
54 
55 #include <machine/cpu.h>
56 
57 u_char	curpriority;		/* usrpri of curproc */
58 int	lbolt;			/* once a second sleep address */
59 
60 void	endtsleep __P((void *));
61 
62 /*
63  * Force switch among equal priority processes every 100ms.
64  */
65 /* ARGSUSED */
66 void
67 roundrobin(arg)
68 	void *arg;
69 {
70 
71 	need_resched();
72 	timeout(roundrobin, NULL, hz / 10);
73 }
74 
75 /*
76  * Constants for digital decay and forget:
77  *	90% of (p_estcpu) usage in 5 * loadav time
78  *	95% of (p_pctcpu) usage in 60 seconds (load insensitive)
79  *          Note that, as ps(1) mentions, this can let percentages
80  *          total over 100% (I've seen 137.9% for 3 processes).
81  *
82  * Note that hardclock updates p_estcpu and p_cpticks independently.
83  *
84  * We wish to decay away 90% of p_estcpu in (5 * loadavg) seconds.
85  * That is, the system wants to compute a value of decay such
86  * that the following for loop:
87  * 	for (i = 0; i < (5 * loadavg); i++)
88  * 		p_estcpu *= decay;
89  * will compute
90  * 	p_estcpu *= 0.1;
91  * for all values of loadavg:
92  *
93  * Mathematically this loop can be expressed by saying:
94  * 	decay ** (5 * loadavg) ~= .1
95  *
96  * The system computes decay as:
97  * 	decay = (2 * loadavg) / (2 * loadavg + 1)
98  *
99  * We wish to prove that the system's computation of decay
100  * will always fulfill the equation:
101  * 	decay ** (5 * loadavg) ~= .1
102  *
103  * If we compute b as:
104  * 	b = 2 * loadavg
105  * then
106  * 	decay = b / (b + 1)
107  *
108  * We now need to prove two things:
109  *	1) Given factor ** (5 * loadavg) ~= .1, prove factor == b/(b+1)
110  *	2) Given b/(b+1) ** power ~= .1, prove power == (5 * loadavg)
111  *
112  * Facts:
113  *         For x close to zero, exp(x) =~ 1 + x, since
114  *              exp(x) = 0! + x**1/1! + x**2/2! + ... .
115  *              therefore exp(-1/b) =~ 1 - (1/b) = (b-1)/b.
116  *         For x close to zero, ln(1+x) =~ x, since
117  *              ln(1+x) = x - x**2/2 + x**3/3 - ...     -1 < x < 1
118  *              therefore ln(b/(b+1)) = ln(1 - 1/(b+1)) =~ -1/(b+1).
119  *         ln(.1) =~ -2.30
120  *
121  * Proof of (1):
122  *    Solve (factor)**(power) =~ .1 given power (5*loadav):
123  *	solving for factor,
124  *      ln(factor) =~ (-2.30/5*loadav), or
125  *      factor =~ exp(-1/((5/2.30)*loadav)) =~ exp(-1/(2*loadav)) =
126  *          exp(-1/b) =~ (b-1)/b =~ b/(b+1).                    QED
127  *
128  * Proof of (2):
129  *    Solve (factor)**(power) =~ .1 given factor == (b/(b+1)):
130  *	solving for power,
131  *      power*ln(b/(b+1)) =~ -2.30, or
132  *      power =~ 2.3 * (b + 1) = 4.6*loadav + 2.3 =~ 5*loadav.  QED
133  *
134  * Actual power values for the implemented algorithm are as follows:
135  *      loadav: 1       2       3       4
136  *      power:  5.68    10.32   14.94   19.55
137  */
138 
139 /* calculations for digital decay to forget 90% of usage in 5*loadav sec */
140 #define	loadfactor(loadav)	(2 * (loadav))
141 #define	decay_cpu(loadfac, cpu)	(((loadfac) * (cpu)) / ((loadfac) + FSCALE))
142 
143 /* decay 95% of `p_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */
144 fixpt_t	ccpu = 0.95122942450071400909 * FSCALE;		/* exp(-1/20) */
145 
146 /*
147  * If `ccpu' is not equal to `exp(-1/20)' and you still want to use the
148  * faster/more-accurate formula, you'll have to estimate CCPU_SHIFT below
149  * and possibly adjust FSHIFT in "param.h" so that (FSHIFT >= CCPU_SHIFT).
150  *
151  * To estimate CCPU_SHIFT for exp(-1/20), the following formula was used:
152  *	1 - exp(-1/20) ~= 0.0487 ~= 0.0488 == 1 (fixed pt, *11* bits).
153  *
154  * If you dont want to bother with the faster/more-accurate formula, you
155  * can set CCPU_SHIFT to (FSHIFT + 1) which will use a slower/less-accurate
156  * (more general) method of calculating the %age of CPU used by a process.
157  */
158 #define	CCPU_SHIFT	11
159 
160 /*
161  * Recompute process priorities, every hz ticks.
162  */
163 /* ARGSUSED */
164 void
165 schedcpu(arg)
166 	void *arg;
167 {
168 	register fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
169 	register struct proc *p;
170 	register int s;
171 	register unsigned int newcpu;
172 
173 	wakeup((caddr_t)&lbolt);
174 	for (p = (struct proc *)allproc; p != NULL; p = p->p_next) {
175 		/*
176 		 * Increment time in/out of memory and sleep time
177 		 * (if sleeping).  We ignore overflow; with 16-bit int's
178 		 * (remember them?) overflow takes 45 days.
179 		 */
180 		p->p_swtime++;
181 		if (p->p_stat == SSLEEP || p->p_stat == SSTOP)
182 			p->p_slptime++;
183 		p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT;
184 		/*
185 		 * If the process has slept the entire second,
186 		 * stop recalculating its priority until it wakes up.
187 		 */
188 		if (p->p_slptime > 1)
189 			continue;
190 		s = splstatclock();	/* prevent state changes */
191 		/*
192 		 * p_pctcpu is only for ps.
193 		 */
194 #if	(FSHIFT >= CCPU_SHIFT)
195 		p->p_pctcpu += (hz == 100)?
196 			((fixpt_t) p->p_cpticks) << (FSHIFT - CCPU_SHIFT):
197                 	100 * (((fixpt_t) p->p_cpticks)
198 				<< (FSHIFT - CCPU_SHIFT)) / hz;
199 #else
200 		p->p_pctcpu += ((FSCALE - ccpu) *
201 			(p->p_cpticks * FSCALE / hz)) >> FSHIFT;
202 #endif
203 		p->p_cpticks = 0;
204 		newcpu = (u_int) decay_cpu(loadfac, p->p_estcpu) + p->p_nice;
205 		p->p_estcpu = min(newcpu, UCHAR_MAX);
206 		resetpriority(p);
207 		if (p->p_priority >= PUSER) {
208 #define	PPQ	(128 / NQS)		/* priorities per queue */
209 			if ((p != curproc) &&
210 			    p->p_stat == SRUN &&
211 			    (p->p_flag & P_INMEM) &&
212 			    (p->p_priority / PPQ) != (p->p_usrpri / PPQ)) {
213 				remrq(p);
214 				p->p_priority = p->p_usrpri;
215 				setrunqueue(p);
216 			} else
217 				p->p_priority = p->p_usrpri;
218 		}
219 		splx(s);
220 	}
221 	vmmeter();
222 	timeout(schedcpu, (void *)0, hz);
223 }
224 
225 /*
226  * Recalculate the priority of a process after it has slept for a while.
227  * For all load averages >= 1 and max p_estcpu of 255, sleeping for at
228  * least six times the loadfactor will decay p_estcpu to zero.
229  */
230 void
231 updatepri(p)
232 	register struct proc *p;
233 {
234 	register unsigned int newcpu = p->p_estcpu;
235 	register fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
236 
237 	if (p->p_slptime > 5 * loadfac)
238 		p->p_estcpu = 0;
239 	else {
240 		p->p_slptime--;	/* the first time was done in schedcpu */
241 		while (newcpu && --p->p_slptime)
242 			newcpu = (int) decay_cpu(loadfac, newcpu);
243 		p->p_estcpu = min(newcpu, UCHAR_MAX);
244 	}
245 	resetpriority(p);
246 }
247 
248 /*
249  * We're only looking at 7 bits of the address; everything is
250  * aligned to 4, lots of things are aligned to greater powers
251  * of 2.  Shift right by 8, i.e. drop the bottom 256 worth.
252  */
253 #define TABLESIZE	128
254 #define LOOKUP(x)	(((int)(x) >> 8) & (TABLESIZE - 1))
255 struct slpque {
256 	struct proc *sq_head;
257 	struct proc **sq_tailp;
258 } slpque[TABLESIZE];
259 
260 /*
261  * During autoconfiguration or after a panic, a sleep will simply
262  * lower the priority briefly to allow interrupts, then return.
263  * The priority to be used (safepri) is machine-dependent, thus this
264  * value is initialized and maintained in the machine-dependent layers.
265  * This priority will typically be 0, or the lowest priority
266  * that is safe for use on the interrupt stack; it can be made
267  * higher to block network software interrupts after panics.
268  */
269 int safepri;
270 
271 /*
272  * General sleep call.  Suspends the current process until a wakeup is
273  * performed on the specified identifier.  The process will then be made
274  * runnable with the specified priority.  Sleeps at most timo/hz seconds
275  * (0 means no timeout).  If pri includes PCATCH flag, signals are checked
276  * before and after sleeping, else signals are not checked.  Returns 0 if
277  * awakened, EWOULDBLOCK if the timeout expires.  If PCATCH is set and a
278  * signal needs to be delivered, ERESTART is returned if the current system
279  * call should be restarted if possible, and EINTR is returned if the system
280  * call should be interrupted by the signal (return EINTR).
281  */
282 int
283 tsleep(ident, priority, wmesg, timo)
284 	void *ident;
285 	int priority, timo;
286 	char *wmesg;
287 {
288 	register struct proc *p = curproc;
289 	register struct slpque *qp;
290 	register s;
291 	int sig, catch = priority & PCATCH;
292 
293 #ifdef KTRACE
294 	if (KTRPOINT(p, KTR_CSW))
295 		ktrcsw(p->p_tracep, 1, 0);
296 #endif
297 	s = splhigh();
298 	if (cold || panicstr) {
299 		/*
300 		 * After a panic, or during autoconfiguration,
301 		 * just give interrupts a chance, then just return;
302 		 * don't run any other procs or panic below,
303 		 * in case this is the idle process and already asleep.
304 		 */
305 		splx(safepri);
306 		splx(s);
307 		return (0);
308 	}
309 #ifdef DIAGNOSTIC
310 	if (ident == NULL || p->p_stat != SRUN || p->p_back)
311 		panic("tsleep");
312 #endif
313 	p->p_wchan = ident;
314 	p->p_wmesg = wmesg;
315 	p->p_slptime = 0;
316 	p->p_priority = priority & PRIMASK;
317 	qp = &slpque[LOOKUP(ident)];
318 	if (qp->sq_head == 0)
319 		qp->sq_head = p;
320 	else
321 		*qp->sq_tailp = p;
322 	*(qp->sq_tailp = &p->p_forw) = 0;
323 	if (timo)
324 		timeout(endtsleep, (void *)p, timo);
325 	/*
326 	 * We put ourselves on the sleep queue and start our timeout
327 	 * before calling CURSIG, as we could stop there, and a wakeup
328 	 * or a SIGCONT (or both) could occur while we were stopped.
329 	 * A SIGCONT would cause us to be marked as SSLEEP
330 	 * without resuming us, thus we must be ready for sleep
331 	 * when CURSIG is called.  If the wakeup happens while we're
332 	 * stopped, p->p_wchan will be 0 upon return from CURSIG.
333 	 */
334 	if (catch) {
335 		p->p_flag |= P_SINTR;
336 		if ((sig = CURSIG(p))) {
337 			if (p->p_wchan)
338 				unsleep(p);
339 			p->p_stat = SRUN;
340 			goto resume;
341 		}
342 		if (p->p_wchan == 0) {
343 			catch = 0;
344 			goto resume;
345 		}
346 	} else
347 		sig = 0;
348 	p->p_stat = SSLEEP;
349 	p->p_stats->p_ru.ru_nvcsw++;
350 	mi_switch();
351 resume:
352 	curpriority = p->p_usrpri;
353 	splx(s);
354 	p->p_flag &= ~P_SINTR;
355 	if (p->p_flag & P_TIMEOUT) {
356 		p->p_flag &= ~P_TIMEOUT;
357 		if (sig == 0) {
358 #ifdef KTRACE
359 			if (KTRPOINT(p, KTR_CSW))
360 				ktrcsw(p->p_tracep, 0, 0);
361 #endif
362 			return (EWOULDBLOCK);
363 		}
364 	} else if (timo)
365 		untimeout(endtsleep, (void *)p);
366 	if (catch && (sig != 0 || (sig = CURSIG(p)))) {
367 #ifdef KTRACE
368 		if (KTRPOINT(p, KTR_CSW))
369 			ktrcsw(p->p_tracep, 0, 0);
370 #endif
371 		if (p->p_sigacts->ps_sigintr & sigmask(sig))
372 			return (EINTR);
373 		return (ERESTART);
374 	}
375 #ifdef KTRACE
376 	if (KTRPOINT(p, KTR_CSW))
377 		ktrcsw(p->p_tracep, 0, 0);
378 #endif
379 	return (0);
380 }
381 
382 /*
383  * Implement timeout for tsleep.
384  * If process hasn't been awakened (wchan non-zero),
385  * set timeout flag and undo the sleep.  If proc
386  * is stopped, just unsleep so it will remain stopped.
387  */
388 void
389 endtsleep(arg)
390 	void *arg;
391 {
392 	register struct proc *p;
393 	int s;
394 
395 	p = (struct proc *)arg;
396 	s = splhigh();
397 	if (p->p_wchan) {
398 		if (p->p_stat == SSLEEP)
399 			setrunnable(p);
400 		else
401 			unsleep(p);
402 		p->p_flag |= P_TIMEOUT;
403 	}
404 	splx(s);
405 }
406 
407 /*
408  * Short-term, non-interruptable sleep.
409  */
410 void
411 sleep(ident, priority)
412 	void *ident;
413 	int priority;
414 {
415 	register struct proc *p = curproc;
416 	register struct slpque *qp;
417 	register s;
418 
419 #ifdef DIAGNOSTIC
420 	if (priority > PZERO) {
421 		printf("sleep called with priority %d > PZERO, wchan: %p\n",
422 		    priority, ident);
423 		panic("old sleep");
424 	}
425 #endif
426 	s = splhigh();
427 	if (cold || panicstr) {
428 		/*
429 		 * After a panic, or during autoconfiguration,
430 		 * just give interrupts a chance, then just return;
431 		 * don't run any other procs or panic below,
432 		 * in case this is the idle process and already asleep.
433 		 */
434 		splx(safepri);
435 		splx(s);
436 		return;
437 	}
438 #ifdef DIAGNOSTIC
439 	if (ident == NULL || p->p_stat != SRUN || p->p_back)
440 		panic("sleep");
441 #endif
442 	p->p_wchan = ident;
443 	p->p_wmesg = NULL;
444 	p->p_slptime = 0;
445 	p->p_priority = priority;
446 	qp = &slpque[LOOKUP(ident)];
447 	if (qp->sq_head == 0)
448 		qp->sq_head = p;
449 	else
450 		*qp->sq_tailp = p;
451 	*(qp->sq_tailp = &p->p_forw) = 0;
452 	p->p_stat = SSLEEP;
453 	p->p_stats->p_ru.ru_nvcsw++;
454 #ifdef KTRACE
455 	if (KTRPOINT(p, KTR_CSW))
456 		ktrcsw(p->p_tracep, 1, 0);
457 #endif
458 	mi_switch();
459 #ifdef KTRACE
460 	if (KTRPOINT(p, KTR_CSW))
461 		ktrcsw(p->p_tracep, 0, 0);
462 #endif
463 	curpriority = p->p_usrpri;
464 	splx(s);
465 }
466 
467 /*
468  * Remove a process from its wait queue
469  */
470 void
471 unsleep(p)
472 	register struct proc *p;
473 {
474 	register struct slpque *qp;
475 	register struct proc **hp;
476 	int s;
477 
478 	s = splhigh();
479 	if (p->p_wchan) {
480 		hp = &(qp = &slpque[LOOKUP(p->p_wchan)])->sq_head;
481 		while (*hp != p)
482 			hp = &(*hp)->p_forw;
483 		*hp = p->p_forw;
484 		if (qp->sq_tailp == &p->p_forw)
485 			qp->sq_tailp = hp;
486 		p->p_wchan = 0;
487 	}
488 	splx(s);
489 }
490 
491 /*
492  * Make all processes sleeping on the specified identifier runnable.
493  */
494 void
495 wakeup(ident)
496 	register void *ident;
497 {
498 	register struct slpque *qp;
499 	register struct proc *p, **q;
500 	int s;
501 
502 	s = splhigh();
503 	qp = &slpque[LOOKUP(ident)];
504 restart:
505 	for (q = &qp->sq_head; *q; ) {
506 		p = *q;
507 #ifdef DIAGNOSTIC
508 		if (p->p_back || (p->p_stat != SSLEEP && p->p_stat != SSTOP))
509 			panic("wakeup");
510 #endif
511 		if (p->p_wchan == ident) {
512 			p->p_wchan = 0;
513 			*q = p->p_forw;
514 			if (qp->sq_tailp == &p->p_forw)
515 				qp->sq_tailp = q;
516 			if (p->p_stat == SSLEEP) {
517 				/* OPTIMIZED EXPANSION OF setrunnable(p); */
518 				if (p->p_slptime > 1)
519 					updatepri(p);
520 				p->p_slptime = 0;
521 				p->p_stat = SRUN;
522 				if (p->p_flag & P_INMEM)
523 					setrunqueue(p);
524 				/*
525 				 * Since curpriority is a user priority,
526 				 * p->p_priority is always better than
527 				 * curpriority.
528 				 */
529 				if ((p->p_flag & P_INMEM) == 0)
530 					wakeup((caddr_t)&proc0);
531 				else
532 					need_resched();
533 				/* END INLINE EXPANSION */
534 				goto restart;
535 			}
536 		} else
537 			q = &p->p_forw;
538 	}
539 	splx(s);
540 }
541 
542 /*
543  * The machine independent parts of mi_switch().
544  * Must be called at splstatclock() or higher.
545  */
546 void
547 mi_switch()
548 {
549 	register struct proc *p = curproc;	/* XXX */
550 	register struct rlimit *rlim;
551 	register long s, u;
552 	struct timeval tv;
553 
554 	/*
555 	 * Compute the amount of time during which the current
556 	 * process was running, and add that to its total so far.
557 	 */
558 	microtime(&tv);
559 	u = p->p_rtime.tv_usec + (tv.tv_usec - runtime.tv_usec);
560 	s = p->p_rtime.tv_sec + (tv.tv_sec - runtime.tv_sec);
561 	if (u < 0) {
562 		u += 1000000;
563 		s--;
564 	} else if (u >= 1000000) {
565 		u -= 1000000;
566 		s++;
567 	}
568 	p->p_rtime.tv_usec = u;
569 	p->p_rtime.tv_sec = s;
570 
571 	/*
572 	 * Check if the process exceeds its cpu resource allocation.
573 	 * If over max, kill it.  In any case, if it has run for more
574 	 * than 10 minutes, reduce priority to give others a chance.
575 	 */
576 	if (p->p_stat != SZOMB) {
577 		rlim = &p->p_rlimit[RLIMIT_CPU];
578 		if (s >= rlim->rlim_cur) {
579 			if (s >= rlim->rlim_max)
580 				psignal(p, SIGKILL);
581 			else {
582 				psignal(p, SIGXCPU);
583 				if (rlim->rlim_cur < rlim->rlim_max)
584 					rlim->rlim_cur += 5;
585 			}
586 		}
587 		if (s > 10 * 60 && p->p_ucred->cr_uid && p->p_nice == NZERO) {
588 			p->p_nice = NZERO + 4;
589 			resetpriority(p);
590 		}
591 	}
592 
593 	/*
594 	 * Pick a new current process and record its start time.
595 	 */
596 	cnt.v_swtch++;
597 	cpu_switch(p);
598 	microtime(&runtime);
599 }
600 
601 /*
602  * Initialize the (doubly-linked) run queues
603  * to be empty.
604  */
605 void
606 rqinit()
607 {
608 	register int i;
609 
610 	for (i = 0; i < NQS; i++) {
611 		qs[i].ph_link = qs[i].ph_rlink = (struct proc *)&qs[i];
612 		rtqs[i].ph_link = rtqs[i].ph_rlink = (struct proc *)&rtqs[i];
613 		idqs[i].ph_link = idqs[i].ph_rlink = (struct proc *)&idqs[i];
614 	}
615 }
616 
617 /*
618  * Change process state to be runnable,
619  * placing it on the run queue if it is in memory,
620  * and awakening the swapper if it isn't in memory.
621  */
622 void
623 setrunnable(p)
624 	register struct proc *p;
625 {
626 	register int s;
627 
628 	s = splhigh();
629 	switch (p->p_stat) {
630 	case 0:
631 	case SRUN:
632 	case SZOMB:
633 	default:
634 		panic("setrunnable");
635 	case SSTOP:
636 	case SSLEEP:
637 		unsleep(p);		/* e.g. when sending signals */
638 		break;
639 
640 	case SIDL:
641 		break;
642 	}
643 	p->p_stat = SRUN;
644 	if (p->p_flag & P_INMEM)
645 		setrunqueue(p);
646 	splx(s);
647 	if (p->p_slptime > 1)
648 		updatepri(p);
649 	p->p_slptime = 0;
650 	if ((p->p_flag & P_INMEM) == 0)
651 		wakeup((caddr_t)&proc0);
652 	else if (p->p_priority < curpriority)
653 		need_resched();
654 }
655 
656 /*
657  * Compute the priority of a process when running in user mode.
658  * Arrange to reschedule if the resulting priority is better
659  * than that of the current process.
660  */
661 void
662 resetpriority(p)
663 	register struct proc *p;
664 {
665 	register unsigned int newpriority;
666 
667 	if (p->p_rtprio.type == RTP_PRIO_NORMAL) {
668 		newpriority = PUSER + p->p_estcpu / 4 + 2 * p->p_nice;
669 		newpriority = min(newpriority, MAXPRI);
670 		p->p_usrpri = newpriority;
671 		if (newpriority < curpriority)
672 			need_resched();
673 	} else {
674 		need_resched();
675 	}
676 }
677