xref: /freebsd/sys/kern/kern_synch.c (revision 5773cccf19ef7b97e56c1101aa481c43149224da)
1 /*-
2  * Copyright (c) 1982, 1986, 1990, 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  * (c) UNIX System Laboratories, Inc.
5  * All or some portions of this file are derived from material licensed
6  * to the University of California by American Telephone and Telegraph
7  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8  * the permission of UNIX System Laboratories, Inc.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. All advertising materials mentioning features or use of this software
19  *    must display the following acknowledgement:
20  *	This product includes software developed by the University of
21  *	California, Berkeley and its contributors.
22  * 4. Neither the name of the University nor the names of its contributors
23  *    may be used to endorse or promote products derived from this software
24  *    without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36  * SUCH DAMAGE.
37  *
38  *	@(#)kern_synch.c	8.9 (Berkeley) 5/19/95
39  * $FreeBSD$
40  */
41 
42 #include "opt_ddb.h"
43 #include "opt_ktrace.h"
44 
45 #include <sys/param.h>
46 #include <sys/systm.h>
47 #include <sys/condvar.h>
48 #include <sys/kernel.h>
49 #include <sys/ktr.h>
50 #include <sys/lock.h>
51 #include <sys/mutex.h>
52 #include <sys/proc.h>
53 #include <sys/resourcevar.h>
54 #include <sys/sched.h>
55 #include <sys/signalvar.h>
56 #include <sys/smp.h>
57 #include <sys/sx.h>
58 #include <sys/sysctl.h>
59 #include <sys/sysproto.h>
60 #include <sys/vmmeter.h>
61 #ifdef DDB
62 #include <ddb/ddb.h>
63 #endif
64 #ifdef KTRACE
65 #include <sys/uio.h>
66 #include <sys/ktrace.h>
67 #endif
68 
69 #include <machine/cpu.h>
70 
71 static void sched_setup(void *dummy);
72 SYSINIT(sched_setup, SI_SUB_KICK_SCHEDULER, SI_ORDER_FIRST, sched_setup, NULL)
73 
74 int	hogticks;
75 int	lbolt;
76 
77 static struct callout loadav_callout;
78 static struct callout lbolt_callout;
79 
80 struct loadavg averunnable =
81 	{ {0, 0, 0}, FSCALE };	/* load average, of runnable procs */
82 /*
83  * Constants for averages over 1, 5, and 15 minutes
84  * when sampling at 5 second intervals.
85  */
86 static fixpt_t cexp[3] = {
87 	0.9200444146293232 * FSCALE,	/* exp(-1/12) */
88 	0.9834714538216174 * FSCALE,	/* exp(-1/60) */
89 	0.9944598480048967 * FSCALE,	/* exp(-1/180) */
90 };
91 
92 /* kernel uses `FSCALE', userland (SHOULD) use kern.fscale */
93 static int      fscale __unused = FSCALE;
94 SYSCTL_INT(_kern, OID_AUTO, fscale, CTLFLAG_RD, 0, FSCALE, "");
95 
96 static void	endtsleep(void *);
97 static void	loadav(void *arg);
98 static void	lboltcb(void *arg);
99 
100 /*
101  * We're only looking at 7 bits of the address; everything is
102  * aligned to 4, lots of things are aligned to greater powers
103  * of 2.  Shift right by 8, i.e. drop the bottom 256 worth.
104  */
105 #define TABLESIZE	128
106 static TAILQ_HEAD(slpquehead, thread) slpque[TABLESIZE];
107 #define LOOKUP(x)	(((intptr_t)(x) >> 8) & (TABLESIZE - 1))
108 
109 void
110 sleepinit(void)
111 {
112 	int i;
113 
114 	hogticks = (hz / 10) * 2;	/* Default only. */
115 	for (i = 0; i < TABLESIZE; i++)
116 		TAILQ_INIT(&slpque[i]);
117 }
118 
119 /*
120  * General sleep call.  Suspends the current process until a wakeup is
121  * performed on the specified identifier.  The process will then be made
122  * runnable with the specified priority.  Sleeps at most timo/hz seconds
123  * (0 means no timeout).  If pri includes PCATCH flag, signals are checked
124  * before and after sleeping, else signals are not checked.  Returns 0 if
125  * awakened, EWOULDBLOCK if the timeout expires.  If PCATCH is set and a
126  * signal needs to be delivered, ERESTART is returned if the current system
127  * call should be restarted if possible, and EINTR is returned if the system
128  * call should be interrupted by the signal (return EINTR).
129  *
130  * The mutex argument is exited before the caller is suspended, and
131  * entered before msleep returns.  If priority includes the PDROP
132  * flag the mutex is not entered before returning.
133  */
134 
135 int
136 msleep(ident, mtx, priority, wmesg, timo)
137 	void *ident;
138 	struct mtx *mtx;
139 	int priority, timo;
140 	const char *wmesg;
141 {
142 	struct thread *td = curthread;
143 	struct proc *p = td->td_proc;
144 	int sig, catch = priority & PCATCH;
145 	int rval = 0;
146 	WITNESS_SAVE_DECL(mtx);
147 
148 #ifdef KTRACE
149 	if (KTRPOINT(td, KTR_CSW))
150 		ktrcsw(1, 0);
151 #endif
152 	WITNESS_SLEEP(0, &mtx->mtx_object);
153 	KASSERT(timo != 0 || mtx_owned(&Giant) || mtx != NULL,
154 	    ("sleeping without a mutex"));
155 	/*
156 	 * If we are capable of async syscalls and there isn't already
157 	 * another one ready to return, start a new thread
158 	 * and queue it as ready to run. Note that there is danger here
159 	 * because we need to make sure that we don't sleep allocating
160 	 * the thread (recursion here might be bad).
161 	 * Hence the TDF_INMSLEEP flag.
162 	 */
163 	if (p->p_flag & P_KSES) {
164 		/*
165 		 * Just don't bother if we are exiting
166 		 * and not the exiting thread or thread was marked as
167 		 * interrupted.
168 		 */
169 		if (catch &&
170 		    (((p->p_flag & P_WEXIT) && (p->p_singlethread != td)) ||
171 		     (td->td_flags & TDF_INTERRUPT))) {
172 			td->td_flags &= ~TDF_INTERRUPT;
173 			return (EINTR);
174 		}
175 		mtx_lock_spin(&sched_lock);
176 		if ((td->td_flags & (TDF_UNBOUND|TDF_INMSLEEP)) ==
177 		    TDF_UNBOUND) {
178 			/*
179 			 * Arrange for an upcall to be readied.
180 			 * it will not actually happen until all
181 			 * pending in-kernel work for this KSEGRP
182 			 * has been done.
183 			 */
184 			/* Don't recurse here! */
185 			td->td_flags |= TDF_INMSLEEP;
186 			thread_schedule_upcall(td, td->td_kse);
187 			td->td_flags &= ~TDF_INMSLEEP;
188 		}
189 	} else {
190 		mtx_lock_spin(&sched_lock);
191 	}
192 	if (cold ) {
193 		/*
194 		 * During autoconfiguration, just give interrupts
195 		 * a chance, then just return.
196 		 * Don't run any other procs or panic below,
197 		 * in case this is the idle process and already asleep.
198 		 */
199 		if (mtx != NULL && priority & PDROP)
200 			mtx_unlock(mtx);
201 		mtx_unlock_spin(&sched_lock);
202 		return (0);
203 	}
204 
205 	DROP_GIANT();
206 
207 	if (mtx != NULL) {
208 		mtx_assert(mtx, MA_OWNED | MA_NOTRECURSED);
209 		WITNESS_SAVE(&mtx->mtx_object, mtx);
210 		mtx_unlock(mtx);
211 		if (priority & PDROP)
212 			mtx = NULL;
213 	}
214 
215 	KASSERT(p != NULL, ("msleep1"));
216 	KASSERT(ident != NULL && TD_IS_RUNNING(td), ("msleep"));
217 
218 	CTR5(KTR_PROC, "msleep: thread %p (pid %d, %s) on %s (%p)",
219 	    td, p->p_pid, p->p_comm, wmesg, ident);
220 
221 	td->td_wchan = ident;
222 	td->td_wmesg = wmesg;
223 	TAILQ_INSERT_TAIL(&slpque[LOOKUP(ident)], td, td_slpq);
224 	TD_SET_ON_SLEEPQ(td);
225 	if (timo)
226 		callout_reset(&td->td_slpcallout, timo, endtsleep, td);
227 	/*
228 	 * We put ourselves on the sleep queue and start our timeout
229 	 * before calling thread_suspend_check, as we could stop there, and
230 	 * a wakeup or a SIGCONT (or both) could occur while we were stopped.
231 	 * without resuming us, thus we must be ready for sleep
232 	 * when cursig is called.  If the wakeup happens while we're
233 	 * stopped, td->td_wchan will be 0 upon return from cursig.
234 	 */
235 	if (catch) {
236 		CTR3(KTR_PROC, "msleep caught: thread %p (pid %d, %s)", td,
237 		    p->p_pid, p->p_comm);
238 		td->td_flags |= TDF_SINTR;
239 		mtx_unlock_spin(&sched_lock);
240 		PROC_LOCK(p);
241 		sig = cursig(td);
242 		if (sig == 0 && thread_suspend_check(1))
243 			sig = SIGSTOP;
244 		mtx_lock_spin(&sched_lock);
245 		PROC_UNLOCK(p);
246 		if (sig != 0) {
247 			if (TD_ON_SLEEPQ(td))
248 				unsleep(td);
249 		} else if (!TD_ON_SLEEPQ(td))
250 			catch = 0;
251 	} else
252 		sig = 0;
253 
254 	/*
255 	 * Let the scheduler know we're about to voluntarily go to sleep.
256 	 */
257 	sched_sleep(td, priority & PRIMASK);
258 
259 	if (TD_ON_SLEEPQ(td)) {
260 		p->p_stats->p_ru.ru_nvcsw++;
261 		TD_SET_SLEEPING(td);
262 		mi_switch();
263 	}
264 	/*
265 	 * We're awake from voluntary sleep.
266 	 */
267 	CTR3(KTR_PROC, "msleep resume: thread %p (pid %d, %s)", td, p->p_pid,
268 	    p->p_comm);
269 	KASSERT(TD_IS_RUNNING(td), ("running but not TDS_RUNNING"));
270 	td->td_flags &= ~TDF_SINTR;
271 	if (td->td_flags & TDF_TIMEOUT) {
272 		td->td_flags &= ~TDF_TIMEOUT;
273 		if (sig == 0)
274 			rval = EWOULDBLOCK;
275 	} else if (td->td_flags & TDF_TIMOFAIL) {
276 		td->td_flags &= ~TDF_TIMOFAIL;
277 	} else if (timo && callout_stop(&td->td_slpcallout) == 0) {
278 		/*
279 		 * This isn't supposed to be pretty.  If we are here, then
280 		 * the endtsleep() callout is currently executing on another
281 		 * CPU and is either spinning on the sched_lock or will be
282 		 * soon.  If we don't synchronize here, there is a chance
283 		 * that this process may msleep() again before the callout
284 		 * has a chance to run and the callout may end up waking up
285 		 * the wrong msleep().  Yuck.
286 		 */
287 		TD_SET_SLEEPING(td);
288 		p->p_stats->p_ru.ru_nivcsw++;
289 		mi_switch();
290 		td->td_flags &= ~TDF_TIMOFAIL;
291 	}
292 	if ((td->td_flags & TDF_INTERRUPT) && (priority & PCATCH) &&
293 	    (rval == 0)) {
294 		td->td_flags &= ~TDF_INTERRUPT;
295 		rval = EINTR;
296 	}
297 	mtx_unlock_spin(&sched_lock);
298 
299 	if (rval == 0 && catch) {
300 		PROC_LOCK(p);
301 		/* XXX: shouldn't we always be calling cursig() */
302 		if (sig != 0 || (sig = cursig(td))) {
303 			if (SIGISMEMBER(p->p_sigacts->ps_sigintr, sig))
304 				rval = EINTR;
305 			else
306 				rval = ERESTART;
307 		}
308 		PROC_UNLOCK(p);
309 	}
310 #ifdef KTRACE
311 	if (KTRPOINT(td, KTR_CSW))
312 		ktrcsw(0, 0);
313 #endif
314 	PICKUP_GIANT();
315 	if (mtx != NULL) {
316 		mtx_lock(mtx);
317 		WITNESS_RESTORE(&mtx->mtx_object, mtx);
318 	}
319 	return (rval);
320 }
321 
322 /*
323  * Implement timeout for msleep()
324  *
325  * If process hasn't been awakened (wchan non-zero),
326  * set timeout flag and undo the sleep.  If proc
327  * is stopped, just unsleep so it will remain stopped.
328  * MP-safe, called without the Giant mutex.
329  */
330 static void
331 endtsleep(arg)
332 	void *arg;
333 {
334 	register struct thread *td = arg;
335 
336 	CTR3(KTR_PROC, "endtsleep: thread %p (pid %d, %s)",
337 	    td, td->td_proc->p_pid, td->td_proc->p_comm);
338 	mtx_lock_spin(&sched_lock);
339 	/*
340 	 * This is the other half of the synchronization with msleep()
341 	 * described above.  If the TDS_TIMEOUT flag is set, we lost the
342 	 * race and just need to put the process back on the runqueue.
343 	 */
344 	if (TD_ON_SLEEPQ(td)) {
345 		TAILQ_REMOVE(&slpque[LOOKUP(td->td_wchan)], td, td_slpq);
346 		TD_CLR_ON_SLEEPQ(td);
347 		td->td_flags |= TDF_TIMEOUT;
348 	} else {
349 		td->td_flags |= TDF_TIMOFAIL;
350 	}
351 	TD_CLR_SLEEPING(td);
352 	setrunnable(td);
353 	mtx_unlock_spin(&sched_lock);
354 }
355 
356 /*
357  * Abort a thread, as if an interrupt had occured.  Only abort
358  * interruptable waits (unfortunatly it isn't only safe to abort others).
359  * This is about identical to cv_abort().
360  * Think about merging them?
361  * Also, whatever the signal code does...
362  */
363 void
364 abortsleep(struct thread *td)
365 {
366 
367 	mtx_assert(&sched_lock, MA_OWNED);
368 	/*
369 	 * If the TDF_TIMEOUT flag is set, just leave. A
370 	 * timeout is scheduled anyhow.
371 	 */
372 	if ((td->td_flags & (TDF_TIMEOUT | TDF_SINTR)) == TDF_SINTR) {
373 		if (TD_ON_SLEEPQ(td)) {
374 			unsleep(td);
375 			TD_CLR_SLEEPING(td);
376 			setrunnable(td);
377 		}
378 	}
379 }
380 
381 /*
382  * Remove a process from its wait queue
383  */
384 void
385 unsleep(struct thread *td)
386 {
387 
388 	mtx_lock_spin(&sched_lock);
389 	if (TD_ON_SLEEPQ(td)) {
390 		TAILQ_REMOVE(&slpque[LOOKUP(td->td_wchan)], td, td_slpq);
391 		TD_CLR_ON_SLEEPQ(td);
392 	}
393 	mtx_unlock_spin(&sched_lock);
394 }
395 
396 /*
397  * Make all processes sleeping on the specified identifier runnable.
398  */
399 void
400 wakeup(ident)
401 	register void *ident;
402 {
403 	register struct slpquehead *qp;
404 	register struct thread *td;
405 	struct thread *ntd;
406 	struct proc *p;
407 
408 	mtx_lock_spin(&sched_lock);
409 	qp = &slpque[LOOKUP(ident)];
410 restart:
411 	for (td = TAILQ_FIRST(qp); td != NULL; td = ntd) {
412 		ntd = TAILQ_NEXT(td, td_slpq);
413 		if (td->td_wchan == ident) {
414 			unsleep(td);
415 			TD_CLR_SLEEPING(td);
416 			setrunnable(td);
417 			p = td->td_proc;
418 			CTR3(KTR_PROC,"wakeup: thread %p (pid %d, %s)",
419 			    td, p->p_pid, p->p_comm);
420 			goto restart;
421 		}
422 	}
423 	mtx_unlock_spin(&sched_lock);
424 }
425 
426 /*
427  * Make a process sleeping on the specified identifier runnable.
428  * May wake more than one process if a target process is currently
429  * swapped out.
430  */
431 void
432 wakeup_one(ident)
433 	register void *ident;
434 {
435 	register struct slpquehead *qp;
436 	register struct thread *td;
437 	register struct proc *p;
438 	struct thread *ntd;
439 
440 	mtx_lock_spin(&sched_lock);
441 	qp = &slpque[LOOKUP(ident)];
442 	for (td = TAILQ_FIRST(qp); td != NULL; td = ntd) {
443 		ntd = TAILQ_NEXT(td, td_slpq);
444 		if (td->td_wchan == ident) {
445 			unsleep(td);
446 			TD_CLR_SLEEPING(td);
447 			setrunnable(td);
448 			p = td->td_proc;
449 			CTR3(KTR_PROC,"wakeup1: thread %p (pid %d, %s)",
450 			    td, p->p_pid, p->p_comm);
451 			break;
452 		}
453 	}
454 	mtx_unlock_spin(&sched_lock);
455 }
456 
457 /*
458  * The machine independent parts of mi_switch().
459  */
460 void
461 mi_switch(void)
462 {
463 	struct bintime new_switchtime;
464 	struct thread *td = curthread;	/* XXX */
465 	struct proc *p = td->td_proc;	/* XXX */
466 	struct kse *ke = td->td_kse;
467 	u_int sched_nest;
468 
469 	mtx_assert(&sched_lock, MA_OWNED | MA_NOTRECURSED);
470 
471 	KASSERT(!TD_ON_RUNQ(td), ("mi_switch: called by old code"));
472 #ifdef INVARIANTS
473 	if (!TD_ON_LOCK(td) &&
474 	    !TD_ON_RUNQ(td) &&
475 	    !TD_IS_RUNNING(td))
476 		mtx_assert(&Giant, MA_NOTOWNED);
477 #endif
478 	KASSERT(td->td_critnest == 1,
479 	    ("mi_switch: switch in a critical section"));
480 
481 	/*
482 	 * Compute the amount of time during which the current
483 	 * process was running, and add that to its total so far.
484 	 */
485 	binuptime(&new_switchtime);
486 	bintime_add(&p->p_runtime, &new_switchtime);
487 	bintime_sub(&p->p_runtime, PCPU_PTR(switchtime));
488 
489 #ifdef DDB
490 	/*
491 	 * Don't perform context switches from the debugger.
492 	 */
493 	if (db_active) {
494 		mtx_unlock_spin(&sched_lock);
495 		db_error("Context switches not allowed in the debugger.");
496 	}
497 #endif
498 
499 	/*
500 	 * Check if the process exceeds its cpu resource allocation.  If
501 	 * over max, arrange to kill the process in ast().
502 	 */
503 	if (p->p_cpulimit != RLIM_INFINITY &&
504 	    p->p_runtime.sec > p->p_cpulimit) {
505 		p->p_sflag |= PS_XCPU;
506 		ke->ke_flags |= KEF_ASTPENDING;
507 	}
508 
509 	/*
510 	 * Finish up stats for outgoing thread.
511 	 */
512 	cnt.v_swtch++;
513 	PCPU_SET(switchtime, new_switchtime);
514 	CTR3(KTR_PROC, "mi_switch: old thread %p (pid %d, %s)", td, p->p_pid,
515 	    p->p_comm);
516 
517 	sched_nest = sched_lock.mtx_recurse;
518 	sched_switchout(td);
519 
520 	cpu_switch();		/* SHAZAM!!*/
521 
522 	sched_lock.mtx_recurse = sched_nest;
523 	sched_lock.mtx_lock = (uintptr_t)td;
524 	sched_switchin(td);
525 
526 	/*
527 	 * Start setting up stats etc. for the incoming thread.
528 	 * Similar code in fork_exit() is returned to by cpu_switch()
529 	 * in the case of a new thread/process.
530 	 */
531 	CTR3(KTR_PROC, "mi_switch: new thread %p (pid %d, %s)", td, p->p_pid,
532 	    p->p_comm);
533 	if (PCPU_GET(switchtime.sec) == 0)
534 		binuptime(PCPU_PTR(switchtime));
535 	PCPU_SET(switchticks, ticks);
536 
537 	/*
538 	 * Call the switchin function while still holding the scheduler lock
539 	 * (used by the idlezero code and the general page-zeroing code)
540 	 */
541 	if (td->td_switchin)
542 		td->td_switchin();
543 }
544 
545 /*
546  * Change process state to be runnable,
547  * placing it on the run queue if it is in memory,
548  * and awakening the swapper if it isn't in memory.
549  */
550 void
551 setrunnable(struct thread *td)
552 {
553 	struct proc *p = td->td_proc;
554 
555 	mtx_assert(&sched_lock, MA_OWNED);
556 	switch (p->p_state) {
557 	case PRS_ZOMBIE:
558 		panic("setrunnable(1)");
559 	default:
560 		break;
561 	}
562 	switch (td->td_state) {
563 	case TDS_RUNNING:
564 	case TDS_RUNQ:
565 		return;
566 	case TDS_INHIBITED:
567 		/*
568 		 * If we are only inhibited because we are swapped out
569 		 * then arange to swap in this process. Otherwise just return.
570 		 */
571 		if (td->td_inhibitors != TDI_SWAPPED)
572 			return;
573 	case TDS_CAN_RUN:
574 		break;
575 	default:
576 		printf("state is 0x%x", td->td_state);
577 		panic("setrunnable(2)");
578 	}
579 	if ((p->p_sflag & PS_INMEM) == 0) {
580 		if ((p->p_sflag & PS_SWAPPINGIN) == 0) {
581 			p->p_sflag |= PS_SWAPINREQ;
582 			wakeup(&proc0);
583 		}
584 	} else
585 		sched_wakeup(td);
586 }
587 
588 /*
589  * Compute a tenex style load average of a quantity on
590  * 1, 5 and 15 minute intervals.
591  * XXXKSE   Needs complete rewrite when correct info is available.
592  * Completely Bogus.. only works with 1:1 (but compiles ok now :-)
593  */
594 static void
595 loadav(void *arg)
596 {
597 	int i, nrun;
598 	struct loadavg *avg;
599 	struct proc *p;
600 	struct thread *td;
601 
602 	avg = &averunnable;
603 	sx_slock(&allproc_lock);
604 	nrun = 0;
605 	FOREACH_PROC_IN_SYSTEM(p) {
606 		FOREACH_THREAD_IN_PROC(p, td) {
607 			switch (td->td_state) {
608 			case TDS_RUNQ:
609 			case TDS_RUNNING:
610 				if ((p->p_flag & P_NOLOAD) != 0)
611 					goto nextproc;
612 				nrun++; /* XXXKSE */
613 			default:
614 				break;
615 			}
616 nextproc:
617 			continue;
618 		}
619 	}
620 	sx_sunlock(&allproc_lock);
621 	for (i = 0; i < 3; i++)
622 		avg->ldavg[i] = (cexp[i] * avg->ldavg[i] +
623 		    nrun * FSCALE * (FSCALE - cexp[i])) >> FSHIFT;
624 
625 	/*
626 	 * Schedule the next update to occur after 5 seconds, but add a
627 	 * random variation to avoid synchronisation with processes that
628 	 * run at regular intervals.
629 	 */
630 	callout_reset(&loadav_callout, hz * 4 + (int)(random() % (hz * 2 + 1)),
631 	    loadav, NULL);
632 }
633 
634 static void
635 lboltcb(void *arg)
636 {
637 	wakeup(&lbolt);
638 	callout_reset(&lbolt_callout, hz, lboltcb, NULL);
639 }
640 
641 /* ARGSUSED */
642 static void
643 sched_setup(dummy)
644 	void *dummy;
645 {
646 	callout_init(&loadav_callout, 0);
647 	callout_init(&lbolt_callout, 1);
648 
649 	/* Kick off timeout driven events by calling first time. */
650 	loadav(NULL);
651 	lboltcb(NULL);
652 }
653 
654 /*
655  * General purpose yield system call
656  */
657 int
658 yield(struct thread *td, struct yield_args *uap)
659 {
660 	struct ksegrp *kg = td->td_ksegrp;
661 
662 	mtx_assert(&Giant, MA_NOTOWNED);
663 	mtx_lock_spin(&sched_lock);
664 	kg->kg_proc->p_stats->p_ru.ru_nvcsw++;
665 	sched_prio(td, PRI_MAX_TIMESHARE);
666 	mi_switch();
667 	mtx_unlock_spin(&sched_lock);
668 	td->td_retval[0] = 0;
669 
670 	return (0);
671 }
672 
673