xref: /freebsd/sys/kern/kern_synch.c (revision 4a5216a6dc0c3ce4cf5f2d3ee8af0c3ff3402c4f)
1 /*-
2  * Copyright (c) 1982, 1986, 1990, 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  * (c) UNIX System Laboratories, Inc.
5  * All or some portions of this file are derived from material licensed
6  * to the University of California by American Telephone and Telegraph
7  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8  * the permission of UNIX System Laboratories, Inc.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 4. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  *	@(#)kern_synch.c	8.9 (Berkeley) 5/19/95
35  */
36 
37 #include <sys/cdefs.h>
38 __FBSDID("$FreeBSD$");
39 
40 #include "opt_ktrace.h"
41 #include "opt_sched.h"
42 
43 #include <sys/param.h>
44 #include <sys/systm.h>
45 #include <sys/condvar.h>
46 #include <sys/kdb.h>
47 #include <sys/kernel.h>
48 #include <sys/ktr.h>
49 #include <sys/lock.h>
50 #include <sys/mutex.h>
51 #include <sys/proc.h>
52 #include <sys/resourcevar.h>
53 #include <sys/sched.h>
54 #include <sys/signalvar.h>
55 #include <sys/sleepqueue.h>
56 #include <sys/smp.h>
57 #include <sys/sx.h>
58 #include <sys/sysctl.h>
59 #include <sys/sysproto.h>
60 #include <sys/vmmeter.h>
61 #ifdef KTRACE
62 #include <sys/uio.h>
63 #include <sys/ktrace.h>
64 #endif
65 
66 #include <machine/cpu.h>
67 
68 static void synch_setup(void *dummy);
69 SYSINIT(synch_setup, SI_SUB_KICK_SCHEDULER, SI_ORDER_FIRST, synch_setup,
70     NULL);
71 
72 int	hogticks;
73 static int pause_wchan;
74 
75 static struct callout loadav_callout;
76 
77 struct loadavg averunnable =
78 	{ {0, 0, 0}, FSCALE };	/* load average, of runnable procs */
79 /*
80  * Constants for averages over 1, 5, and 15 minutes
81  * when sampling at 5 second intervals.
82  */
83 static fixpt_t cexp[3] = {
84 	0.9200444146293232 * FSCALE,	/* exp(-1/12) */
85 	0.9834714538216174 * FSCALE,	/* exp(-1/60) */
86 	0.9944598480048967 * FSCALE,	/* exp(-1/180) */
87 };
88 
89 /* kernel uses `FSCALE', userland (SHOULD) use kern.fscale */
90 static int      fscale __unused = FSCALE;
91 SYSCTL_INT(_kern, OID_AUTO, fscale, CTLFLAG_RD, 0, FSCALE, "");
92 
93 static void	loadav(void *arg);
94 
95 void
96 sleepinit(void)
97 {
98 
99 	hogticks = (hz / 10) * 2;	/* Default only. */
100 	init_sleepqueues();
101 }
102 
103 /*
104  * General sleep call.  Suspends the current thread until a wakeup is
105  * performed on the specified identifier.  The thread will then be made
106  * runnable with the specified priority.  Sleeps at most timo/hz seconds
107  * (0 means no timeout).  If pri includes PCATCH flag, signals are checked
108  * before and after sleeping, else signals are not checked.  Returns 0 if
109  * awakened, EWOULDBLOCK if the timeout expires.  If PCATCH is set and a
110  * signal needs to be delivered, ERESTART is returned if the current system
111  * call should be restarted if possible, and EINTR is returned if the system
112  * call should be interrupted by the signal (return EINTR).
113  *
114  * The lock argument is unlocked before the caller is suspended, and
115  * re-locked before _sleep() returns.  If priority includes the PDROP
116  * flag the lock is not re-locked before returning.
117  */
118 int
119 _sleep(void *ident, struct lock_object *lock, int priority,
120     const char *wmesg, int timo)
121 {
122 	struct thread *td;
123 	struct proc *p;
124 	struct lock_class *class;
125 	int catch, flags, lock_state, pri, rval;
126 	WITNESS_SAVE_DECL(lock_witness);
127 
128 	td = curthread;
129 	p = td->td_proc;
130 #ifdef KTRACE
131 	if (KTRPOINT(td, KTR_CSW))
132 		ktrcsw(1, 0);
133 #endif
134 	WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, lock,
135 	    "Sleeping on \"%s\"", wmesg);
136 	KASSERT(timo != 0 || mtx_owned(&Giant) || lock != NULL,
137 	    ("sleeping without a lock"));
138 	KASSERT(p != NULL, ("msleep1"));
139 	KASSERT(ident != NULL && TD_IS_RUNNING(td), ("msleep"));
140 	if (priority & PDROP)
141 		KASSERT(lock != NULL && lock != &Giant.lock_object,
142 		    ("PDROP requires a non-Giant lock"));
143 	if (lock != NULL)
144 		class = LOCK_CLASS(lock);
145 	else
146 		class = NULL;
147 
148 	if (cold) {
149 		/*
150 		 * During autoconfiguration, just return;
151 		 * don't run any other threads or panic below,
152 		 * in case this is the idle thread and already asleep.
153 		 * XXX: this used to do "s = splhigh(); splx(safepri);
154 		 * splx(s);" to give interrupts a chance, but there is
155 		 * no way to give interrupts a chance now.
156 		 */
157 		if (lock != NULL && priority & PDROP)
158 			class->lc_unlock(lock);
159 		return (0);
160 	}
161 	catch = priority & PCATCH;
162 	pri = priority & PRIMASK;
163 	rval = 0;
164 
165 	/*
166 	 * If we are already on a sleep queue, then remove us from that
167 	 * sleep queue first.  We have to do this to handle recursive
168 	 * sleeps.
169 	 */
170 	if (TD_ON_SLEEPQ(td))
171 		sleepq_remove(td, td->td_wchan);
172 
173 	if (ident == &pause_wchan)
174 		flags = SLEEPQ_PAUSE;
175 	else
176 		flags = SLEEPQ_SLEEP;
177 	if (catch)
178 		flags |= SLEEPQ_INTERRUPTIBLE;
179 
180 	sleepq_lock(ident);
181 	CTR5(KTR_PROC, "sleep: thread %ld (pid %ld, %s) on %s (%p)",
182 	    td->td_tid, p->p_pid, td->td_name, wmesg, ident);
183 
184 	if (lock == &Giant.lock_object)
185 		mtx_assert(&Giant, MA_OWNED);
186 	DROP_GIANT();
187 	if (lock != NULL && lock != &Giant.lock_object &&
188 	    !(class->lc_flags & LC_SLEEPABLE)) {
189 		WITNESS_SAVE(lock, lock_witness);
190 		lock_state = class->lc_unlock(lock);
191 	} else
192 		/* GCC needs to follow the Yellow Brick Road */
193 		lock_state = -1;
194 
195 	/*
196 	 * We put ourselves on the sleep queue and start our timeout
197 	 * before calling thread_suspend_check, as we could stop there,
198 	 * and a wakeup or a SIGCONT (or both) could occur while we were
199 	 * stopped without resuming us.  Thus, we must be ready for sleep
200 	 * when cursig() is called.  If the wakeup happens while we're
201 	 * stopped, then td will no longer be on a sleep queue upon
202 	 * return from cursig().
203 	 */
204 	sleepq_add(ident, lock, wmesg, flags, 0);
205 	if (timo)
206 		sleepq_set_timeout(ident, timo);
207 	if (lock != NULL && class->lc_flags & LC_SLEEPABLE) {
208 		sleepq_release(ident);
209 		WITNESS_SAVE(lock, lock_witness);
210 		lock_state = class->lc_unlock(lock);
211 		sleepq_lock(ident);
212 	}
213 	if (timo && catch)
214 		rval = sleepq_timedwait_sig(ident, pri);
215 	else if (timo)
216 		rval = sleepq_timedwait(ident, pri);
217 	else if (catch)
218 		rval = sleepq_wait_sig(ident, pri);
219 	else {
220 		sleepq_wait(ident, pri);
221 		rval = 0;
222 	}
223 #ifdef KTRACE
224 	if (KTRPOINT(td, KTR_CSW))
225 		ktrcsw(0, 0);
226 #endif
227 	PICKUP_GIANT();
228 	if (lock != NULL && lock != &Giant.lock_object && !(priority & PDROP)) {
229 		class->lc_lock(lock, lock_state);
230 		WITNESS_RESTORE(lock, lock_witness);
231 	}
232 	return (rval);
233 }
234 
235 int
236 msleep_spin(void *ident, struct mtx *mtx, const char *wmesg, int timo)
237 {
238 	struct thread *td;
239 	struct proc *p;
240 	int rval;
241 	WITNESS_SAVE_DECL(mtx);
242 
243 	td = curthread;
244 	p = td->td_proc;
245 	KASSERT(mtx != NULL, ("sleeping without a mutex"));
246 	KASSERT(p != NULL, ("msleep1"));
247 	KASSERT(ident != NULL && TD_IS_RUNNING(td), ("msleep"));
248 
249 	if (cold) {
250 		/*
251 		 * During autoconfiguration, just return;
252 		 * don't run any other threads or panic below,
253 		 * in case this is the idle thread and already asleep.
254 		 * XXX: this used to do "s = splhigh(); splx(safepri);
255 		 * splx(s);" to give interrupts a chance, but there is
256 		 * no way to give interrupts a chance now.
257 		 */
258 		return (0);
259 	}
260 
261 	sleepq_lock(ident);
262 	CTR5(KTR_PROC, "msleep_spin: thread %ld (pid %ld, %s) on %s (%p)",
263 	    td->td_tid, p->p_pid, td->td_name, wmesg, ident);
264 
265 	DROP_GIANT();
266 	mtx_assert(mtx, MA_OWNED | MA_NOTRECURSED);
267 	WITNESS_SAVE(&mtx->lock_object, mtx);
268 	mtx_unlock_spin(mtx);
269 
270 	/*
271 	 * We put ourselves on the sleep queue and start our timeout.
272 	 */
273 	sleepq_add(ident, &mtx->lock_object, wmesg, SLEEPQ_SLEEP, 0);
274 	if (timo)
275 		sleepq_set_timeout(ident, timo);
276 
277 	/*
278 	 * Can't call ktrace with any spin locks held so it can lock the
279 	 * ktrace_mtx lock, and WITNESS_WARN considers it an error to hold
280 	 * any spin lock.  Thus, we have to drop the sleepq spin lock while
281 	 * we handle those requests.  This is safe since we have placed our
282 	 * thread on the sleep queue already.
283 	 */
284 #ifdef KTRACE
285 	if (KTRPOINT(td, KTR_CSW)) {
286 		sleepq_release(ident);
287 		ktrcsw(1, 0);
288 		sleepq_lock(ident);
289 	}
290 #endif
291 #ifdef WITNESS
292 	sleepq_release(ident);
293 	WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, "Sleeping on \"%s\"",
294 	    wmesg);
295 	sleepq_lock(ident);
296 #endif
297 	if (timo)
298 		rval = sleepq_timedwait(ident, 0);
299 	else {
300 		sleepq_wait(ident, 0);
301 		rval = 0;
302 	}
303 #ifdef KTRACE
304 	if (KTRPOINT(td, KTR_CSW))
305 		ktrcsw(0, 0);
306 #endif
307 	PICKUP_GIANT();
308 	mtx_lock_spin(mtx);
309 	WITNESS_RESTORE(&mtx->lock_object, mtx);
310 	return (rval);
311 }
312 
313 /*
314  * pause() is like tsleep() except that the intention is to not be
315  * explicitly woken up by another thread.  Instead, the current thread
316  * simply wishes to sleep until the timeout expires.  It is
317  * implemented using a dummy wait channel.
318  */
319 int
320 pause(const char *wmesg, int timo)
321 {
322 
323 	KASSERT(timo != 0, ("pause: timeout required"));
324 	return (tsleep(&pause_wchan, 0, wmesg, timo));
325 }
326 
327 /*
328  * Make all threads sleeping on the specified identifier runnable.
329  */
330 void
331 wakeup(void *ident)
332 {
333 	int wakeup_swapper;
334 
335 	sleepq_lock(ident);
336 	wakeup_swapper = sleepq_broadcast(ident, SLEEPQ_SLEEP, 0, 0);
337 	sleepq_release(ident);
338 	if (wakeup_swapper)
339 		kick_proc0();
340 }
341 
342 /*
343  * Make a thread sleeping on the specified identifier runnable.
344  * May wake more than one thread if a target thread is currently
345  * swapped out.
346  */
347 void
348 wakeup_one(void *ident)
349 {
350 	int wakeup_swapper;
351 
352 	sleepq_lock(ident);
353 	wakeup_swapper = sleepq_signal(ident, SLEEPQ_SLEEP, 0, 0);
354 	sleepq_release(ident);
355 	if (wakeup_swapper)
356 		kick_proc0();
357 }
358 
359 static void
360 kdb_switch(void)
361 {
362 	thread_unlock(curthread);
363 	kdb_backtrace();
364 	kdb_reenter();
365 	panic("%s: did not reenter debugger", __func__);
366 }
367 
368 /*
369  * The machine independent parts of context switching.
370  */
371 void
372 mi_switch(int flags, struct thread *newtd)
373 {
374 	uint64_t runtime, new_switchtime;
375 	struct thread *td;
376 	struct proc *p;
377 
378 	td = curthread;			/* XXX */
379 	THREAD_LOCK_ASSERT(td, MA_OWNED | MA_NOTRECURSED);
380 	p = td->td_proc;		/* XXX */
381 	KASSERT(!TD_ON_RUNQ(td), ("mi_switch: called by old code"));
382 #ifdef INVARIANTS
383 	if (!TD_ON_LOCK(td) && !TD_IS_RUNNING(td))
384 		mtx_assert(&Giant, MA_NOTOWNED);
385 #endif
386 	KASSERT(td->td_critnest == 1 || (td->td_critnest == 2 &&
387 	    (td->td_owepreempt) && (flags & SW_INVOL) != 0 &&
388 	    newtd == NULL) || panicstr,
389 	    ("mi_switch: switch in a critical section"));
390 	KASSERT((flags & (SW_INVOL | SW_VOL)) != 0,
391 	    ("mi_switch: switch must be voluntary or involuntary"));
392 	KASSERT(newtd != curthread, ("mi_switch: preempting back to ourself"));
393 
394 	/*
395 	 * Don't perform context switches from the debugger.
396 	 */
397 	if (kdb_active)
398 		kdb_switch();
399 	if (flags & SW_VOL)
400 		td->td_ru.ru_nvcsw++;
401 	else
402 		td->td_ru.ru_nivcsw++;
403 #ifdef SCHED_STATS
404 	SCHED_STAT_INC(sched_switch_stats[flags & SW_TYPE_MASK]);
405 #endif
406 	/*
407 	 * Compute the amount of time during which the current
408 	 * thread was running, and add that to its total so far.
409 	 */
410 	new_switchtime = cpu_ticks();
411 	runtime = new_switchtime - PCPU_GET(switchtime);
412 	td->td_runtime += runtime;
413 	td->td_incruntime += runtime;
414 	PCPU_SET(switchtime, new_switchtime);
415 	td->td_generation++;	/* bump preempt-detect counter */
416 	PCPU_INC(cnt.v_swtch);
417 	PCPU_SET(switchticks, ticks);
418 	CTR4(KTR_PROC, "mi_switch: old thread %ld (td_sched %p, pid %ld, %s)",
419 	    td->td_tid, td->td_sched, p->p_pid, td->td_name);
420 #if (KTR_COMPILE & KTR_SCHED) != 0
421 	if (TD_IS_IDLETHREAD(td))
422 		CTR3(KTR_SCHED, "mi_switch: %p(%s) prio %d idle",
423 		    td, td->td_name, td->td_priority);
424 	else if (newtd != NULL)
425 		CTR5(KTR_SCHED,
426 		    "mi_switch: %p(%s) prio %d preempted by %p(%s)",
427 		    td, td->td_name, td->td_priority, newtd,
428 		    newtd->td_name);
429 	else
430 		CTR6(KTR_SCHED,
431 		    "mi_switch: %p(%s) prio %d inhibit %d wmesg %s lock %s",
432 		    td, td->td_name, td->td_priority,
433 		    td->td_inhibitors, td->td_wmesg, td->td_lockname);
434 #endif
435 	sched_switch(td, newtd, flags);
436 	CTR3(KTR_SCHED, "mi_switch: running %p(%s) prio %d",
437 	    td, td->td_name, td->td_priority);
438 
439 	CTR4(KTR_PROC, "mi_switch: new thread %ld (td_sched %p, pid %ld, %s)",
440 	    td->td_tid, td->td_sched, p->p_pid, td->td_name);
441 
442 	/*
443 	 * If the last thread was exiting, finish cleaning it up.
444 	 */
445 	if ((td = PCPU_GET(deadthread))) {
446 		PCPU_SET(deadthread, NULL);
447 		thread_stash(td);
448 	}
449 }
450 
451 /*
452  * Change thread state to be runnable, placing it on the run queue if
453  * it is in memory.  If it is swapped out, return true so our caller
454  * will know to awaken the swapper.
455  */
456 int
457 setrunnable(struct thread *td)
458 {
459 
460 	THREAD_LOCK_ASSERT(td, MA_OWNED);
461 	KASSERT(td->td_proc->p_state != PRS_ZOMBIE,
462 	    ("setrunnable: pid %d is a zombie", td->td_proc->p_pid));
463 	switch (td->td_state) {
464 	case TDS_RUNNING:
465 	case TDS_RUNQ:
466 		return (0);
467 	case TDS_INHIBITED:
468 		/*
469 		 * If we are only inhibited because we are swapped out
470 		 * then arange to swap in this process. Otherwise just return.
471 		 */
472 		if (td->td_inhibitors != TDI_SWAPPED)
473 			return (0);
474 		/* FALLTHROUGH */
475 	case TDS_CAN_RUN:
476 		break;
477 	default:
478 		printf("state is 0x%x", td->td_state);
479 		panic("setrunnable(2)");
480 	}
481 	if ((td->td_flags & TDF_INMEM) == 0) {
482 		if ((td->td_flags & TDF_SWAPINREQ) == 0) {
483 			td->td_flags |= TDF_SWAPINREQ;
484 			return (1);
485 		}
486 	} else
487 		sched_wakeup(td);
488 	return (0);
489 }
490 
491 /*
492  * Compute a tenex style load average of a quantity on
493  * 1, 5 and 15 minute intervals.
494  */
495 static void
496 loadav(void *arg)
497 {
498 	int i, nrun;
499 	struct loadavg *avg;
500 
501 	nrun = sched_load();
502 	avg = &averunnable;
503 
504 	for (i = 0; i < 3; i++)
505 		avg->ldavg[i] = (cexp[i] * avg->ldavg[i] +
506 		    nrun * FSCALE * (FSCALE - cexp[i])) >> FSHIFT;
507 
508 	/*
509 	 * Schedule the next update to occur after 5 seconds, but add a
510 	 * random variation to avoid synchronisation with processes that
511 	 * run at regular intervals.
512 	 */
513 	callout_reset(&loadav_callout, hz * 4 + (int)(random() % (hz * 2 + 1)),
514 	    loadav, NULL);
515 }
516 
517 /* ARGSUSED */
518 static void
519 synch_setup(void *dummy)
520 {
521 	callout_init(&loadav_callout, CALLOUT_MPSAFE);
522 
523 	/* Kick off timeout driven events by calling first time. */
524 	loadav(NULL);
525 }
526 
527 /*
528  * General purpose yield system call.
529  */
530 int
531 yield(struct thread *td, struct yield_args *uap)
532 {
533 
534 	thread_lock(td);
535 	sched_prio(td, PRI_MAX_TIMESHARE);
536 	mi_switch(SW_VOL | SWT_RELINQUISH, NULL);
537 	thread_unlock(td);
538 	td->td_retval[0] = 0;
539 	return (0);
540 }
541