xref: /freebsd/sys/kern/kern_synch.c (revision 3fe92528afe8313fecf48822dde74bad5e380f48)
1 /*-
2  * Copyright (c) 1982, 1986, 1990, 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  * (c) UNIX System Laboratories, Inc.
5  * All or some portions of this file are derived from material licensed
6  * to the University of California by American Telephone and Telegraph
7  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8  * the permission of UNIX System Laboratories, Inc.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 4. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  *	@(#)kern_synch.c	8.9 (Berkeley) 5/19/95
35  */
36 
37 #include <sys/cdefs.h>
38 __FBSDID("$FreeBSD$");
39 
40 #include "opt_ktrace.h"
41 
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/condvar.h>
45 #include <sys/kdb.h>
46 #include <sys/kernel.h>
47 #include <sys/ktr.h>
48 #include <sys/lock.h>
49 #include <sys/mutex.h>
50 #include <sys/proc.h>
51 #include <sys/resourcevar.h>
52 #include <sys/sched.h>
53 #include <sys/signalvar.h>
54 #include <sys/sleepqueue.h>
55 #include <sys/smp.h>
56 #include <sys/sx.h>
57 #include <sys/sysctl.h>
58 #include <sys/sysproto.h>
59 #include <sys/vmmeter.h>
60 #ifdef KTRACE
61 #include <sys/uio.h>
62 #include <sys/ktrace.h>
63 #endif
64 
65 #include <machine/cpu.h>
66 
67 static void synch_setup(void *dummy);
68 SYSINIT(synch_setup, SI_SUB_KICK_SCHEDULER, SI_ORDER_FIRST, synch_setup, NULL)
69 
70 int	hogticks;
71 int	lbolt;
72 
73 static struct callout loadav_callout;
74 static struct callout lbolt_callout;
75 
76 struct loadavg averunnable =
77 	{ {0, 0, 0}, FSCALE };	/* load average, of runnable procs */
78 /*
79  * Constants for averages over 1, 5, and 15 minutes
80  * when sampling at 5 second intervals.
81  */
82 static fixpt_t cexp[3] = {
83 	0.9200444146293232 * FSCALE,	/* exp(-1/12) */
84 	0.9834714538216174 * FSCALE,	/* exp(-1/60) */
85 	0.9944598480048967 * FSCALE,	/* exp(-1/180) */
86 };
87 
88 /* kernel uses `FSCALE', userland (SHOULD) use kern.fscale */
89 static int      fscale __unused = FSCALE;
90 SYSCTL_INT(_kern, OID_AUTO, fscale, CTLFLAG_RD, 0, FSCALE, "");
91 
92 static void	loadav(void *arg);
93 static void	lboltcb(void *arg);
94 
95 void
96 sleepinit(void)
97 {
98 
99 	hogticks = (hz / 10) * 2;	/* Default only. */
100 	init_sleepqueues();
101 }
102 
103 /*
104  * General sleep call.  Suspends the current thread until a wakeup is
105  * performed on the specified identifier.  The thread will then be made
106  * runnable with the specified priority.  Sleeps at most timo/hz seconds
107  * (0 means no timeout).  If pri includes PCATCH flag, signals are checked
108  * before and after sleeping, else signals are not checked.  Returns 0 if
109  * awakened, EWOULDBLOCK if the timeout expires.  If PCATCH is set and a
110  * signal needs to be delivered, ERESTART is returned if the current system
111  * call should be restarted if possible, and EINTR is returned if the system
112  * call should be interrupted by the signal (return EINTR).
113  *
114  * The mutex argument is unlocked before the caller is suspended, and
115  * re-locked before msleep returns.  If priority includes the PDROP
116  * flag the mutex is not re-locked before returning.
117  */
118 int
119 msleep(ident, mtx, priority, wmesg, timo)
120 	void *ident;
121 	struct mtx *mtx;
122 	int priority, timo;
123 	const char *wmesg;
124 {
125 	struct thread *td;
126 	struct proc *p;
127 	int catch, rval, flags;
128 	WITNESS_SAVE_DECL(mtx);
129 
130 	td = curthread;
131 	p = td->td_proc;
132 #ifdef KTRACE
133 	if (KTRPOINT(td, KTR_CSW))
134 		ktrcsw(1, 0);
135 #endif
136 	WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, mtx == NULL ? NULL :
137 	    &mtx->mtx_object, "Sleeping on \"%s\"", wmesg);
138 	KASSERT(timo != 0 || mtx_owned(&Giant) || mtx != NULL,
139 	    ("sleeping without a mutex"));
140 	KASSERT(p != NULL, ("msleep1"));
141 	KASSERT(ident != NULL && TD_IS_RUNNING(td), ("msleep"));
142 
143 	if (cold) {
144 		/*
145 		 * During autoconfiguration, just return;
146 		 * don't run any other threads or panic below,
147 		 * in case this is the idle thread and already asleep.
148 		 * XXX: this used to do "s = splhigh(); splx(safepri);
149 		 * splx(s);" to give interrupts a chance, but there is
150 		 * no way to give interrupts a chance now.
151 		 */
152 		if (mtx != NULL && priority & PDROP)
153 			mtx_unlock(mtx);
154 		return (0);
155 	}
156 	catch = priority & PCATCH;
157 	rval = 0;
158 
159 	/*
160 	 * If we are already on a sleep queue, then remove us from that
161 	 * sleep queue first.  We have to do this to handle recursive
162 	 * sleeps.
163 	 */
164 	if (TD_ON_SLEEPQ(td))
165 		sleepq_remove(td, td->td_wchan);
166 
167 	flags = SLEEPQ_MSLEEP;
168 	if (catch)
169 		flags |= SLEEPQ_INTERRUPTIBLE;
170 
171 	sleepq_lock(ident);
172 	CTR5(KTR_PROC, "msleep: thread %p (pid %ld, %s) on %s (%p)",
173 	    (void *)td, (long)p->p_pid, p->p_comm, wmesg, ident);
174 
175 	DROP_GIANT();
176 	if (mtx != NULL) {
177 		mtx_assert(mtx, MA_OWNED | MA_NOTRECURSED);
178 		WITNESS_SAVE(&mtx->mtx_object, mtx);
179 		mtx_unlock(mtx);
180 	}
181 
182 	/*
183 	 * We put ourselves on the sleep queue and start our timeout
184 	 * before calling thread_suspend_check, as we could stop there,
185 	 * and a wakeup or a SIGCONT (or both) could occur while we were
186 	 * stopped without resuming us.  Thus, we must be ready for sleep
187 	 * when cursig() is called.  If the wakeup happens while we're
188 	 * stopped, then td will no longer be on a sleep queue upon
189 	 * return from cursig().
190 	 */
191 	sleepq_add(ident, mtx, wmesg, flags);
192 	if (timo)
193 		sleepq_set_timeout(ident, timo);
194 
195 	/*
196 	 * Adjust this thread's priority.
197 	 */
198 	if ((priority & PRIMASK) != 0) {
199 		mtx_lock_spin(&sched_lock);
200 		sched_prio(td, priority & PRIMASK);
201 		mtx_unlock_spin(&sched_lock);
202 	}
203 
204 	if (timo && catch)
205 		rval = sleepq_timedwait_sig(ident);
206 	else if (timo)
207 		rval = sleepq_timedwait(ident);
208 	else if (catch)
209 		rval = sleepq_wait_sig(ident);
210 	else {
211 		sleepq_wait(ident);
212 		rval = 0;
213 	}
214 #ifdef KTRACE
215 	if (KTRPOINT(td, KTR_CSW))
216 		ktrcsw(0, 0);
217 #endif
218 	PICKUP_GIANT();
219 	if (mtx != NULL && !(priority & PDROP)) {
220 		mtx_lock(mtx);
221 		WITNESS_RESTORE(&mtx->mtx_object, mtx);
222 	}
223 	return (rval);
224 }
225 
226 int
227 msleep_spin(ident, mtx, wmesg, timo)
228 	void *ident;
229 	struct mtx *mtx;
230 	const char *wmesg;
231 	int timo;
232 {
233 	struct thread *td;
234 	struct proc *p;
235 	int rval;
236 	WITNESS_SAVE_DECL(mtx);
237 
238 	td = curthread;
239 	p = td->td_proc;
240 	KASSERT(mtx != NULL, ("sleeping without a mutex"));
241 	KASSERT(p != NULL, ("msleep1"));
242 	KASSERT(ident != NULL && TD_IS_RUNNING(td), ("msleep"));
243 
244 	if (cold) {
245 		/*
246 		 * During autoconfiguration, just return;
247 		 * don't run any other threads or panic below,
248 		 * in case this is the idle thread and already asleep.
249 		 * XXX: this used to do "s = splhigh(); splx(safepri);
250 		 * splx(s);" to give interrupts a chance, but there is
251 		 * no way to give interrupts a chance now.
252 		 */
253 		return (0);
254 	}
255 
256 	sleepq_lock(ident);
257 	CTR5(KTR_PROC, "msleep_spin: thread %p (pid %ld, %s) on %s (%p)",
258 	    (void *)td, (long)p->p_pid, p->p_comm, wmesg, ident);
259 
260 	DROP_GIANT();
261 	mtx_assert(mtx, MA_OWNED | MA_NOTRECURSED);
262 	WITNESS_SAVE(&mtx->mtx_object, mtx);
263 	mtx_unlock_spin(mtx);
264 
265 	/*
266 	 * We put ourselves on the sleep queue and start our timeout.
267 	 */
268 	sleepq_add(ident, mtx, wmesg, SLEEPQ_MSLEEP);
269 	if (timo)
270 		sleepq_set_timeout(ident, timo);
271 
272 	/*
273 	 * Can't call ktrace with any spin locks held so it can lock the
274 	 * ktrace_mtx lock, and WITNESS_WARN considers it an error to hold
275 	 * any spin lock.  Thus, we have to drop the sleepq spin lock while
276 	 * we handle those requests.  This is safe since we have placed our
277 	 * thread on the sleep queue already.
278 	 */
279 #ifdef KTRACE
280 	if (KTRPOINT(td, KTR_CSW)) {
281 		sleepq_release(ident);
282 		ktrcsw(1, 0);
283 		sleepq_lock(ident);
284 	}
285 #endif
286 #ifdef WITNESS
287 	sleepq_release(ident);
288 	WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, "Sleeping on \"%s\"",
289 	    wmesg);
290 	sleepq_lock(ident);
291 #endif
292 	if (timo)
293 		rval = sleepq_timedwait(ident);
294 	else {
295 		sleepq_wait(ident);
296 		rval = 0;
297 	}
298 #ifdef KTRACE
299 	if (KTRPOINT(td, KTR_CSW))
300 		ktrcsw(0, 0);
301 #endif
302 	PICKUP_GIANT();
303 	mtx_lock_spin(mtx);
304 	WITNESS_RESTORE(&mtx->mtx_object, mtx);
305 	return (rval);
306 }
307 
308 /*
309  * Make all threads sleeping on the specified identifier runnable.
310  */
311 void
312 wakeup(ident)
313 	register void *ident;
314 {
315 
316 	sleepq_lock(ident);
317 	sleepq_broadcast(ident, SLEEPQ_MSLEEP, -1);
318 }
319 
320 /*
321  * Make a thread sleeping on the specified identifier runnable.
322  * May wake more than one thread if a target thread is currently
323  * swapped out.
324  */
325 void
326 wakeup_one(ident)
327 	register void *ident;
328 {
329 
330 	sleepq_lock(ident);
331 	sleepq_signal(ident, SLEEPQ_MSLEEP, -1);
332 }
333 
334 /*
335  * The machine independent parts of context switching.
336  */
337 void
338 mi_switch(int flags, struct thread *newtd)
339 {
340 	uint64_t new_switchtime;
341 	struct thread *td;
342 	struct proc *p;
343 
344 	mtx_assert(&sched_lock, MA_OWNED | MA_NOTRECURSED);
345 	td = curthread;			/* XXX */
346 	p = td->td_proc;		/* XXX */
347 	KASSERT(!TD_ON_RUNQ(td), ("mi_switch: called by old code"));
348 #ifdef INVARIANTS
349 	if (!TD_ON_LOCK(td) && !TD_IS_RUNNING(td))
350 		mtx_assert(&Giant, MA_NOTOWNED);
351 #endif
352 	KASSERT(td->td_critnest == 1 || (td->td_critnest == 2 &&
353 	    (td->td_owepreempt) && (flags & SW_INVOL) != 0 &&
354 	    newtd == NULL) || panicstr,
355 	    ("mi_switch: switch in a critical section"));
356 	KASSERT((flags & (SW_INVOL | SW_VOL)) != 0,
357 	    ("mi_switch: switch must be voluntary or involuntary"));
358 	KASSERT(newtd != curthread, ("mi_switch: preempting back to ourself"));
359 
360 	/*
361 	 * Don't perform context switches from the debugger.
362 	 */
363 	if (kdb_active) {
364 		mtx_unlock_spin(&sched_lock);
365 		kdb_backtrace();
366 		kdb_reenter();
367 		panic("%s: did not reenter debugger", __func__);
368 	}
369 
370 	if (flags & SW_VOL)
371 		p->p_stats->p_ru.ru_nvcsw++;
372 	else
373 		p->p_stats->p_ru.ru_nivcsw++;
374 
375 	/*
376 	 * Compute the amount of time during which the current
377 	 * process was running, and add that to its total so far.
378 	 */
379 	new_switchtime = cpu_ticks();
380 	p->p_rux.rux_runtime += (new_switchtime - PCPU_GET(switchtime));
381 	p->p_rux.rux_uticks += td->td_uticks;
382 	td->td_uticks = 0;
383 	p->p_rux.rux_iticks += td->td_iticks;
384 	td->td_iticks = 0;
385 	p->p_rux.rux_sticks += td->td_sticks;
386 	td->td_sticks = 0;
387 
388 	td->td_generation++;	/* bump preempt-detect counter */
389 
390 	/*
391 	 * Check if the process exceeds its cpu resource allocation.  If
392 	 * it reaches the max, arrange to kill the process in ast().
393 	 */
394 	if (p->p_cpulimit != RLIM_INFINITY &&
395 	    p->p_rux.rux_runtime >= p->p_cpulimit * cpu_tickrate()) {
396 		p->p_sflag |= PS_XCPU;
397 		td->td_flags |= TDF_ASTPENDING;
398 	}
399 
400 	/*
401 	 * Finish up stats for outgoing thread.
402 	 */
403 	cnt.v_swtch++;
404 	PCPU_SET(switchtime, new_switchtime);
405 	PCPU_SET(switchticks, ticks);
406 	CTR4(KTR_PROC, "mi_switch: old thread %p (kse %p, pid %ld, %s)",
407 	    (void *)td, td->td_sched, (long)p->p_pid, p->p_comm);
408 	if ((flags & SW_VOL) && (td->td_proc->p_flag & P_SA))
409 		newtd = thread_switchout(td, flags, newtd);
410 #if (KTR_COMPILE & KTR_SCHED) != 0
411 	if (td == PCPU_GET(idlethread))
412 		CTR3(KTR_SCHED, "mi_switch: %p(%s) prio %d idle",
413 		    td, td->td_proc->p_comm, td->td_priority);
414 	else if (newtd != NULL)
415 		CTR5(KTR_SCHED,
416 		    "mi_switch: %p(%s) prio %d preempted by %p(%s)",
417 		    td, td->td_proc->p_comm, td->td_priority, newtd,
418 		    newtd->td_proc->p_comm);
419 	else
420 		CTR6(KTR_SCHED,
421 		    "mi_switch: %p(%s) prio %d inhibit %d wmesg %s lock %s",
422 		    td, td->td_proc->p_comm, td->td_priority,
423 		    td->td_inhibitors, td->td_wmesg, td->td_lockname);
424 #endif
425 	sched_switch(td, newtd, flags);
426 	CTR3(KTR_SCHED, "mi_switch: running %p(%s) prio %d",
427 	    td, td->td_proc->p_comm, td->td_priority);
428 
429 	CTR4(KTR_PROC, "mi_switch: new thread %p (kse %p, pid %ld, %s)",
430 	    (void *)td, td->td_sched, (long)p->p_pid, p->p_comm);
431 
432 	/*
433 	 * If the last thread was exiting, finish cleaning it up.
434 	 */
435 	if ((td = PCPU_GET(deadthread))) {
436 		PCPU_SET(deadthread, NULL);
437 		thread_stash(td);
438 	}
439 }
440 
441 /*
442  * Change process state to be runnable,
443  * placing it on the run queue if it is in memory,
444  * and awakening the swapper if it isn't in memory.
445  */
446 void
447 setrunnable(struct thread *td)
448 {
449 	struct proc *p;
450 
451 	p = td->td_proc;
452 	mtx_assert(&sched_lock, MA_OWNED);
453 	switch (p->p_state) {
454 	case PRS_ZOMBIE:
455 		panic("setrunnable(1)");
456 	default:
457 		break;
458 	}
459 	switch (td->td_state) {
460 	case TDS_RUNNING:
461 	case TDS_RUNQ:
462 		return;
463 	case TDS_INHIBITED:
464 		/*
465 		 * If we are only inhibited because we are swapped out
466 		 * then arange to swap in this process. Otherwise just return.
467 		 */
468 		if (td->td_inhibitors != TDI_SWAPPED)
469 			return;
470 		/* XXX: intentional fall-through ? */
471 	case TDS_CAN_RUN:
472 		break;
473 	default:
474 		printf("state is 0x%x", td->td_state);
475 		panic("setrunnable(2)");
476 	}
477 	if ((p->p_sflag & PS_INMEM) == 0) {
478 		if ((p->p_sflag & PS_SWAPPINGIN) == 0) {
479 			p->p_sflag |= PS_SWAPINREQ;
480 			/*
481 			 * due to a LOR between sched_lock and
482 			 * the sleepqueue chain locks, use
483 			 * lower level scheduling functions.
484 			 */
485 			kick_proc0();
486 		}
487 	} else
488 		sched_wakeup(td);
489 }
490 
491 /*
492  * Compute a tenex style load average of a quantity on
493  * 1, 5 and 15 minute intervals.
494  * XXXKSE   Needs complete rewrite when correct info is available.
495  * Completely Bogus.. only works with 1:1 (but compiles ok now :-)
496  */
497 static void
498 loadav(void *arg)
499 {
500 	int i, nrun;
501 	struct loadavg *avg;
502 
503 	nrun = sched_load();
504 	avg = &averunnable;
505 
506 	for (i = 0; i < 3; i++)
507 		avg->ldavg[i] = (cexp[i] * avg->ldavg[i] +
508 		    nrun * FSCALE * (FSCALE - cexp[i])) >> FSHIFT;
509 
510 	/*
511 	 * Schedule the next update to occur after 5 seconds, but add a
512 	 * random variation to avoid synchronisation with processes that
513 	 * run at regular intervals.
514 	 */
515 	callout_reset(&loadav_callout, hz * 4 + (int)(random() % (hz * 2 + 1)),
516 	    loadav, NULL);
517 }
518 
519 static void
520 lboltcb(void *arg)
521 {
522 	wakeup(&lbolt);
523 	callout_reset(&lbolt_callout, hz, lboltcb, NULL);
524 }
525 
526 /* ARGSUSED */
527 static void
528 synch_setup(dummy)
529 	void *dummy;
530 {
531 	callout_init(&loadav_callout, CALLOUT_MPSAFE);
532 	callout_init(&lbolt_callout, CALLOUT_MPSAFE);
533 
534 	/* Kick off timeout driven events by calling first time. */
535 	loadav(NULL);
536 	lboltcb(NULL);
537 }
538 
539 /*
540  * General purpose yield system call
541  */
542 int
543 yield(struct thread *td, struct yield_args *uap)
544 {
545 	mtx_assert(&Giant, MA_NOTOWNED);
546 	(void)uap;
547 	sched_relinquish(td);
548 	return (0);
549 }
550