xref: /freebsd/sys/kern/kern_synch.c (revision 3fe8969a749c0e4a62ffdbf4f6883898027a9e19)
1 /*-
2  * Copyright (c) 1982, 1986, 1990, 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  * (c) UNIX System Laboratories, Inc.
5  * All or some portions of this file are derived from material licensed
6  * to the University of California by American Telephone and Telegraph
7  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8  * the permission of UNIX System Laboratories, Inc.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 4. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  *	@(#)kern_synch.c	8.9 (Berkeley) 5/19/95
35  */
36 
37 #include <sys/cdefs.h>
38 __FBSDID("$FreeBSD$");
39 
40 #include "opt_ktrace.h"
41 #include "opt_sched.h"
42 
43 #include <sys/param.h>
44 #include <sys/systm.h>
45 #include <sys/condvar.h>
46 #include <sys/kdb.h>
47 #include <sys/kernel.h>
48 #include <sys/ktr.h>
49 #include <sys/lock.h>
50 #include <sys/mutex.h>
51 #include <sys/proc.h>
52 #include <sys/resourcevar.h>
53 #include <sys/sched.h>
54 #include <sys/sdt.h>
55 #include <sys/signalvar.h>
56 #include <sys/sleepqueue.h>
57 #include <sys/smp.h>
58 #include <sys/sx.h>
59 #include <sys/sysctl.h>
60 #include <sys/sysproto.h>
61 #include <sys/vmmeter.h>
62 #ifdef KTRACE
63 #include <sys/uio.h>
64 #include <sys/ktrace.h>
65 #endif
66 
67 #include <machine/cpu.h>
68 
69 #ifdef XEN
70 #include <vm/vm.h>
71 #include <vm/vm_param.h>
72 #include <vm/pmap.h>
73 #endif
74 
75 #define	KTDSTATE(td)							\
76 	(((td)->td_inhibitors & TDI_SLEEPING) != 0 ? "sleep"  :		\
77 	((td)->td_inhibitors & TDI_SUSPENDED) != 0 ? "suspended" :	\
78 	((td)->td_inhibitors & TDI_SWAPPED) != 0 ? "swapped" :		\
79 	((td)->td_inhibitors & TDI_LOCK) != 0 ? "blocked" :		\
80 	((td)->td_inhibitors & TDI_IWAIT) != 0 ? "iwait" : "yielding")
81 
82 static void synch_setup(void *dummy);
83 SYSINIT(synch_setup, SI_SUB_KICK_SCHEDULER, SI_ORDER_FIRST, synch_setup,
84     NULL);
85 
86 int	hogticks;
87 static uint8_t pause_wchan[MAXCPU];
88 
89 static struct callout loadav_callout;
90 
91 struct loadavg averunnable =
92 	{ {0, 0, 0}, FSCALE };	/* load average, of runnable procs */
93 /*
94  * Constants for averages over 1, 5, and 15 minutes
95  * when sampling at 5 second intervals.
96  */
97 static fixpt_t cexp[3] = {
98 	0.9200444146293232 * FSCALE,	/* exp(-1/12) */
99 	0.9834714538216174 * FSCALE,	/* exp(-1/60) */
100 	0.9944598480048967 * FSCALE,	/* exp(-1/180) */
101 };
102 
103 /* kernel uses `FSCALE', userland (SHOULD) use kern.fscale */
104 SYSCTL_INT(_kern, OID_AUTO, fscale, CTLFLAG_RD, SYSCTL_NULL_INT_PTR, FSCALE, "");
105 
106 static void	loadav(void *arg);
107 
108 SDT_PROVIDER_DECLARE(sched);
109 SDT_PROBE_DEFINE(sched, , , preempt);
110 
111 /*
112  * These probes reference Solaris features that are not implemented in FreeBSD.
113  * Create the probes anyway for compatibility with existing D scripts; they'll
114  * just never fire.
115  */
116 SDT_PROBE_DEFINE(sched, , , cpucaps__sleep);
117 SDT_PROBE_DEFINE(sched, , , cpucaps__wakeup);
118 SDT_PROBE_DEFINE(sched, , , schedctl__nopreempt);
119 SDT_PROBE_DEFINE(sched, , , schedctl__preempt);
120 SDT_PROBE_DEFINE(sched, , , schedctl__yield);
121 
122 static void
123 sleepinit(void *unused)
124 {
125 
126 	hogticks = (hz / 10) * 2;	/* Default only. */
127 	init_sleepqueues();
128 }
129 
130 /*
131  * vmem tries to lock the sleepq mutexes when free'ing kva, so make sure
132  * it is available.
133  */
134 SYSINIT(sleepinit, SI_SUB_KMEM, SI_ORDER_ANY, sleepinit, 0);
135 
136 /*
137  * General sleep call.  Suspends the current thread until a wakeup is
138  * performed on the specified identifier.  The thread will then be made
139  * runnable with the specified priority.  Sleeps at most sbt units of time
140  * (0 means no timeout).  If pri includes the PCATCH flag, let signals
141  * interrupt the sleep, otherwise ignore them while sleeping.  Returns 0 if
142  * awakened, EWOULDBLOCK if the timeout expires.  If PCATCH is set and a
143  * signal becomes pending, ERESTART is returned if the current system
144  * call should be restarted if possible, and EINTR is returned if the system
145  * call should be interrupted by the signal (return EINTR).
146  *
147  * The lock argument is unlocked before the caller is suspended, and
148  * re-locked before _sleep() returns.  If priority includes the PDROP
149  * flag the lock is not re-locked before returning.
150  */
151 int
152 _sleep(void *ident, struct lock_object *lock, int priority,
153     const char *wmesg, sbintime_t sbt, sbintime_t pr, int flags)
154 {
155 	struct thread *td;
156 	struct proc *p;
157 	struct lock_class *class;
158 	uintptr_t lock_state;
159 	int catch, pri, rval, sleepq_flags;
160 	WITNESS_SAVE_DECL(lock_witness);
161 
162 	td = curthread;
163 	p = td->td_proc;
164 #ifdef KTRACE
165 	if (KTRPOINT(td, KTR_CSW))
166 		ktrcsw(1, 0, wmesg);
167 #endif
168 	WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, lock,
169 	    "Sleeping on \"%s\"", wmesg);
170 	KASSERT(sbt != 0 || mtx_owned(&Giant) || lock != NULL,
171 	    ("sleeping without a lock"));
172 	KASSERT(p != NULL, ("msleep1"));
173 	KASSERT(ident != NULL && TD_IS_RUNNING(td), ("msleep"));
174 	if (priority & PDROP)
175 		KASSERT(lock != NULL && lock != &Giant.lock_object,
176 		    ("PDROP requires a non-Giant lock"));
177 	if (lock != NULL)
178 		class = LOCK_CLASS(lock);
179 	else
180 		class = NULL;
181 
182 	if (cold || SCHEDULER_STOPPED()) {
183 		/*
184 		 * During autoconfiguration, just return;
185 		 * don't run any other threads or panic below,
186 		 * in case this is the idle thread and already asleep.
187 		 * XXX: this used to do "s = splhigh(); splx(safepri);
188 		 * splx(s);" to give interrupts a chance, but there is
189 		 * no way to give interrupts a chance now.
190 		 */
191 		if (lock != NULL && priority & PDROP)
192 			class->lc_unlock(lock);
193 		return (0);
194 	}
195 	catch = priority & PCATCH;
196 	pri = priority & PRIMASK;
197 
198 	/*
199 	 * If we are already on a sleep queue, then remove us from that
200 	 * sleep queue first.  We have to do this to handle recursive
201 	 * sleeps.
202 	 */
203 	if (TD_ON_SLEEPQ(td))
204 		sleepq_remove(td, td->td_wchan);
205 
206 	if ((uint8_t *)ident >= &pause_wchan[0] &&
207 	    (uint8_t *)ident <= &pause_wchan[MAXCPU - 1])
208 		sleepq_flags = SLEEPQ_PAUSE;
209 	else
210 		sleepq_flags = SLEEPQ_SLEEP;
211 	if (catch)
212 		sleepq_flags |= SLEEPQ_INTERRUPTIBLE;
213 
214 	sleepq_lock(ident);
215 	CTR5(KTR_PROC, "sleep: thread %ld (pid %ld, %s) on %s (%p)",
216 	    td->td_tid, p->p_pid, td->td_name, wmesg, ident);
217 
218 	if (lock == &Giant.lock_object)
219 		mtx_assert(&Giant, MA_OWNED);
220 	DROP_GIANT();
221 	if (lock != NULL && lock != &Giant.lock_object &&
222 	    !(class->lc_flags & LC_SLEEPABLE)) {
223 		WITNESS_SAVE(lock, lock_witness);
224 		lock_state = class->lc_unlock(lock);
225 	} else
226 		/* GCC needs to follow the Yellow Brick Road */
227 		lock_state = -1;
228 
229 	/*
230 	 * We put ourselves on the sleep queue and start our timeout
231 	 * before calling thread_suspend_check, as we could stop there,
232 	 * and a wakeup or a SIGCONT (or both) could occur while we were
233 	 * stopped without resuming us.  Thus, we must be ready for sleep
234 	 * when cursig() is called.  If the wakeup happens while we're
235 	 * stopped, then td will no longer be on a sleep queue upon
236 	 * return from cursig().
237 	 */
238 	sleepq_add(ident, lock, wmesg, sleepq_flags, 0);
239 	if (sbt != 0)
240 		sleepq_set_timeout_sbt(ident, sbt, pr, flags);
241 	if (lock != NULL && class->lc_flags & LC_SLEEPABLE) {
242 		sleepq_release(ident);
243 		WITNESS_SAVE(lock, lock_witness);
244 		lock_state = class->lc_unlock(lock);
245 		sleepq_lock(ident);
246 	}
247 	if (sbt != 0 && catch)
248 		rval = sleepq_timedwait_sig(ident, pri);
249 	else if (sbt != 0)
250 		rval = sleepq_timedwait(ident, pri);
251 	else if (catch)
252 		rval = sleepq_wait_sig(ident, pri);
253 	else {
254 		sleepq_wait(ident, pri);
255 		rval = 0;
256 	}
257 #ifdef KTRACE
258 	if (KTRPOINT(td, KTR_CSW))
259 		ktrcsw(0, 0, wmesg);
260 #endif
261 	PICKUP_GIANT();
262 	if (lock != NULL && lock != &Giant.lock_object && !(priority & PDROP)) {
263 		class->lc_lock(lock, lock_state);
264 		WITNESS_RESTORE(lock, lock_witness);
265 	}
266 	return (rval);
267 }
268 
269 int
270 msleep_spin_sbt(void *ident, struct mtx *mtx, const char *wmesg,
271     sbintime_t sbt, sbintime_t pr, int flags)
272 {
273 	struct thread *td;
274 	struct proc *p;
275 	int rval;
276 	WITNESS_SAVE_DECL(mtx);
277 
278 	td = curthread;
279 	p = td->td_proc;
280 	KASSERT(mtx != NULL, ("sleeping without a mutex"));
281 	KASSERT(p != NULL, ("msleep1"));
282 	KASSERT(ident != NULL && TD_IS_RUNNING(td), ("msleep"));
283 
284 	if (cold || SCHEDULER_STOPPED()) {
285 		/*
286 		 * During autoconfiguration, just return;
287 		 * don't run any other threads or panic below,
288 		 * in case this is the idle thread and already asleep.
289 		 * XXX: this used to do "s = splhigh(); splx(safepri);
290 		 * splx(s);" to give interrupts a chance, but there is
291 		 * no way to give interrupts a chance now.
292 		 */
293 		return (0);
294 	}
295 
296 	sleepq_lock(ident);
297 	CTR5(KTR_PROC, "msleep_spin: thread %ld (pid %ld, %s) on %s (%p)",
298 	    td->td_tid, p->p_pid, td->td_name, wmesg, ident);
299 
300 	DROP_GIANT();
301 	mtx_assert(mtx, MA_OWNED | MA_NOTRECURSED);
302 	WITNESS_SAVE(&mtx->lock_object, mtx);
303 	mtx_unlock_spin(mtx);
304 
305 	/*
306 	 * We put ourselves on the sleep queue and start our timeout.
307 	 */
308 	sleepq_add(ident, &mtx->lock_object, wmesg, SLEEPQ_SLEEP, 0);
309 	if (sbt != 0)
310 		sleepq_set_timeout_sbt(ident, sbt, pr, flags);
311 
312 	/*
313 	 * Can't call ktrace with any spin locks held so it can lock the
314 	 * ktrace_mtx lock, and WITNESS_WARN considers it an error to hold
315 	 * any spin lock.  Thus, we have to drop the sleepq spin lock while
316 	 * we handle those requests.  This is safe since we have placed our
317 	 * thread on the sleep queue already.
318 	 */
319 #ifdef KTRACE
320 	if (KTRPOINT(td, KTR_CSW)) {
321 		sleepq_release(ident);
322 		ktrcsw(1, 0, wmesg);
323 		sleepq_lock(ident);
324 	}
325 #endif
326 #ifdef WITNESS
327 	sleepq_release(ident);
328 	WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, "Sleeping on \"%s\"",
329 	    wmesg);
330 	sleepq_lock(ident);
331 #endif
332 	if (sbt != 0)
333 		rval = sleepq_timedwait(ident, 0);
334 	else {
335 		sleepq_wait(ident, 0);
336 		rval = 0;
337 	}
338 #ifdef KTRACE
339 	if (KTRPOINT(td, KTR_CSW))
340 		ktrcsw(0, 0, wmesg);
341 #endif
342 	PICKUP_GIANT();
343 	mtx_lock_spin(mtx);
344 	WITNESS_RESTORE(&mtx->lock_object, mtx);
345 	return (rval);
346 }
347 
348 /*
349  * pause() delays the calling thread by the given number of system ticks.
350  * During cold bootup, pause() uses the DELAY() function instead of
351  * the tsleep() function to do the waiting. The "timo" argument must be
352  * greater than or equal to zero. A "timo" value of zero is equivalent
353  * to a "timo" value of one.
354  */
355 int
356 pause_sbt(const char *wmesg, sbintime_t sbt, sbintime_t pr, int flags)
357 {
358 	KASSERT(sbt >= 0, ("pause: timeout must be >= 0"));
359 
360 	/* silently convert invalid timeouts */
361 	if (sbt == 0)
362 		sbt = tick_sbt;
363 
364 	if (cold || kdb_active) {
365 		/*
366 		 * We delay one second at a time to avoid overflowing the
367 		 * system specific DELAY() function(s):
368 		 */
369 		while (sbt >= SBT_1S) {
370 			DELAY(1000000);
371 			sbt -= SBT_1S;
372 		}
373 		/* Do the delay remainder, if any */
374 		sbt = (sbt + SBT_1US - 1) / SBT_1US;
375 		if (sbt > 0)
376 			DELAY(sbt);
377 		return (0);
378 	}
379 	return (_sleep(&pause_wchan[curcpu], NULL, 0, wmesg, sbt, pr, flags));
380 }
381 
382 /*
383  * Make all threads sleeping on the specified identifier runnable.
384  */
385 void
386 wakeup(void *ident)
387 {
388 	int wakeup_swapper;
389 
390 	sleepq_lock(ident);
391 	wakeup_swapper = sleepq_broadcast(ident, SLEEPQ_SLEEP, 0, 0);
392 	sleepq_release(ident);
393 	if (wakeup_swapper) {
394 		KASSERT(ident != &proc0,
395 		    ("wakeup and wakeup_swapper and proc0"));
396 		kick_proc0();
397 	}
398 }
399 
400 /*
401  * Make a thread sleeping on the specified identifier runnable.
402  * May wake more than one thread if a target thread is currently
403  * swapped out.
404  */
405 void
406 wakeup_one(void *ident)
407 {
408 	int wakeup_swapper;
409 
410 	sleepq_lock(ident);
411 	wakeup_swapper = sleepq_signal(ident, SLEEPQ_SLEEP, 0, 0);
412 	sleepq_release(ident);
413 	if (wakeup_swapper)
414 		kick_proc0();
415 }
416 
417 static void
418 kdb_switch(void)
419 {
420 	thread_unlock(curthread);
421 	kdb_backtrace();
422 	kdb_reenter();
423 	panic("%s: did not reenter debugger", __func__);
424 }
425 
426 /*
427  * The machine independent parts of context switching.
428  */
429 void
430 mi_switch(int flags, struct thread *newtd)
431 {
432 	uint64_t runtime, new_switchtime;
433 	struct thread *td;
434 	struct proc *p;
435 
436 	td = curthread;			/* XXX */
437 	THREAD_LOCK_ASSERT(td, MA_OWNED | MA_NOTRECURSED);
438 	p = td->td_proc;		/* XXX */
439 	KASSERT(!TD_ON_RUNQ(td), ("mi_switch: called by old code"));
440 #ifdef INVARIANTS
441 	if (!TD_ON_LOCK(td) && !TD_IS_RUNNING(td))
442 		mtx_assert(&Giant, MA_NOTOWNED);
443 #endif
444 	KASSERT(td->td_critnest == 1 || panicstr,
445 	    ("mi_switch: switch in a critical section"));
446 	KASSERT((flags & (SW_INVOL | SW_VOL)) != 0,
447 	    ("mi_switch: switch must be voluntary or involuntary"));
448 	KASSERT(newtd != curthread, ("mi_switch: preempting back to ourself"));
449 
450 	/*
451 	 * Don't perform context switches from the debugger.
452 	 */
453 	if (kdb_active)
454 		kdb_switch();
455 	if (SCHEDULER_STOPPED())
456 		return;
457 	if (flags & SW_VOL) {
458 		td->td_ru.ru_nvcsw++;
459 		td->td_swvoltick = ticks;
460 	} else
461 		td->td_ru.ru_nivcsw++;
462 #ifdef SCHED_STATS
463 	SCHED_STAT_INC(sched_switch_stats[flags & SW_TYPE_MASK]);
464 #endif
465 	/*
466 	 * Compute the amount of time during which the current
467 	 * thread was running, and add that to its total so far.
468 	 */
469 	new_switchtime = cpu_ticks();
470 	runtime = new_switchtime - PCPU_GET(switchtime);
471 	td->td_runtime += runtime;
472 	td->td_incruntime += runtime;
473 	PCPU_SET(switchtime, new_switchtime);
474 	td->td_generation++;	/* bump preempt-detect counter */
475 	PCPU_INC(cnt.v_swtch);
476 	PCPU_SET(switchticks, ticks);
477 	CTR4(KTR_PROC, "mi_switch: old thread %ld (td_sched %p, pid %ld, %s)",
478 	    td->td_tid, td->td_sched, p->p_pid, td->td_name);
479 #if (KTR_COMPILE & KTR_SCHED) != 0
480 	if (TD_IS_IDLETHREAD(td))
481 		KTR_STATE1(KTR_SCHED, "thread", sched_tdname(td), "idle",
482 		    "prio:%d", td->td_priority);
483 	else
484 		KTR_STATE3(KTR_SCHED, "thread", sched_tdname(td), KTDSTATE(td),
485 		    "prio:%d", td->td_priority, "wmesg:\"%s\"", td->td_wmesg,
486 		    "lockname:\"%s\"", td->td_lockname);
487 #endif
488 	SDT_PROBE0(sched, , , preempt);
489 #ifdef XEN
490 	PT_UPDATES_FLUSH();
491 #endif
492 	sched_switch(td, newtd, flags);
493 	KTR_STATE1(KTR_SCHED, "thread", sched_tdname(td), "running",
494 	    "prio:%d", td->td_priority);
495 
496 	CTR4(KTR_PROC, "mi_switch: new thread %ld (td_sched %p, pid %ld, %s)",
497 	    td->td_tid, td->td_sched, p->p_pid, td->td_name);
498 
499 	/*
500 	 * If the last thread was exiting, finish cleaning it up.
501 	 */
502 	if ((td = PCPU_GET(deadthread))) {
503 		PCPU_SET(deadthread, NULL);
504 		thread_stash(td);
505 	}
506 }
507 
508 /*
509  * Change thread state to be runnable, placing it on the run queue if
510  * it is in memory.  If it is swapped out, return true so our caller
511  * will know to awaken the swapper.
512  */
513 int
514 setrunnable(struct thread *td)
515 {
516 
517 	THREAD_LOCK_ASSERT(td, MA_OWNED);
518 	KASSERT(td->td_proc->p_state != PRS_ZOMBIE,
519 	    ("setrunnable: pid %d is a zombie", td->td_proc->p_pid));
520 	switch (td->td_state) {
521 	case TDS_RUNNING:
522 	case TDS_RUNQ:
523 		return (0);
524 	case TDS_INHIBITED:
525 		/*
526 		 * If we are only inhibited because we are swapped out
527 		 * then arange to swap in this process. Otherwise just return.
528 		 */
529 		if (td->td_inhibitors != TDI_SWAPPED)
530 			return (0);
531 		/* FALLTHROUGH */
532 	case TDS_CAN_RUN:
533 		break;
534 	default:
535 		printf("state is 0x%x", td->td_state);
536 		panic("setrunnable(2)");
537 	}
538 	if ((td->td_flags & TDF_INMEM) == 0) {
539 		if ((td->td_flags & TDF_SWAPINREQ) == 0) {
540 			td->td_flags |= TDF_SWAPINREQ;
541 			return (1);
542 		}
543 	} else
544 		sched_wakeup(td);
545 	return (0);
546 }
547 
548 /*
549  * Compute a tenex style load average of a quantity on
550  * 1, 5 and 15 minute intervals.
551  */
552 static void
553 loadav(void *arg)
554 {
555 	int i, nrun;
556 	struct loadavg *avg;
557 
558 	nrun = sched_load();
559 	avg = &averunnable;
560 
561 	for (i = 0; i < 3; i++)
562 		avg->ldavg[i] = (cexp[i] * avg->ldavg[i] +
563 		    nrun * FSCALE * (FSCALE - cexp[i])) >> FSHIFT;
564 
565 	/*
566 	 * Schedule the next update to occur after 5 seconds, but add a
567 	 * random variation to avoid synchronisation with processes that
568 	 * run at regular intervals.
569 	 */
570 	callout_reset_sbt(&loadav_callout,
571 	    SBT_1US * (4000000 + (int)(random() % 2000001)), SBT_1US,
572 	    loadav, NULL, C_DIRECT_EXEC | C_PREL(32));
573 }
574 
575 /* ARGSUSED */
576 static void
577 synch_setup(void *dummy)
578 {
579 	callout_init(&loadav_callout, CALLOUT_MPSAFE);
580 
581 	/* Kick off timeout driven events by calling first time. */
582 	loadav(NULL);
583 }
584 
585 int
586 should_yield(void)
587 {
588 
589 	return ((u_int)ticks - (u_int)curthread->td_swvoltick >= hogticks);
590 }
591 
592 void
593 maybe_yield(void)
594 {
595 
596 	if (should_yield())
597 		kern_yield(PRI_USER);
598 }
599 
600 void
601 kern_yield(int prio)
602 {
603 	struct thread *td;
604 
605 	td = curthread;
606 	DROP_GIANT();
607 	thread_lock(td);
608 	if (prio == PRI_USER)
609 		prio = td->td_user_pri;
610 	if (prio >= 0)
611 		sched_prio(td, prio);
612 	mi_switch(SW_VOL | SWT_RELINQUISH, NULL);
613 	thread_unlock(td);
614 	PICKUP_GIANT();
615 }
616 
617 /*
618  * General purpose yield system call.
619  */
620 int
621 sys_yield(struct thread *td, struct yield_args *uap)
622 {
623 
624 	thread_lock(td);
625 	if (PRI_BASE(td->td_pri_class) == PRI_TIMESHARE)
626 		sched_prio(td, PRI_MAX_TIMESHARE);
627 	mi_switch(SW_VOL | SWT_RELINQUISH, NULL);
628 	thread_unlock(td);
629 	td->td_retval[0] = 0;
630 	return (0);
631 }
632