xref: /freebsd/sys/kern/kern_synch.c (revision 3c91c65a2b999a8d27e99bcc6493de7cf812c948)
1 /*-
2  * Copyright (c) 1982, 1986, 1990, 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  * (c) UNIX System Laboratories, Inc.
5  * All or some portions of this file are derived from material licensed
6  * to the University of California by American Telephone and Telegraph
7  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8  * the permission of UNIX System Laboratories, Inc.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 4. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  *	@(#)kern_synch.c	8.9 (Berkeley) 5/19/95
35  */
36 
37 #include <sys/cdefs.h>
38 __FBSDID("$FreeBSD$");
39 
40 #include "opt_kdtrace.h"
41 #include "opt_ktrace.h"
42 #include "opt_sched.h"
43 
44 #include <sys/param.h>
45 #include <sys/systm.h>
46 #include <sys/condvar.h>
47 #include <sys/kdb.h>
48 #include <sys/kernel.h>
49 #include <sys/ktr.h>
50 #include <sys/lock.h>
51 #include <sys/mutex.h>
52 #include <sys/proc.h>
53 #include <sys/resourcevar.h>
54 #include <sys/sched.h>
55 #include <sys/sdt.h>
56 #include <sys/signalvar.h>
57 #include <sys/sleepqueue.h>
58 #include <sys/smp.h>
59 #include <sys/sx.h>
60 #include <sys/sysctl.h>
61 #include <sys/sysproto.h>
62 #include <sys/vmmeter.h>
63 #ifdef KTRACE
64 #include <sys/uio.h>
65 #include <sys/ktrace.h>
66 #endif
67 
68 #include <machine/cpu.h>
69 
70 #ifdef XEN
71 #include <vm/vm.h>
72 #include <vm/vm_param.h>
73 #include <vm/pmap.h>
74 #endif
75 
76 #define	KTDSTATE(td)							\
77 	(((td)->td_inhibitors & TDI_SLEEPING) != 0 ? "sleep"  :		\
78 	((td)->td_inhibitors & TDI_SUSPENDED) != 0 ? "suspended" :	\
79 	((td)->td_inhibitors & TDI_SWAPPED) != 0 ? "swapped" :		\
80 	((td)->td_inhibitors & TDI_LOCK) != 0 ? "blocked" :		\
81 	((td)->td_inhibitors & TDI_IWAIT) != 0 ? "iwait" : "yielding")
82 
83 static void synch_setup(void *dummy);
84 SYSINIT(synch_setup, SI_SUB_KICK_SCHEDULER, SI_ORDER_FIRST, synch_setup,
85     NULL);
86 
87 int	hogticks;
88 static int pause_wchan;
89 
90 static struct callout loadav_callout;
91 
92 struct loadavg averunnable =
93 	{ {0, 0, 0}, FSCALE };	/* load average, of runnable procs */
94 /*
95  * Constants for averages over 1, 5, and 15 minutes
96  * when sampling at 5 second intervals.
97  */
98 static fixpt_t cexp[3] = {
99 	0.9200444146293232 * FSCALE,	/* exp(-1/12) */
100 	0.9834714538216174 * FSCALE,	/* exp(-1/60) */
101 	0.9944598480048967 * FSCALE,	/* exp(-1/180) */
102 };
103 
104 /* kernel uses `FSCALE', userland (SHOULD) use kern.fscale */
105 static int      fscale __unused = FSCALE;
106 SYSCTL_INT(_kern, OID_AUTO, fscale, CTLFLAG_RD, 0, FSCALE, "");
107 
108 static void	loadav(void *arg);
109 
110 SDT_PROVIDER_DECLARE(sched);
111 SDT_PROBE_DEFINE(sched, , , preempt, preempt);
112 
113 /*
114  * These probes reference Solaris features that are not implemented in FreeBSD.
115  * Create the probes anyway for compatibility with existing D scripts; they'll
116  * just never fire.
117  */
118 SDT_PROBE_DEFINE(sched, , , cpucaps_sleep, cpucaps-sleep);
119 SDT_PROBE_DEFINE(sched, , , cpucaps_wakeup, cpucaps-wakeup);
120 SDT_PROBE_DEFINE(sched, , , schedctl_nopreempt, schedctl-nopreempt);
121 SDT_PROBE_DEFINE(sched, , , schedctl_preempt, schedctl-preempt);
122 SDT_PROBE_DEFINE(sched, , , schedctl_yield, schedctl-yield);
123 
124 void
125 sleepinit(void)
126 {
127 
128 	hogticks = (hz / 10) * 2;	/* Default only. */
129 	init_sleepqueues();
130 }
131 
132 /*
133  * General sleep call.  Suspends the current thread until a wakeup is
134  * performed on the specified identifier.  The thread will then be made
135  * runnable with the specified priority.  Sleeps at most timo/hz seconds
136  * (0 means no timeout).  If pri includes the PCATCH flag, let signals
137  * interrupt the sleep, otherwise ignore them while sleeping.  Returns 0 if
138  * awakened, EWOULDBLOCK if the timeout expires.  If PCATCH is set and a
139  * signal becomes pending, ERESTART is returned if the current system
140  * call should be restarted if possible, and EINTR is returned if the system
141  * call should be interrupted by the signal (return EINTR).
142  *
143  * The lock argument is unlocked before the caller is suspended, and
144  * re-locked before _sleep() returns.  If priority includes the PDROP
145  * flag the lock is not re-locked before returning.
146  */
147 int
148 _sleep(void *ident, struct lock_object *lock, int priority,
149     const char *wmesg, int timo)
150 {
151 	struct thread *td;
152 	struct proc *p;
153 	struct lock_class *class;
154 	int catch, flags, lock_state, pri, rval;
155 	WITNESS_SAVE_DECL(lock_witness);
156 
157 	td = curthread;
158 	p = td->td_proc;
159 #ifdef KTRACE
160 	if (KTRPOINT(td, KTR_CSW))
161 		ktrcsw(1, 0, wmesg);
162 #endif
163 	WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, lock,
164 	    "Sleeping on \"%s\"", wmesg);
165 	KASSERT(timo != 0 || mtx_owned(&Giant) || lock != NULL,
166 	    ("sleeping without a lock"));
167 	KASSERT(p != NULL, ("msleep1"));
168 	KASSERT(ident != NULL && TD_IS_RUNNING(td), ("msleep"));
169 	if (priority & PDROP)
170 		KASSERT(lock != NULL && lock != &Giant.lock_object,
171 		    ("PDROP requires a non-Giant lock"));
172 	if (lock != NULL)
173 		class = LOCK_CLASS(lock);
174 	else
175 		class = NULL;
176 
177 	if (cold || SCHEDULER_STOPPED()) {
178 		/*
179 		 * During autoconfiguration, just return;
180 		 * don't run any other threads or panic below,
181 		 * in case this is the idle thread and already asleep.
182 		 * XXX: this used to do "s = splhigh(); splx(safepri);
183 		 * splx(s);" to give interrupts a chance, but there is
184 		 * no way to give interrupts a chance now.
185 		 */
186 		if (lock != NULL && priority & PDROP)
187 			class->lc_unlock(lock);
188 		return (0);
189 	}
190 	catch = priority & PCATCH;
191 	pri = priority & PRIMASK;
192 
193 	/*
194 	 * If we are already on a sleep queue, then remove us from that
195 	 * sleep queue first.  We have to do this to handle recursive
196 	 * sleeps.
197 	 */
198 	if (TD_ON_SLEEPQ(td))
199 		sleepq_remove(td, td->td_wchan);
200 
201 	if (ident == &pause_wchan)
202 		flags = SLEEPQ_PAUSE;
203 	else
204 		flags = SLEEPQ_SLEEP;
205 	if (catch)
206 		flags |= SLEEPQ_INTERRUPTIBLE;
207 	if (priority & PBDRY)
208 		flags |= SLEEPQ_STOP_ON_BDRY;
209 
210 	sleepq_lock(ident);
211 	CTR5(KTR_PROC, "sleep: thread %ld (pid %ld, %s) on %s (%p)",
212 	    td->td_tid, p->p_pid, td->td_name, wmesg, ident);
213 
214 	if (lock == &Giant.lock_object)
215 		mtx_assert(&Giant, MA_OWNED);
216 	DROP_GIANT();
217 	if (lock != NULL && lock != &Giant.lock_object &&
218 	    !(class->lc_flags & LC_SLEEPABLE)) {
219 		WITNESS_SAVE(lock, lock_witness);
220 		lock_state = class->lc_unlock(lock);
221 	} else
222 		/* GCC needs to follow the Yellow Brick Road */
223 		lock_state = -1;
224 
225 	/*
226 	 * We put ourselves on the sleep queue and start our timeout
227 	 * before calling thread_suspend_check, as we could stop there,
228 	 * and a wakeup or a SIGCONT (or both) could occur while we were
229 	 * stopped without resuming us.  Thus, we must be ready for sleep
230 	 * when cursig() is called.  If the wakeup happens while we're
231 	 * stopped, then td will no longer be on a sleep queue upon
232 	 * return from cursig().
233 	 */
234 	sleepq_add(ident, lock, wmesg, flags, 0);
235 	if (timo)
236 		sleepq_set_timeout(ident, timo);
237 	if (lock != NULL && class->lc_flags & LC_SLEEPABLE) {
238 		sleepq_release(ident);
239 		WITNESS_SAVE(lock, lock_witness);
240 		lock_state = class->lc_unlock(lock);
241 		sleepq_lock(ident);
242 	}
243 	if (timo && catch)
244 		rval = sleepq_timedwait_sig(ident, pri);
245 	else if (timo)
246 		rval = sleepq_timedwait(ident, pri);
247 	else if (catch)
248 		rval = sleepq_wait_sig(ident, pri);
249 	else {
250 		sleepq_wait(ident, pri);
251 		rval = 0;
252 	}
253 #ifdef KTRACE
254 	if (KTRPOINT(td, KTR_CSW))
255 		ktrcsw(0, 0, wmesg);
256 #endif
257 	PICKUP_GIANT();
258 	if (lock != NULL && lock != &Giant.lock_object && !(priority & PDROP)) {
259 		class->lc_lock(lock, lock_state);
260 		WITNESS_RESTORE(lock, lock_witness);
261 	}
262 	return (rval);
263 }
264 
265 int
266 msleep_spin(void *ident, struct mtx *mtx, const char *wmesg, int timo)
267 {
268 	struct thread *td;
269 	struct proc *p;
270 	int rval;
271 	WITNESS_SAVE_DECL(mtx);
272 
273 	td = curthread;
274 	p = td->td_proc;
275 	KASSERT(mtx != NULL, ("sleeping without a mutex"));
276 	KASSERT(p != NULL, ("msleep1"));
277 	KASSERT(ident != NULL && TD_IS_RUNNING(td), ("msleep"));
278 
279 	if (cold || SCHEDULER_STOPPED()) {
280 		/*
281 		 * During autoconfiguration, just return;
282 		 * don't run any other threads or panic below,
283 		 * in case this is the idle thread and already asleep.
284 		 * XXX: this used to do "s = splhigh(); splx(safepri);
285 		 * splx(s);" to give interrupts a chance, but there is
286 		 * no way to give interrupts a chance now.
287 		 */
288 		return (0);
289 	}
290 
291 	sleepq_lock(ident);
292 	CTR5(KTR_PROC, "msleep_spin: thread %ld (pid %ld, %s) on %s (%p)",
293 	    td->td_tid, p->p_pid, td->td_name, wmesg, ident);
294 
295 	DROP_GIANT();
296 	mtx_assert(mtx, MA_OWNED | MA_NOTRECURSED);
297 	WITNESS_SAVE(&mtx->lock_object, mtx);
298 	mtx_unlock_spin(mtx);
299 
300 	/*
301 	 * We put ourselves on the sleep queue and start our timeout.
302 	 */
303 	sleepq_add(ident, &mtx->lock_object, wmesg, SLEEPQ_SLEEP, 0);
304 	if (timo)
305 		sleepq_set_timeout(ident, timo);
306 
307 	/*
308 	 * Can't call ktrace with any spin locks held so it can lock the
309 	 * ktrace_mtx lock, and WITNESS_WARN considers it an error to hold
310 	 * any spin lock.  Thus, we have to drop the sleepq spin lock while
311 	 * we handle those requests.  This is safe since we have placed our
312 	 * thread on the sleep queue already.
313 	 */
314 #ifdef KTRACE
315 	if (KTRPOINT(td, KTR_CSW)) {
316 		sleepq_release(ident);
317 		ktrcsw(1, 0, wmesg);
318 		sleepq_lock(ident);
319 	}
320 #endif
321 #ifdef WITNESS
322 	sleepq_release(ident);
323 	WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, "Sleeping on \"%s\"",
324 	    wmesg);
325 	sleepq_lock(ident);
326 #endif
327 	if (timo)
328 		rval = sleepq_timedwait(ident, 0);
329 	else {
330 		sleepq_wait(ident, 0);
331 		rval = 0;
332 	}
333 #ifdef KTRACE
334 	if (KTRPOINT(td, KTR_CSW))
335 		ktrcsw(0, 0, wmesg);
336 #endif
337 	PICKUP_GIANT();
338 	mtx_lock_spin(mtx);
339 	WITNESS_RESTORE(&mtx->lock_object, mtx);
340 	return (rval);
341 }
342 
343 /*
344  * pause() delays the calling thread by the given number of system ticks.
345  * During cold bootup, pause() uses the DELAY() function instead of
346  * the tsleep() function to do the waiting. The "timo" argument must be
347  * greater than or equal to zero. A "timo" value of zero is equivalent
348  * to a "timo" value of one.
349  */
350 int
351 pause(const char *wmesg, int timo)
352 {
353 	KASSERT(timo >= 0, ("pause: timo must be >= 0"));
354 
355 	/* silently convert invalid timeouts */
356 	if (timo < 1)
357 		timo = 1;
358 
359 	if (cold) {
360 		/*
361 		 * We delay one HZ at a time to avoid overflowing the
362 		 * system specific DELAY() function(s):
363 		 */
364 		while (timo >= hz) {
365 			DELAY(1000000);
366 			timo -= hz;
367 		}
368 		if (timo > 0)
369 			DELAY(timo * tick);
370 		return (0);
371 	}
372 	return (tsleep(&pause_wchan, 0, wmesg, timo));
373 }
374 
375 /*
376  * Make all threads sleeping on the specified identifier runnable.
377  */
378 void
379 wakeup(void *ident)
380 {
381 	int wakeup_swapper;
382 
383 	sleepq_lock(ident);
384 	wakeup_swapper = sleepq_broadcast(ident, SLEEPQ_SLEEP, 0, 0);
385 	sleepq_release(ident);
386 	if (wakeup_swapper) {
387 		KASSERT(ident != &proc0,
388 		    ("wakeup and wakeup_swapper and proc0"));
389 		kick_proc0();
390 	}
391 }
392 
393 /*
394  * Make a thread sleeping on the specified identifier runnable.
395  * May wake more than one thread if a target thread is currently
396  * swapped out.
397  */
398 void
399 wakeup_one(void *ident)
400 {
401 	int wakeup_swapper;
402 
403 	sleepq_lock(ident);
404 	wakeup_swapper = sleepq_signal(ident, SLEEPQ_SLEEP, 0, 0);
405 	sleepq_release(ident);
406 	if (wakeup_swapper)
407 		kick_proc0();
408 }
409 
410 static void
411 kdb_switch(void)
412 {
413 	thread_unlock(curthread);
414 	kdb_backtrace();
415 	kdb_reenter();
416 	panic("%s: did not reenter debugger", __func__);
417 }
418 
419 /*
420  * The machine independent parts of context switching.
421  */
422 void
423 mi_switch(int flags, struct thread *newtd)
424 {
425 	uint64_t runtime, new_switchtime;
426 	struct thread *td;
427 	struct proc *p;
428 
429 	td = curthread;			/* XXX */
430 	THREAD_LOCK_ASSERT(td, MA_OWNED | MA_NOTRECURSED);
431 	p = td->td_proc;		/* XXX */
432 	KASSERT(!TD_ON_RUNQ(td), ("mi_switch: called by old code"));
433 #ifdef INVARIANTS
434 	if (!TD_ON_LOCK(td) && !TD_IS_RUNNING(td))
435 		mtx_assert(&Giant, MA_NOTOWNED);
436 #endif
437 	KASSERT(td->td_critnest == 1 || panicstr,
438 	    ("mi_switch: switch in a critical section"));
439 	KASSERT((flags & (SW_INVOL | SW_VOL)) != 0,
440 	    ("mi_switch: switch must be voluntary or involuntary"));
441 	KASSERT(newtd != curthread, ("mi_switch: preempting back to ourself"));
442 
443 	/*
444 	 * Don't perform context switches from the debugger.
445 	 */
446 	if (kdb_active)
447 		kdb_switch();
448 	if (SCHEDULER_STOPPED())
449 		return;
450 	if (flags & SW_VOL) {
451 		td->td_ru.ru_nvcsw++;
452 		td->td_swvoltick = ticks;
453 	} else
454 		td->td_ru.ru_nivcsw++;
455 #ifdef SCHED_STATS
456 	SCHED_STAT_INC(sched_switch_stats[flags & SW_TYPE_MASK]);
457 #endif
458 	/*
459 	 * Compute the amount of time during which the current
460 	 * thread was running, and add that to its total so far.
461 	 */
462 	new_switchtime = cpu_ticks();
463 	runtime = new_switchtime - PCPU_GET(switchtime);
464 	td->td_runtime += runtime;
465 	td->td_incruntime += runtime;
466 	PCPU_SET(switchtime, new_switchtime);
467 	td->td_generation++;	/* bump preempt-detect counter */
468 	PCPU_INC(cnt.v_swtch);
469 	PCPU_SET(switchticks, ticks);
470 	CTR4(KTR_PROC, "mi_switch: old thread %ld (td_sched %p, pid %ld, %s)",
471 	    td->td_tid, td->td_sched, p->p_pid, td->td_name);
472 #if (KTR_COMPILE & KTR_SCHED) != 0
473 	if (TD_IS_IDLETHREAD(td))
474 		KTR_STATE1(KTR_SCHED, "thread", sched_tdname(td), "idle",
475 		    "prio:%d", td->td_priority);
476 	else
477 		KTR_STATE3(KTR_SCHED, "thread", sched_tdname(td), KTDSTATE(td),
478 		    "prio:%d", td->td_priority, "wmesg:\"%s\"", td->td_wmesg,
479 		    "lockname:\"%s\"", td->td_lockname);
480 #endif
481 	SDT_PROBE0(sched, , , preempt);
482 #ifdef XEN
483 	PT_UPDATES_FLUSH();
484 #endif
485 	sched_switch(td, newtd, flags);
486 	KTR_STATE1(KTR_SCHED, "thread", sched_tdname(td), "running",
487 	    "prio:%d", td->td_priority);
488 
489 	CTR4(KTR_PROC, "mi_switch: new thread %ld (td_sched %p, pid %ld, %s)",
490 	    td->td_tid, td->td_sched, p->p_pid, td->td_name);
491 
492 	/*
493 	 * If the last thread was exiting, finish cleaning it up.
494 	 */
495 	if ((td = PCPU_GET(deadthread))) {
496 		PCPU_SET(deadthread, NULL);
497 		thread_stash(td);
498 	}
499 }
500 
501 /*
502  * Change thread state to be runnable, placing it on the run queue if
503  * it is in memory.  If it is swapped out, return true so our caller
504  * will know to awaken the swapper.
505  */
506 int
507 setrunnable(struct thread *td)
508 {
509 
510 	THREAD_LOCK_ASSERT(td, MA_OWNED);
511 	KASSERT(td->td_proc->p_state != PRS_ZOMBIE,
512 	    ("setrunnable: pid %d is a zombie", td->td_proc->p_pid));
513 	switch (td->td_state) {
514 	case TDS_RUNNING:
515 	case TDS_RUNQ:
516 		return (0);
517 	case TDS_INHIBITED:
518 		/*
519 		 * If we are only inhibited because we are swapped out
520 		 * then arange to swap in this process. Otherwise just return.
521 		 */
522 		if (td->td_inhibitors != TDI_SWAPPED)
523 			return (0);
524 		/* FALLTHROUGH */
525 	case TDS_CAN_RUN:
526 		break;
527 	default:
528 		printf("state is 0x%x", td->td_state);
529 		panic("setrunnable(2)");
530 	}
531 	if ((td->td_flags & TDF_INMEM) == 0) {
532 		if ((td->td_flags & TDF_SWAPINREQ) == 0) {
533 			td->td_flags |= TDF_SWAPINREQ;
534 			return (1);
535 		}
536 	} else
537 		sched_wakeup(td);
538 	return (0);
539 }
540 
541 /*
542  * Compute a tenex style load average of a quantity on
543  * 1, 5 and 15 minute intervals.
544  */
545 static void
546 loadav(void *arg)
547 {
548 	int i, nrun;
549 	struct loadavg *avg;
550 
551 	nrun = sched_load();
552 	avg = &averunnable;
553 
554 	for (i = 0; i < 3; i++)
555 		avg->ldavg[i] = (cexp[i] * avg->ldavg[i] +
556 		    nrun * FSCALE * (FSCALE - cexp[i])) >> FSHIFT;
557 
558 	/*
559 	 * Schedule the next update to occur after 5 seconds, but add a
560 	 * random variation to avoid synchronisation with processes that
561 	 * run at regular intervals.
562 	 */
563 	callout_reset(&loadav_callout, hz * 4 + (int)(random() % (hz * 2 + 1)),
564 	    loadav, NULL);
565 }
566 
567 /* ARGSUSED */
568 static void
569 synch_setup(void *dummy)
570 {
571 	callout_init(&loadav_callout, CALLOUT_MPSAFE);
572 
573 	/* Kick off timeout driven events by calling first time. */
574 	loadav(NULL);
575 }
576 
577 int
578 should_yield(void)
579 {
580 
581 	return (ticks - curthread->td_swvoltick >= hogticks);
582 }
583 
584 void
585 maybe_yield(void)
586 {
587 
588 	if (should_yield())
589 		kern_yield(PRI_USER);
590 }
591 
592 void
593 kern_yield(int prio)
594 {
595 	struct thread *td;
596 
597 	td = curthread;
598 	DROP_GIANT();
599 	thread_lock(td);
600 	if (prio == PRI_USER)
601 		prio = td->td_user_pri;
602 	if (prio >= 0)
603 		sched_prio(td, prio);
604 	mi_switch(SW_VOL | SWT_RELINQUISH, NULL);
605 	thread_unlock(td);
606 	PICKUP_GIANT();
607 }
608 
609 /*
610  * General purpose yield system call.
611  */
612 int
613 sys_yield(struct thread *td, struct yield_args *uap)
614 {
615 
616 	thread_lock(td);
617 	if (PRI_BASE(td->td_pri_class) == PRI_TIMESHARE)
618 		sched_prio(td, PRI_MAX_TIMESHARE);
619 	mi_switch(SW_VOL | SWT_RELINQUISH, NULL);
620 	thread_unlock(td);
621 	td->td_retval[0] = 0;
622 	return (0);
623 }
624