xref: /freebsd/sys/kern/kern_synch.c (revision 3a92d97ff0f22d21608e1c19b83104c4937523b6)
1 /*-
2  * Copyright (c) 1982, 1986, 1990, 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  * (c) UNIX System Laboratories, Inc.
5  * All or some portions of this file are derived from material licensed
6  * to the University of California by American Telephone and Telegraph
7  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8  * the permission of UNIX System Laboratories, Inc.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 4. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  *	@(#)kern_synch.c	8.9 (Berkeley) 5/19/95
35  */
36 
37 #include <sys/cdefs.h>
38 __FBSDID("$FreeBSD$");
39 
40 #include "opt_ktrace.h"
41 #include "opt_sched.h"
42 
43 #include <sys/param.h>
44 #include <sys/systm.h>
45 #include <sys/condvar.h>
46 #include <sys/kdb.h>
47 #include <sys/kernel.h>
48 #include <sys/ktr.h>
49 #include <sys/lock.h>
50 #include <sys/mutex.h>
51 #include <sys/proc.h>
52 #include <sys/resourcevar.h>
53 #include <sys/sched.h>
54 #include <sys/sdt.h>
55 #include <sys/signalvar.h>
56 #include <sys/sleepqueue.h>
57 #include <sys/smp.h>
58 #include <sys/sx.h>
59 #include <sys/sysctl.h>
60 #include <sys/sysproto.h>
61 #include <sys/vmmeter.h>
62 #ifdef KTRACE
63 #include <sys/uio.h>
64 #include <sys/ktrace.h>
65 #endif
66 
67 #include <machine/cpu.h>
68 
69 #ifdef XEN
70 #include <vm/vm.h>
71 #include <vm/vm_param.h>
72 #include <vm/pmap.h>
73 #endif
74 
75 #define	KTDSTATE(td)							\
76 	(((td)->td_inhibitors & TDI_SLEEPING) != 0 ? "sleep"  :		\
77 	((td)->td_inhibitors & TDI_SUSPENDED) != 0 ? "suspended" :	\
78 	((td)->td_inhibitors & TDI_SWAPPED) != 0 ? "swapped" :		\
79 	((td)->td_inhibitors & TDI_LOCK) != 0 ? "blocked" :		\
80 	((td)->td_inhibitors & TDI_IWAIT) != 0 ? "iwait" : "yielding")
81 
82 static void synch_setup(void *dummy);
83 SYSINIT(synch_setup, SI_SUB_KICK_SCHEDULER, SI_ORDER_FIRST, synch_setup,
84     NULL);
85 
86 int	hogticks;
87 static uint8_t pause_wchan[MAXCPU];
88 
89 static struct callout loadav_callout;
90 
91 struct loadavg averunnable =
92 	{ {0, 0, 0}, FSCALE };	/* load average, of runnable procs */
93 /*
94  * Constants for averages over 1, 5, and 15 minutes
95  * when sampling at 5 second intervals.
96  */
97 static fixpt_t cexp[3] = {
98 	0.9200444146293232 * FSCALE,	/* exp(-1/12) */
99 	0.9834714538216174 * FSCALE,	/* exp(-1/60) */
100 	0.9944598480048967 * FSCALE,	/* exp(-1/180) */
101 };
102 
103 /* kernel uses `FSCALE', userland (SHOULD) use kern.fscale */
104 static int      fscale __unused = FSCALE;
105 SYSCTL_INT(_kern, OID_AUTO, fscale, CTLFLAG_RD, 0, FSCALE, "");
106 
107 static void	loadav(void *arg);
108 
109 SDT_PROVIDER_DECLARE(sched);
110 SDT_PROBE_DEFINE(sched, , , preempt);
111 
112 /*
113  * These probes reference Solaris features that are not implemented in FreeBSD.
114  * Create the probes anyway for compatibility with existing D scripts; they'll
115  * just never fire.
116  */
117 SDT_PROBE_DEFINE(sched, , , cpucaps__sleep);
118 SDT_PROBE_DEFINE(sched, , , cpucaps__wakeup);
119 SDT_PROBE_DEFINE(sched, , , schedctl__nopreempt);
120 SDT_PROBE_DEFINE(sched, , , schedctl__preempt);
121 SDT_PROBE_DEFINE(sched, , , schedctl__yield);
122 
123 static void
124 sleepinit(void *unused)
125 {
126 
127 	hogticks = (hz / 10) * 2;	/* Default only. */
128 	init_sleepqueues();
129 }
130 
131 /*
132  * vmem tries to lock the sleepq mutexes when free'ing kva, so make sure
133  * it is available.
134  */
135 SYSINIT(sleepinit, SI_SUB_KMEM, SI_ORDER_ANY, sleepinit, 0);
136 
137 /*
138  * General sleep call.  Suspends the current thread until a wakeup is
139  * performed on the specified identifier.  The thread will then be made
140  * runnable with the specified priority.  Sleeps at most sbt units of time
141  * (0 means no timeout).  If pri includes the PCATCH flag, let signals
142  * interrupt the sleep, otherwise ignore them while sleeping.  Returns 0 if
143  * awakened, EWOULDBLOCK if the timeout expires.  If PCATCH is set and a
144  * signal becomes pending, ERESTART is returned if the current system
145  * call should be restarted if possible, and EINTR is returned if the system
146  * call should be interrupted by the signal (return EINTR).
147  *
148  * The lock argument is unlocked before the caller is suspended, and
149  * re-locked before _sleep() returns.  If priority includes the PDROP
150  * flag the lock is not re-locked before returning.
151  */
152 int
153 _sleep(void *ident, struct lock_object *lock, int priority,
154     const char *wmesg, sbintime_t sbt, sbintime_t pr, int flags)
155 {
156 	struct thread *td;
157 	struct proc *p;
158 	struct lock_class *class;
159 	uintptr_t lock_state;
160 	int catch, pri, rval, sleepq_flags;
161 	WITNESS_SAVE_DECL(lock_witness);
162 
163 	td = curthread;
164 	p = td->td_proc;
165 #ifdef KTRACE
166 	if (KTRPOINT(td, KTR_CSW))
167 		ktrcsw(1, 0, wmesg);
168 #endif
169 	WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, lock,
170 	    "Sleeping on \"%s\"", wmesg);
171 	KASSERT(sbt != 0 || mtx_owned(&Giant) || lock != NULL,
172 	    ("sleeping without a lock"));
173 	KASSERT(p != NULL, ("msleep1"));
174 	KASSERT(ident != NULL && TD_IS_RUNNING(td), ("msleep"));
175 	if (priority & PDROP)
176 		KASSERT(lock != NULL && lock != &Giant.lock_object,
177 		    ("PDROP requires a non-Giant lock"));
178 	if (lock != NULL)
179 		class = LOCK_CLASS(lock);
180 	else
181 		class = NULL;
182 
183 	if (cold || SCHEDULER_STOPPED()) {
184 		/*
185 		 * During autoconfiguration, just return;
186 		 * don't run any other threads or panic below,
187 		 * in case this is the idle thread and already asleep.
188 		 * XXX: this used to do "s = splhigh(); splx(safepri);
189 		 * splx(s);" to give interrupts a chance, but there is
190 		 * no way to give interrupts a chance now.
191 		 */
192 		if (lock != NULL && priority & PDROP)
193 			class->lc_unlock(lock);
194 		return (0);
195 	}
196 	catch = priority & PCATCH;
197 	pri = priority & PRIMASK;
198 
199 	/*
200 	 * If we are already on a sleep queue, then remove us from that
201 	 * sleep queue first.  We have to do this to handle recursive
202 	 * sleeps.
203 	 */
204 	if (TD_ON_SLEEPQ(td))
205 		sleepq_remove(td, td->td_wchan);
206 
207 	if ((uint8_t *)ident >= &pause_wchan[0] &&
208 	    (uint8_t *)ident <= &pause_wchan[MAXCPU - 1])
209 		sleepq_flags = SLEEPQ_PAUSE;
210 	else
211 		sleepq_flags = SLEEPQ_SLEEP;
212 	if (catch)
213 		sleepq_flags |= SLEEPQ_INTERRUPTIBLE;
214 
215 	sleepq_lock(ident);
216 	CTR5(KTR_PROC, "sleep: thread %ld (pid %ld, %s) on %s (%p)",
217 	    td->td_tid, p->p_pid, td->td_name, wmesg, ident);
218 
219 	if (lock == &Giant.lock_object)
220 		mtx_assert(&Giant, MA_OWNED);
221 	DROP_GIANT();
222 	if (lock != NULL && lock != &Giant.lock_object &&
223 	    !(class->lc_flags & LC_SLEEPABLE)) {
224 		WITNESS_SAVE(lock, lock_witness);
225 		lock_state = class->lc_unlock(lock);
226 	} else
227 		/* GCC needs to follow the Yellow Brick Road */
228 		lock_state = -1;
229 
230 	/*
231 	 * We put ourselves on the sleep queue and start our timeout
232 	 * before calling thread_suspend_check, as we could stop there,
233 	 * and a wakeup or a SIGCONT (or both) could occur while we were
234 	 * stopped without resuming us.  Thus, we must be ready for sleep
235 	 * when cursig() is called.  If the wakeup happens while we're
236 	 * stopped, then td will no longer be on a sleep queue upon
237 	 * return from cursig().
238 	 */
239 	sleepq_add(ident, lock, wmesg, sleepq_flags, 0);
240 	if (sbt != 0)
241 		sleepq_set_timeout_sbt(ident, sbt, pr, flags);
242 	if (lock != NULL && class->lc_flags & LC_SLEEPABLE) {
243 		sleepq_release(ident);
244 		WITNESS_SAVE(lock, lock_witness);
245 		lock_state = class->lc_unlock(lock);
246 		sleepq_lock(ident);
247 	}
248 	if (sbt != 0 && catch)
249 		rval = sleepq_timedwait_sig(ident, pri);
250 	else if (sbt != 0)
251 		rval = sleepq_timedwait(ident, pri);
252 	else if (catch)
253 		rval = sleepq_wait_sig(ident, pri);
254 	else {
255 		sleepq_wait(ident, pri);
256 		rval = 0;
257 	}
258 #ifdef KTRACE
259 	if (KTRPOINT(td, KTR_CSW))
260 		ktrcsw(0, 0, wmesg);
261 #endif
262 	PICKUP_GIANT();
263 	if (lock != NULL && lock != &Giant.lock_object && !(priority & PDROP)) {
264 		class->lc_lock(lock, lock_state);
265 		WITNESS_RESTORE(lock, lock_witness);
266 	}
267 	return (rval);
268 }
269 
270 int
271 msleep_spin_sbt(void *ident, struct mtx *mtx, const char *wmesg,
272     sbintime_t sbt, sbintime_t pr, int flags)
273 {
274 	struct thread *td;
275 	struct proc *p;
276 	int rval;
277 	WITNESS_SAVE_DECL(mtx);
278 
279 	td = curthread;
280 	p = td->td_proc;
281 	KASSERT(mtx != NULL, ("sleeping without a mutex"));
282 	KASSERT(p != NULL, ("msleep1"));
283 	KASSERT(ident != NULL && TD_IS_RUNNING(td), ("msleep"));
284 
285 	if (cold || SCHEDULER_STOPPED()) {
286 		/*
287 		 * During autoconfiguration, just return;
288 		 * don't run any other threads or panic below,
289 		 * in case this is the idle thread and already asleep.
290 		 * XXX: this used to do "s = splhigh(); splx(safepri);
291 		 * splx(s);" to give interrupts a chance, but there is
292 		 * no way to give interrupts a chance now.
293 		 */
294 		return (0);
295 	}
296 
297 	sleepq_lock(ident);
298 	CTR5(KTR_PROC, "msleep_spin: thread %ld (pid %ld, %s) on %s (%p)",
299 	    td->td_tid, p->p_pid, td->td_name, wmesg, ident);
300 
301 	DROP_GIANT();
302 	mtx_assert(mtx, MA_OWNED | MA_NOTRECURSED);
303 	WITNESS_SAVE(&mtx->lock_object, mtx);
304 	mtx_unlock_spin(mtx);
305 
306 	/*
307 	 * We put ourselves on the sleep queue and start our timeout.
308 	 */
309 	sleepq_add(ident, &mtx->lock_object, wmesg, SLEEPQ_SLEEP, 0);
310 	if (sbt != 0)
311 		sleepq_set_timeout_sbt(ident, sbt, pr, flags);
312 
313 	/*
314 	 * Can't call ktrace with any spin locks held so it can lock the
315 	 * ktrace_mtx lock, and WITNESS_WARN considers it an error to hold
316 	 * any spin lock.  Thus, we have to drop the sleepq spin lock while
317 	 * we handle those requests.  This is safe since we have placed our
318 	 * thread on the sleep queue already.
319 	 */
320 #ifdef KTRACE
321 	if (KTRPOINT(td, KTR_CSW)) {
322 		sleepq_release(ident);
323 		ktrcsw(1, 0, wmesg);
324 		sleepq_lock(ident);
325 	}
326 #endif
327 #ifdef WITNESS
328 	sleepq_release(ident);
329 	WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, "Sleeping on \"%s\"",
330 	    wmesg);
331 	sleepq_lock(ident);
332 #endif
333 	if (sbt != 0)
334 		rval = sleepq_timedwait(ident, 0);
335 	else {
336 		sleepq_wait(ident, 0);
337 		rval = 0;
338 	}
339 #ifdef KTRACE
340 	if (KTRPOINT(td, KTR_CSW))
341 		ktrcsw(0, 0, wmesg);
342 #endif
343 	PICKUP_GIANT();
344 	mtx_lock_spin(mtx);
345 	WITNESS_RESTORE(&mtx->lock_object, mtx);
346 	return (rval);
347 }
348 
349 /*
350  * pause() delays the calling thread by the given number of system ticks.
351  * During cold bootup, pause() uses the DELAY() function instead of
352  * the tsleep() function to do the waiting. The "timo" argument must be
353  * greater than or equal to zero. A "timo" value of zero is equivalent
354  * to a "timo" value of one.
355  */
356 int
357 pause_sbt(const char *wmesg, sbintime_t sbt, sbintime_t pr, int flags)
358 {
359 	KASSERT(sbt >= 0, ("pause: timeout must be >= 0"));
360 
361 	/* silently convert invalid timeouts */
362 	if (sbt == 0)
363 		sbt = tick_sbt;
364 
365 	if (cold) {
366 		/*
367 		 * We delay one second at a time to avoid overflowing the
368 		 * system specific DELAY() function(s):
369 		 */
370 		while (sbt >= SBT_1S) {
371 			DELAY(1000000);
372 			sbt -= SBT_1S;
373 		}
374 		/* Do the delay remainder, if any */
375 		sbt = (sbt + SBT_1US - 1) / SBT_1US;
376 		if (sbt > 0)
377 			DELAY(sbt);
378 		return (0);
379 	}
380 	return (_sleep(&pause_wchan[curcpu], NULL, 0, wmesg, sbt, pr, flags));
381 }
382 
383 /*
384  * Make all threads sleeping on the specified identifier runnable.
385  */
386 void
387 wakeup(void *ident)
388 {
389 	int wakeup_swapper;
390 
391 	sleepq_lock(ident);
392 	wakeup_swapper = sleepq_broadcast(ident, SLEEPQ_SLEEP, 0, 0);
393 	sleepq_release(ident);
394 	if (wakeup_swapper) {
395 		KASSERT(ident != &proc0,
396 		    ("wakeup and wakeup_swapper and proc0"));
397 		kick_proc0();
398 	}
399 }
400 
401 /*
402  * Make a thread sleeping on the specified identifier runnable.
403  * May wake more than one thread if a target thread is currently
404  * swapped out.
405  */
406 void
407 wakeup_one(void *ident)
408 {
409 	int wakeup_swapper;
410 
411 	sleepq_lock(ident);
412 	wakeup_swapper = sleepq_signal(ident, SLEEPQ_SLEEP, 0, 0);
413 	sleepq_release(ident);
414 	if (wakeup_swapper)
415 		kick_proc0();
416 }
417 
418 static void
419 kdb_switch(void)
420 {
421 	thread_unlock(curthread);
422 	kdb_backtrace();
423 	kdb_reenter();
424 	panic("%s: did not reenter debugger", __func__);
425 }
426 
427 /*
428  * The machine independent parts of context switching.
429  */
430 void
431 mi_switch(int flags, struct thread *newtd)
432 {
433 	uint64_t runtime, new_switchtime;
434 	struct thread *td;
435 	struct proc *p;
436 
437 	td = curthread;			/* XXX */
438 	THREAD_LOCK_ASSERT(td, MA_OWNED | MA_NOTRECURSED);
439 	p = td->td_proc;		/* XXX */
440 	KASSERT(!TD_ON_RUNQ(td), ("mi_switch: called by old code"));
441 #ifdef INVARIANTS
442 	if (!TD_ON_LOCK(td) && !TD_IS_RUNNING(td))
443 		mtx_assert(&Giant, MA_NOTOWNED);
444 #endif
445 	KASSERT(td->td_critnest == 1 || panicstr,
446 	    ("mi_switch: switch in a critical section"));
447 	KASSERT((flags & (SW_INVOL | SW_VOL)) != 0,
448 	    ("mi_switch: switch must be voluntary or involuntary"));
449 	KASSERT(newtd != curthread, ("mi_switch: preempting back to ourself"));
450 
451 	/*
452 	 * Don't perform context switches from the debugger.
453 	 */
454 	if (kdb_active)
455 		kdb_switch();
456 	if (SCHEDULER_STOPPED())
457 		return;
458 	if (flags & SW_VOL) {
459 		td->td_ru.ru_nvcsw++;
460 		td->td_swvoltick = ticks;
461 	} else
462 		td->td_ru.ru_nivcsw++;
463 #ifdef SCHED_STATS
464 	SCHED_STAT_INC(sched_switch_stats[flags & SW_TYPE_MASK]);
465 #endif
466 	/*
467 	 * Compute the amount of time during which the current
468 	 * thread was running, and add that to its total so far.
469 	 */
470 	new_switchtime = cpu_ticks();
471 	runtime = new_switchtime - PCPU_GET(switchtime);
472 	td->td_runtime += runtime;
473 	td->td_incruntime += runtime;
474 	PCPU_SET(switchtime, new_switchtime);
475 	td->td_generation++;	/* bump preempt-detect counter */
476 	PCPU_INC(cnt.v_swtch);
477 	PCPU_SET(switchticks, ticks);
478 	CTR4(KTR_PROC, "mi_switch: old thread %ld (td_sched %p, pid %ld, %s)",
479 	    td->td_tid, td->td_sched, p->p_pid, td->td_name);
480 #if (KTR_COMPILE & KTR_SCHED) != 0
481 	if (TD_IS_IDLETHREAD(td))
482 		KTR_STATE1(KTR_SCHED, "thread", sched_tdname(td), "idle",
483 		    "prio:%d", td->td_priority);
484 	else
485 		KTR_STATE3(KTR_SCHED, "thread", sched_tdname(td), KTDSTATE(td),
486 		    "prio:%d", td->td_priority, "wmesg:\"%s\"", td->td_wmesg,
487 		    "lockname:\"%s\"", td->td_lockname);
488 #endif
489 	SDT_PROBE0(sched, , , preempt);
490 #ifdef XEN
491 	PT_UPDATES_FLUSH();
492 #endif
493 	sched_switch(td, newtd, flags);
494 	KTR_STATE1(KTR_SCHED, "thread", sched_tdname(td), "running",
495 	    "prio:%d", td->td_priority);
496 
497 	CTR4(KTR_PROC, "mi_switch: new thread %ld (td_sched %p, pid %ld, %s)",
498 	    td->td_tid, td->td_sched, p->p_pid, td->td_name);
499 
500 	/*
501 	 * If the last thread was exiting, finish cleaning it up.
502 	 */
503 	if ((td = PCPU_GET(deadthread))) {
504 		PCPU_SET(deadthread, NULL);
505 		thread_stash(td);
506 	}
507 }
508 
509 /*
510  * Change thread state to be runnable, placing it on the run queue if
511  * it is in memory.  If it is swapped out, return true so our caller
512  * will know to awaken the swapper.
513  */
514 int
515 setrunnable(struct thread *td)
516 {
517 
518 	THREAD_LOCK_ASSERT(td, MA_OWNED);
519 	KASSERT(td->td_proc->p_state != PRS_ZOMBIE,
520 	    ("setrunnable: pid %d is a zombie", td->td_proc->p_pid));
521 	switch (td->td_state) {
522 	case TDS_RUNNING:
523 	case TDS_RUNQ:
524 		return (0);
525 	case TDS_INHIBITED:
526 		/*
527 		 * If we are only inhibited because we are swapped out
528 		 * then arange to swap in this process. Otherwise just return.
529 		 */
530 		if (td->td_inhibitors != TDI_SWAPPED)
531 			return (0);
532 		/* FALLTHROUGH */
533 	case TDS_CAN_RUN:
534 		break;
535 	default:
536 		printf("state is 0x%x", td->td_state);
537 		panic("setrunnable(2)");
538 	}
539 	if ((td->td_flags & TDF_INMEM) == 0) {
540 		if ((td->td_flags & TDF_SWAPINREQ) == 0) {
541 			td->td_flags |= TDF_SWAPINREQ;
542 			return (1);
543 		}
544 	} else
545 		sched_wakeup(td);
546 	return (0);
547 }
548 
549 /*
550  * Compute a tenex style load average of a quantity on
551  * 1, 5 and 15 minute intervals.
552  */
553 static void
554 loadav(void *arg)
555 {
556 	int i, nrun;
557 	struct loadavg *avg;
558 
559 	nrun = sched_load();
560 	avg = &averunnable;
561 
562 	for (i = 0; i < 3; i++)
563 		avg->ldavg[i] = (cexp[i] * avg->ldavg[i] +
564 		    nrun * FSCALE * (FSCALE - cexp[i])) >> FSHIFT;
565 
566 	/*
567 	 * Schedule the next update to occur after 5 seconds, but add a
568 	 * random variation to avoid synchronisation with processes that
569 	 * run at regular intervals.
570 	 */
571 	callout_reset_sbt(&loadav_callout,
572 	    SBT_1US * (4000000 + (int)(random() % 2000001)), SBT_1US,
573 	    loadav, NULL, C_DIRECT_EXEC | C_PREL(32));
574 }
575 
576 /* ARGSUSED */
577 static void
578 synch_setup(void *dummy)
579 {
580 	callout_init(&loadav_callout, CALLOUT_MPSAFE);
581 
582 	/* Kick off timeout driven events by calling first time. */
583 	loadav(NULL);
584 }
585 
586 int
587 should_yield(void)
588 {
589 
590 	return ((u_int)ticks - (u_int)curthread->td_swvoltick >= hogticks);
591 }
592 
593 void
594 maybe_yield(void)
595 {
596 
597 	if (should_yield())
598 		kern_yield(PRI_USER);
599 }
600 
601 void
602 kern_yield(int prio)
603 {
604 	struct thread *td;
605 
606 	td = curthread;
607 	DROP_GIANT();
608 	thread_lock(td);
609 	if (prio == PRI_USER)
610 		prio = td->td_user_pri;
611 	if (prio >= 0)
612 		sched_prio(td, prio);
613 	mi_switch(SW_VOL | SWT_RELINQUISH, NULL);
614 	thread_unlock(td);
615 	PICKUP_GIANT();
616 }
617 
618 /*
619  * General purpose yield system call.
620  */
621 int
622 sys_yield(struct thread *td, struct yield_args *uap)
623 {
624 
625 	thread_lock(td);
626 	if (PRI_BASE(td->td_pri_class) == PRI_TIMESHARE)
627 		sched_prio(td, PRI_MAX_TIMESHARE);
628 	mi_switch(SW_VOL | SWT_RELINQUISH, NULL);
629 	thread_unlock(td);
630 	td->td_retval[0] = 0;
631 	return (0);
632 }
633