1 /*- 2 * Copyright (c) 1982, 1986, 1990, 1991, 1993 3 * The Regents of the University of California. All rights reserved. 4 * (c) UNIX System Laboratories, Inc. 5 * All or some portions of this file are derived from material licensed 6 * to the University of California by American Telephone and Telegraph 7 * Co. or Unix System Laboratories, Inc. and are reproduced herein with 8 * the permission of UNIX System Laboratories, Inc. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 3. All advertising materials mentioning features or use of this software 19 * must display the following acknowledgement: 20 * This product includes software developed by the University of 21 * California, Berkeley and its contributors. 22 * 4. Neither the name of the University nor the names of its contributors 23 * may be used to endorse or promote products derived from this software 24 * without specific prior written permission. 25 * 26 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 28 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 29 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 30 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 36 * SUCH DAMAGE. 37 * 38 * @(#)kern_synch.c 8.9 (Berkeley) 5/19/95 39 * $Id: kern_synch.c,v 1.71 1999/01/08 17:31:10 eivind Exp $ 40 */ 41 42 #include "opt_ktrace.h" 43 44 #include <sys/param.h> 45 #include <sys/systm.h> 46 #include <sys/proc.h> 47 #include <sys/kernel.h> 48 #include <sys/signalvar.h> 49 #include <sys/resourcevar.h> 50 #include <sys/vmmeter.h> 51 #include <sys/sysctl.h> 52 #include <vm/vm.h> 53 #include <vm/vm_extern.h> 54 #ifdef KTRACE 55 #include <sys/uio.h> 56 #include <sys/ktrace.h> 57 #endif 58 59 #include <machine/cpu.h> 60 #ifdef SMP 61 #include <machine/smp.h> 62 #endif 63 #include <machine/limits.h> /* for UCHAR_MAX = typeof(p_priority)_MAX */ 64 65 static void rqinit __P((void *)); 66 SYSINIT(runqueue, SI_SUB_RUN_QUEUE, SI_ORDER_FIRST, rqinit, NULL) 67 68 u_char curpriority; /* usrpri of curproc */ 69 int lbolt; /* once a second sleep address */ 70 71 static void endtsleep __P((void *)); 72 static void roundrobin __P((void *arg)); 73 static void schedcpu __P((void *arg)); 74 static void updatepri __P((struct proc *p)); 75 76 #define MAXIMUM_SCHEDULE_QUANTUM (1000000) /* arbitrary limit */ 77 #ifndef DEFAULT_SCHEDULE_QUANTUM 78 #define DEFAULT_SCHEDULE_QUANTUM 10 79 #endif 80 static int quantum = DEFAULT_SCHEDULE_QUANTUM; /* default value */ 81 82 static int 83 sysctl_kern_quantum SYSCTL_HANDLER_ARGS 84 { 85 int error; 86 int new_val = quantum; 87 88 new_val = quantum; 89 error = sysctl_handle_int(oidp, &new_val, 0, req); 90 if (error == 0) { 91 if ((new_val > 0) && (new_val < MAXIMUM_SCHEDULE_QUANTUM)) { 92 quantum = new_val; 93 } else { 94 error = EINVAL; 95 } 96 } 97 return (error); 98 } 99 100 SYSCTL_PROC(_kern, OID_AUTO, quantum, CTLTYPE_INT|CTLFLAG_RW, 101 0, sizeof quantum, sysctl_kern_quantum, "I", ""); 102 103 /* maybe_resched: Decide if you need to reschedule or not 104 * taking the priorities and schedulers into account. 105 */ 106 static void maybe_resched(struct proc *chk) 107 { 108 struct proc *p = curproc; /* XXX */ 109 110 /* 111 * Compare priorities if the new process is on the same scheduler, 112 * otherwise the one on the more realtimeish scheduler wins. 113 * 114 * XXX idle scheduler still broken because proccess stays on idle 115 * scheduler during waits (such as when getting FS locks). If a 116 * standard process becomes runaway cpu-bound, the system can lockup 117 * due to idle-scheduler processes in wakeup never getting any cpu. 118 */ 119 if (p == 0 || 120 (chk->p_priority < curpriority && RTP_PRIO_BASE(p->p_rtprio.type) == RTP_PRIO_BASE(chk->p_rtprio.type)) || 121 RTP_PRIO_BASE(chk->p_rtprio.type) < RTP_PRIO_BASE(p->p_rtprio.type) 122 ) { 123 need_resched(); 124 } 125 } 126 127 #define ROUNDROBIN_INTERVAL (hz / quantum) 128 int roundrobin_interval(void) 129 { 130 return ROUNDROBIN_INTERVAL; 131 } 132 133 /* 134 * Force switch among equal priority processes every 100ms. 135 */ 136 /* ARGSUSED */ 137 static void 138 roundrobin(arg) 139 void *arg; 140 { 141 #ifndef SMP 142 struct proc *p = curproc; /* XXX */ 143 #endif 144 145 #ifdef SMP 146 need_resched(); 147 forward_roundrobin(); 148 #else 149 if (p == 0 || RTP_PRIO_NEED_RR(p->p_rtprio.type)) 150 need_resched(); 151 #endif 152 153 timeout(roundrobin, NULL, ROUNDROBIN_INTERVAL); 154 } 155 156 /* 157 * Constants for digital decay and forget: 158 * 90% of (p_estcpu) usage in 5 * loadav time 159 * 95% of (p_pctcpu) usage in 60 seconds (load insensitive) 160 * Note that, as ps(1) mentions, this can let percentages 161 * total over 100% (I've seen 137.9% for 3 processes). 162 * 163 * Note that statclock() updates p_estcpu and p_cpticks asynchronously. 164 * 165 * We wish to decay away 90% of p_estcpu in (5 * loadavg) seconds. 166 * That is, the system wants to compute a value of decay such 167 * that the following for loop: 168 * for (i = 0; i < (5 * loadavg); i++) 169 * p_estcpu *= decay; 170 * will compute 171 * p_estcpu *= 0.1; 172 * for all values of loadavg: 173 * 174 * Mathematically this loop can be expressed by saying: 175 * decay ** (5 * loadavg) ~= .1 176 * 177 * The system computes decay as: 178 * decay = (2 * loadavg) / (2 * loadavg + 1) 179 * 180 * We wish to prove that the system's computation of decay 181 * will always fulfill the equation: 182 * decay ** (5 * loadavg) ~= .1 183 * 184 * If we compute b as: 185 * b = 2 * loadavg 186 * then 187 * decay = b / (b + 1) 188 * 189 * We now need to prove two things: 190 * 1) Given factor ** (5 * loadavg) ~= .1, prove factor == b/(b+1) 191 * 2) Given b/(b+1) ** power ~= .1, prove power == (5 * loadavg) 192 * 193 * Facts: 194 * For x close to zero, exp(x) =~ 1 + x, since 195 * exp(x) = 0! + x**1/1! + x**2/2! + ... . 196 * therefore exp(-1/b) =~ 1 - (1/b) = (b-1)/b. 197 * For x close to zero, ln(1+x) =~ x, since 198 * ln(1+x) = x - x**2/2 + x**3/3 - ... -1 < x < 1 199 * therefore ln(b/(b+1)) = ln(1 - 1/(b+1)) =~ -1/(b+1). 200 * ln(.1) =~ -2.30 201 * 202 * Proof of (1): 203 * Solve (factor)**(power) =~ .1 given power (5*loadav): 204 * solving for factor, 205 * ln(factor) =~ (-2.30/5*loadav), or 206 * factor =~ exp(-1/((5/2.30)*loadav)) =~ exp(-1/(2*loadav)) = 207 * exp(-1/b) =~ (b-1)/b =~ b/(b+1). QED 208 * 209 * Proof of (2): 210 * Solve (factor)**(power) =~ .1 given factor == (b/(b+1)): 211 * solving for power, 212 * power*ln(b/(b+1)) =~ -2.30, or 213 * power =~ 2.3 * (b + 1) = 4.6*loadav + 2.3 =~ 5*loadav. QED 214 * 215 * Actual power values for the implemented algorithm are as follows: 216 * loadav: 1 2 3 4 217 * power: 5.68 10.32 14.94 19.55 218 */ 219 220 /* calculations for digital decay to forget 90% of usage in 5*loadav sec */ 221 #define loadfactor(loadav) (2 * (loadav)) 222 #define decay_cpu(loadfac, cpu) (((loadfac) * (cpu)) / ((loadfac) + FSCALE)) 223 224 /* decay 95% of `p_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */ 225 static fixpt_t ccpu = 0.95122942450071400909 * FSCALE; /* exp(-1/20) */ 226 SYSCTL_INT(_kern, OID_AUTO, ccpu, CTLFLAG_RD, &ccpu, 0, ""); 227 228 /* kernel uses `FSCALE', userland (SHOULD) use kern.fscale */ 229 static int fscale __unused = FSCALE; 230 SYSCTL_INT(_kern, OID_AUTO, fscale, CTLFLAG_RD, 0, FSCALE, ""); 231 232 /* 233 * If `ccpu' is not equal to `exp(-1/20)' and you still want to use the 234 * faster/more-accurate formula, you'll have to estimate CCPU_SHIFT below 235 * and possibly adjust FSHIFT in "param.h" so that (FSHIFT >= CCPU_SHIFT). 236 * 237 * To estimate CCPU_SHIFT for exp(-1/20), the following formula was used: 238 * 1 - exp(-1/20) ~= 0.0487 ~= 0.0488 == 1 (fixed pt, *11* bits). 239 * 240 * If you don't want to bother with the faster/more-accurate formula, you 241 * can set CCPU_SHIFT to (FSHIFT + 1) which will use a slower/less-accurate 242 * (more general) method of calculating the %age of CPU used by a process. 243 */ 244 #define CCPU_SHIFT 11 245 246 /* 247 * Recompute process priorities, every hz ticks. 248 */ 249 /* ARGSUSED */ 250 static void 251 schedcpu(arg) 252 void *arg; 253 { 254 register fixpt_t loadfac = loadfactor(averunnable.ldavg[0]); 255 register struct proc *p; 256 register int realstathz, s; 257 register unsigned int newcpu; 258 259 realstathz = stathz ? stathz : hz; 260 for (p = allproc.lh_first; p != 0; p = p->p_list.le_next) { 261 /* 262 * Increment time in/out of memory and sleep time 263 * (if sleeping). We ignore overflow; with 16-bit int's 264 * (remember them?) overflow takes 45 days. 265 */ 266 p->p_swtime++; 267 if (p->p_stat == SSLEEP || p->p_stat == SSTOP) 268 p->p_slptime++; 269 p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT; 270 /* 271 * If the process has slept the entire second, 272 * stop recalculating its priority until it wakes up. 273 */ 274 if (p->p_slptime > 1) 275 continue; 276 s = splhigh(); /* prevent state changes and protect run queue */ 277 /* 278 * p_pctcpu is only for ps. 279 */ 280 #if (FSHIFT >= CCPU_SHIFT) 281 p->p_pctcpu += (realstathz == 100)? 282 ((fixpt_t) p->p_cpticks) << (FSHIFT - CCPU_SHIFT): 283 100 * (((fixpt_t) p->p_cpticks) 284 << (FSHIFT - CCPU_SHIFT)) / realstathz; 285 #else 286 p->p_pctcpu += ((FSCALE - ccpu) * 287 (p->p_cpticks * FSCALE / realstathz)) >> FSHIFT; 288 #endif 289 p->p_cpticks = 0; 290 newcpu = (u_int) decay_cpu(loadfac, p->p_estcpu) + p->p_nice; 291 p->p_estcpu = min(newcpu, UCHAR_MAX); 292 resetpriority(p); 293 if (p->p_priority >= PUSER) { 294 #define PPQ (128 / NQS) /* priorities per queue */ 295 if ((p != curproc) && 296 #ifdef SMP 297 (u_char)p->p_oncpu == 0xff && /* idle */ 298 #endif 299 p->p_stat == SRUN && 300 (p->p_flag & P_INMEM) && 301 (p->p_priority / PPQ) != (p->p_usrpri / PPQ)) { 302 remrq(p); 303 p->p_priority = p->p_usrpri; 304 setrunqueue(p); 305 } else 306 p->p_priority = p->p_usrpri; 307 } 308 splx(s); 309 } 310 vmmeter(); 311 wakeup((caddr_t)&lbolt); 312 timeout(schedcpu, (void *)0, hz); 313 } 314 315 /* 316 * Recalculate the priority of a process after it has slept for a while. 317 * For all load averages >= 1 and max p_estcpu of 255, sleeping for at 318 * least six times the loadfactor will decay p_estcpu to zero. 319 */ 320 static void 321 updatepri(p) 322 register struct proc *p; 323 { 324 register unsigned int newcpu = p->p_estcpu; 325 register fixpt_t loadfac = loadfactor(averunnable.ldavg[0]); 326 327 if (p->p_slptime > 5 * loadfac) 328 p->p_estcpu = 0; 329 else { 330 p->p_slptime--; /* the first time was done in schedcpu */ 331 while (newcpu && --p->p_slptime) 332 newcpu = (int) decay_cpu(loadfac, newcpu); 333 p->p_estcpu = min(newcpu, UCHAR_MAX); 334 } 335 resetpriority(p); 336 } 337 338 /* 339 * We're only looking at 7 bits of the address; everything is 340 * aligned to 4, lots of things are aligned to greater powers 341 * of 2. Shift right by 8, i.e. drop the bottom 256 worth. 342 */ 343 #define TABLESIZE 128 344 static TAILQ_HEAD(slpquehead, proc) slpque[TABLESIZE]; 345 #define LOOKUP(x) (((intptr_t)(x) >> 8) & (TABLESIZE - 1)) 346 347 /* 348 * During autoconfiguration or after a panic, a sleep will simply 349 * lower the priority briefly to allow interrupts, then return. 350 * The priority to be used (safepri) is machine-dependent, thus this 351 * value is initialized and maintained in the machine-dependent layers. 352 * This priority will typically be 0, or the lowest priority 353 * that is safe for use on the interrupt stack; it can be made 354 * higher to block network software interrupts after panics. 355 */ 356 int safepri; 357 358 void 359 sleepinit() 360 { 361 int i; 362 363 for (i = 0; i < TABLESIZE; i++) 364 TAILQ_INIT(&slpque[i]); 365 } 366 367 /* 368 * General sleep call. Suspends the current process until a wakeup is 369 * performed on the specified identifier. The process will then be made 370 * runnable with the specified priority. Sleeps at most timo/hz seconds 371 * (0 means no timeout). If pri includes PCATCH flag, signals are checked 372 * before and after sleeping, else signals are not checked. Returns 0 if 373 * awakened, EWOULDBLOCK if the timeout expires. If PCATCH is set and a 374 * signal needs to be delivered, ERESTART is returned if the current system 375 * call should be restarted if possible, and EINTR is returned if the system 376 * call should be interrupted by the signal (return EINTR). 377 */ 378 int 379 tsleep(ident, priority, wmesg, timo) 380 void *ident; 381 int priority, timo; 382 const char *wmesg; 383 { 384 struct proc *p = curproc; 385 int s, sig, catch = priority & PCATCH; 386 struct callout_handle thandle; 387 388 #ifdef KTRACE 389 if (KTRPOINT(p, KTR_CSW)) 390 ktrcsw(p->p_tracep, 1, 0); 391 #endif 392 s = splhigh(); 393 if (cold || panicstr) { 394 /* 395 * After a panic, or during autoconfiguration, 396 * just give interrupts a chance, then just return; 397 * don't run any other procs or panic below, 398 * in case this is the idle process and already asleep. 399 */ 400 splx(safepri); 401 splx(s); 402 return (0); 403 } 404 KASSERT(p != NULL, ("tsleep1")); 405 KASSERT(ident != NULL && p->p_stat == SRUN, ("tsleep")); 406 /* 407 * Process may be sitting on a slpque if asleep() was called, remove 408 * it before re-adding. 409 */ 410 if (p->p_wchan != NULL) 411 unsleep(p); 412 413 p->p_wchan = ident; 414 p->p_wmesg = wmesg; 415 p->p_slptime = 0; 416 p->p_priority = priority & PRIMASK; 417 TAILQ_INSERT_TAIL(&slpque[LOOKUP(ident)], p, p_procq); 418 if (timo) 419 thandle = timeout(endtsleep, (void *)p, timo); 420 /* 421 * We put ourselves on the sleep queue and start our timeout 422 * before calling CURSIG, as we could stop there, and a wakeup 423 * or a SIGCONT (or both) could occur while we were stopped. 424 * A SIGCONT would cause us to be marked as SSLEEP 425 * without resuming us, thus we must be ready for sleep 426 * when CURSIG is called. If the wakeup happens while we're 427 * stopped, p->p_wchan will be 0 upon return from CURSIG. 428 */ 429 if (catch) { 430 p->p_flag |= P_SINTR; 431 if ((sig = CURSIG(p))) { 432 if (p->p_wchan) 433 unsleep(p); 434 p->p_stat = SRUN; 435 goto resume; 436 } 437 if (p->p_wchan == 0) { 438 catch = 0; 439 goto resume; 440 } 441 } else 442 sig = 0; 443 p->p_stat = SSLEEP; 444 p->p_stats->p_ru.ru_nvcsw++; 445 mi_switch(); 446 resume: 447 curpriority = p->p_usrpri; 448 splx(s); 449 p->p_flag &= ~P_SINTR; 450 if (p->p_flag & P_TIMEOUT) { 451 p->p_flag &= ~P_TIMEOUT; 452 if (sig == 0) { 453 #ifdef KTRACE 454 if (KTRPOINT(p, KTR_CSW)) 455 ktrcsw(p->p_tracep, 0, 0); 456 #endif 457 return (EWOULDBLOCK); 458 } 459 } else if (timo) 460 untimeout(endtsleep, (void *)p, thandle); 461 if (catch && (sig != 0 || (sig = CURSIG(p)))) { 462 #ifdef KTRACE 463 if (KTRPOINT(p, KTR_CSW)) 464 ktrcsw(p->p_tracep, 0, 0); 465 #endif 466 if (p->p_sigacts->ps_sigintr & sigmask(sig)) 467 return (EINTR); 468 return (ERESTART); 469 } 470 #ifdef KTRACE 471 if (KTRPOINT(p, KTR_CSW)) 472 ktrcsw(p->p_tracep, 0, 0); 473 #endif 474 return (0); 475 } 476 477 /* 478 * asleep() - async sleep call. Place process on wait queue and return 479 * immediately without blocking. The process stays runnable until await() 480 * is called. If ident is NULL, remove process from wait queue if it is still 481 * on one. 482 * 483 * Only the most recent sleep condition is effective when making successive 484 * calls to asleep() or when calling tsleep(). 485 * 486 * The timeout, if any, is not initiated until await() is called. The sleep 487 * priority, signal, and timeout is specified in the asleep() call but may be 488 * overriden in the await() call. 489 * 490 * <<<<<<<< EXPERIMENTAL, UNTESTED >>>>>>>>>> 491 */ 492 493 int 494 asleep(void *ident, int priority, const char *wmesg, int timo) 495 { 496 struct proc *p = curproc; 497 int s; 498 499 /* 500 * splhigh() while manipulating sleep structures and slpque. 501 * 502 * Remove preexisting wait condition (if any) and place process 503 * on appropriate slpque, but do not put process to sleep. 504 */ 505 506 s = splhigh(); 507 508 if (p->p_wchan != NULL) 509 unsleep(p); 510 511 if (ident) { 512 p->p_wchan = ident; 513 p->p_wmesg = wmesg; 514 p->p_slptime = 0; 515 p->p_asleep.as_priority = priority; 516 p->p_asleep.as_timo = timo; 517 TAILQ_INSERT_TAIL(&slpque[LOOKUP(ident)], p, p_procq); 518 } 519 520 splx(s); 521 522 return(0); 523 } 524 525 /* 526 * await() - wait for async condition to occur. The process blocks until 527 * wakeup() is called on the most recent asleep() address. If wakeup is called 528 * priority to await(), await() winds up being a NOP. 529 * 530 * If await() is called more then once (without an intervening asleep() call), 531 * await() is still effectively a NOP but it calls mi_switch() to give other 532 * processes some cpu before returning. The process is left runnable. 533 * 534 * <<<<<<<< EXPERIMENTAL, UNTESTED >>>>>>>>>> 535 */ 536 537 int 538 await(int priority, int timo) 539 { 540 struct proc *p = curproc; 541 int s; 542 543 s = splhigh(); 544 545 if (p->p_wchan != NULL) { 546 struct callout_handle thandle; 547 int sig; 548 int catch; 549 550 /* 551 * The call to await() can override defaults specified in 552 * the original asleep(). 553 */ 554 if (priority < 0) 555 priority = p->p_asleep.as_priority; 556 if (timo < 0) 557 timo = p->p_asleep.as_timo; 558 559 /* 560 * Install timeout 561 */ 562 563 if (timo) 564 thandle = timeout(endtsleep, (void *)p, timo); 565 566 sig = 0; 567 catch = priority & PCATCH; 568 569 if (catch) { 570 p->p_flag |= P_SINTR; 571 if ((sig = CURSIG(p))) { 572 if (p->p_wchan) 573 unsleep(p); 574 p->p_stat = SRUN; 575 goto resume; 576 } 577 if (p->p_wchan == NULL) { 578 catch = 0; 579 goto resume; 580 } 581 } 582 p->p_stat = SSLEEP; 583 p->p_stats->p_ru.ru_nvcsw++; 584 mi_switch(); 585 resume: 586 curpriority = p->p_usrpri; 587 588 splx(s); 589 p->p_flag &= ~P_SINTR; 590 if (p->p_flag & P_TIMEOUT) { 591 p->p_flag &= ~P_TIMEOUT; 592 if (sig == 0) { 593 #ifdef KTRACE 594 if (KTRPOINT(p, KTR_CSW)) 595 ktrcsw(p->p_tracep, 0, 0); 596 #endif 597 return (EWOULDBLOCK); 598 } 599 } else if (timo) 600 untimeout(endtsleep, (void *)p, thandle); 601 if (catch && (sig != 0 || (sig = CURSIG(p)))) { 602 #ifdef KTRACE 603 if (KTRPOINT(p, KTR_CSW)) 604 ktrcsw(p->p_tracep, 0, 0); 605 #endif 606 if (p->p_sigacts->ps_sigintr & sigmask(sig)) 607 return (EINTR); 608 return (ERESTART); 609 } 610 #ifdef KTRACE 611 if (KTRPOINT(p, KTR_CSW)) 612 ktrcsw(p->p_tracep, 0, 0); 613 #endif 614 } else { 615 /* 616 * If as_priority is 0, await() has been called without an 617 * intervening asleep(). We are still effectively a NOP, 618 * but we call mi_switch() for safety. 619 */ 620 621 if (p->p_asleep.as_priority == 0) { 622 p->p_stats->p_ru.ru_nvcsw++; 623 mi_switch(); 624 } 625 splx(s); 626 } 627 628 /* 629 * clear p_asleep.as_priority as an indication that await() has been 630 * called. If await() is called again without an intervening asleep(), 631 * await() is still effectively a NOP but the above mi_switch() code 632 * is triggered as a safety. 633 */ 634 p->p_asleep.as_priority = 0; 635 636 return (0); 637 } 638 639 /* 640 * Implement timeout for tsleep or asleep()/await() 641 * 642 * If process hasn't been awakened (wchan non-zero), 643 * set timeout flag and undo the sleep. If proc 644 * is stopped, just unsleep so it will remain stopped. 645 */ 646 static void 647 endtsleep(arg) 648 void *arg; 649 { 650 register struct proc *p; 651 int s; 652 653 p = (struct proc *)arg; 654 s = splhigh(); 655 if (p->p_wchan) { 656 if (p->p_stat == SSLEEP) 657 setrunnable(p); 658 else 659 unsleep(p); 660 p->p_flag |= P_TIMEOUT; 661 } 662 splx(s); 663 } 664 665 /* 666 * Remove a process from its wait queue 667 */ 668 void 669 unsleep(p) 670 register struct proc *p; 671 { 672 int s; 673 674 s = splhigh(); 675 if (p->p_wchan) { 676 TAILQ_REMOVE(&slpque[LOOKUP(p->p_wchan)], p, p_procq); 677 p->p_wchan = 0; 678 } 679 splx(s); 680 } 681 682 /* 683 * Make all processes sleeping on the specified identifier runnable. 684 */ 685 void 686 wakeup(ident) 687 register void *ident; 688 { 689 register struct slpquehead *qp; 690 register struct proc *p; 691 int s; 692 693 s = splhigh(); 694 qp = &slpque[LOOKUP(ident)]; 695 restart: 696 for (p = qp->tqh_first; p != NULL; p = p->p_procq.tqe_next) { 697 if (p->p_wchan == ident) { 698 TAILQ_REMOVE(qp, p, p_procq); 699 p->p_wchan = 0; 700 if (p->p_stat == SSLEEP) { 701 /* OPTIMIZED EXPANSION OF setrunnable(p); */ 702 if (p->p_slptime > 1) 703 updatepri(p); 704 p->p_slptime = 0; 705 p->p_stat = SRUN; 706 if (p->p_flag & P_INMEM) { 707 setrunqueue(p); 708 maybe_resched(p); 709 } else { 710 p->p_flag |= P_SWAPINREQ; 711 wakeup((caddr_t)&proc0); 712 } 713 /* END INLINE EXPANSION */ 714 goto restart; 715 } 716 } 717 } 718 splx(s); 719 } 720 721 /* 722 * Make a process sleeping on the specified identifier runnable. 723 * May wake more than one process if a target prcoess is currently 724 * swapped out. 725 */ 726 void 727 wakeup_one(ident) 728 register void *ident; 729 { 730 register struct slpquehead *qp; 731 register struct proc *p; 732 int s; 733 734 s = splhigh(); 735 qp = &slpque[LOOKUP(ident)]; 736 737 for (p = qp->tqh_first; p != NULL; p = p->p_procq.tqe_next) { 738 if (p->p_wchan == ident) { 739 TAILQ_REMOVE(qp, p, p_procq); 740 p->p_wchan = 0; 741 if (p->p_stat == SSLEEP) { 742 /* OPTIMIZED EXPANSION OF setrunnable(p); */ 743 if (p->p_slptime > 1) 744 updatepri(p); 745 p->p_slptime = 0; 746 p->p_stat = SRUN; 747 if (p->p_flag & P_INMEM) { 748 setrunqueue(p); 749 maybe_resched(p); 750 break; 751 } else { 752 p->p_flag |= P_SWAPINREQ; 753 wakeup((caddr_t)&proc0); 754 } 755 /* END INLINE EXPANSION */ 756 } 757 } 758 } 759 splx(s); 760 } 761 762 /* 763 * The machine independent parts of mi_switch(). 764 * Must be called at splstatclock() or higher. 765 */ 766 void 767 mi_switch() 768 { 769 register struct proc *p = curproc; /* XXX */ 770 register struct rlimit *rlim; 771 int x; 772 773 /* 774 * XXX this spl is almost unnecessary. It is partly to allow for 775 * sloppy callers that don't do it (issignal() via CURSIG() is the 776 * main offender). It is partly to work around a bug in the i386 777 * cpu_switch() (the ipl is not preserved). We ran for years 778 * without it. I think there was only a interrupt latency problem. 779 * The main caller, tsleep(), does an splx() a couple of instructions 780 * after calling here. The buggy caller, issignal(), usually calls 781 * here at spl0() and sometimes returns at splhigh(). The process 782 * then runs for a little too long at splhigh(). The ipl gets fixed 783 * when the process returns to user mode (or earlier). 784 * 785 * It would probably be better to always call here at spl0(). Callers 786 * are prepared to give up control to another process, so they must 787 * be prepared to be interrupted. The clock stuff here may not 788 * actually need splstatclock(). 789 */ 790 x = splstatclock(); 791 792 #ifdef SIMPLELOCK_DEBUG 793 if (p->p_simple_locks) 794 printf("sleep: holding simple lock\n"); 795 #endif 796 /* 797 * Compute the amount of time during which the current 798 * process was running, and add that to its total so far. 799 */ 800 microuptime(&switchtime); 801 p->p_runtime += (switchtime.tv_usec - p->p_switchtime.tv_usec) + 802 (switchtime.tv_sec - p->p_switchtime.tv_sec) * (int64_t)1000000; 803 804 /* 805 * Check if the process exceeds its cpu resource allocation. 806 * If over max, kill it. 807 */ 808 if (p->p_stat != SZOMB && p->p_limit->p_cpulimit != RLIM_INFINITY && 809 p->p_runtime > p->p_limit->p_cpulimit) { 810 rlim = &p->p_rlimit[RLIMIT_CPU]; 811 if (p->p_runtime / (rlim_t)1000000 >= rlim->rlim_max) { 812 killproc(p, "exceeded maximum CPU limit"); 813 } else { 814 psignal(p, SIGXCPU); 815 if (rlim->rlim_cur < rlim->rlim_max) { 816 /* XXX: we should make a private copy */ 817 rlim->rlim_cur += 5; 818 } 819 } 820 } 821 822 /* 823 * Pick a new current process and record its start time. 824 */ 825 cnt.v_swtch++; 826 cpu_switch(p); 827 if (switchtime.tv_sec) 828 p->p_switchtime = switchtime; 829 else 830 microuptime(&p->p_switchtime); 831 splx(x); 832 } 833 834 /* 835 * Initialize the (doubly-linked) run queues 836 * to be empty. 837 */ 838 /* ARGSUSED*/ 839 static void 840 rqinit(dummy) 841 void *dummy; 842 { 843 register int i; 844 845 for (i = 0; i < NQS; i++) { 846 qs[i].ph_link = qs[i].ph_rlink = (struct proc *)&qs[i]; 847 rtqs[i].ph_link = rtqs[i].ph_rlink = (struct proc *)&rtqs[i]; 848 idqs[i].ph_link = idqs[i].ph_rlink = (struct proc *)&idqs[i]; 849 } 850 } 851 852 /* 853 * Change process state to be runnable, 854 * placing it on the run queue if it is in memory, 855 * and awakening the swapper if it isn't in memory. 856 */ 857 void 858 setrunnable(p) 859 register struct proc *p; 860 { 861 register int s; 862 863 s = splhigh(); 864 switch (p->p_stat) { 865 case 0: 866 case SRUN: 867 case SZOMB: 868 default: 869 panic("setrunnable"); 870 case SSTOP: 871 case SSLEEP: 872 unsleep(p); /* e.g. when sending signals */ 873 break; 874 875 case SIDL: 876 break; 877 } 878 p->p_stat = SRUN; 879 if (p->p_flag & P_INMEM) 880 setrunqueue(p); 881 splx(s); 882 if (p->p_slptime > 1) 883 updatepri(p); 884 p->p_slptime = 0; 885 if ((p->p_flag & P_INMEM) == 0) { 886 p->p_flag |= P_SWAPINREQ; 887 wakeup((caddr_t)&proc0); 888 } 889 else 890 maybe_resched(p); 891 } 892 893 /* 894 * Compute the priority of a process when running in user mode. 895 * Arrange to reschedule if the resulting priority is better 896 * than that of the current process. 897 */ 898 void 899 resetpriority(p) 900 register struct proc *p; 901 { 902 register unsigned int newpriority; 903 904 if (p->p_rtprio.type == RTP_PRIO_NORMAL) { 905 newpriority = PUSER + p->p_estcpu / 4 + 2 * p->p_nice; 906 newpriority = min(newpriority, MAXPRI); 907 p->p_usrpri = newpriority; 908 } 909 maybe_resched(p); 910 } 911 912 /* ARGSUSED */ 913 static void sched_setup __P((void *dummy)); 914 static void 915 sched_setup(dummy) 916 void *dummy; 917 { 918 /* Kick off timeout driven events by calling first time. */ 919 roundrobin(NULL); 920 schedcpu(NULL); 921 } 922 SYSINIT(sched_setup, SI_SUB_KICK_SCHEDULER, SI_ORDER_FIRST, sched_setup, NULL) 923 924