xref: /freebsd/sys/kern/kern_synch.c (revision 2ad872c5794e4c26fdf6ed219ad3f09ca0d5304a)
1 /*-
2  * Copyright (c) 1982, 1986, 1990, 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  * (c) UNIX System Laboratories, Inc.
5  * All or some portions of this file are derived from material licensed
6  * to the University of California by American Telephone and Telegraph
7  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8  * the permission of UNIX System Laboratories, Inc.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. All advertising materials mentioning features or use of this software
19  *    must display the following acknowledgement:
20  *	This product includes software developed by the University of
21  *	California, Berkeley and its contributors.
22  * 4. Neither the name of the University nor the names of its contributors
23  *    may be used to endorse or promote products derived from this software
24  *    without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36  * SUCH DAMAGE.
37  *
38  *	@(#)kern_synch.c	8.9 (Berkeley) 5/19/95
39  * $Id: kern_synch.c,v 1.71 1999/01/08 17:31:10 eivind Exp $
40  */
41 
42 #include "opt_ktrace.h"
43 
44 #include <sys/param.h>
45 #include <sys/systm.h>
46 #include <sys/proc.h>
47 #include <sys/kernel.h>
48 #include <sys/signalvar.h>
49 #include <sys/resourcevar.h>
50 #include <sys/vmmeter.h>
51 #include <sys/sysctl.h>
52 #include <vm/vm.h>
53 #include <vm/vm_extern.h>
54 #ifdef KTRACE
55 #include <sys/uio.h>
56 #include <sys/ktrace.h>
57 #endif
58 
59 #include <machine/cpu.h>
60 #ifdef SMP
61 #include <machine/smp.h>
62 #endif
63 #include <machine/limits.h>	/* for UCHAR_MAX = typeof(p_priority)_MAX */
64 
65 static void rqinit __P((void *));
66 SYSINIT(runqueue, SI_SUB_RUN_QUEUE, SI_ORDER_FIRST, rqinit, NULL)
67 
68 u_char	curpriority;		/* usrpri of curproc */
69 int	lbolt;			/* once a second sleep address */
70 
71 static void	endtsleep __P((void *));
72 static void	roundrobin __P((void *arg));
73 static void	schedcpu __P((void *arg));
74 static void	updatepri __P((struct proc *p));
75 
76 #define MAXIMUM_SCHEDULE_QUANTUM	(1000000) /* arbitrary limit */
77 #ifndef DEFAULT_SCHEDULE_QUANTUM
78 #define DEFAULT_SCHEDULE_QUANTUM 10
79 #endif
80 static int quantum = DEFAULT_SCHEDULE_QUANTUM; /* default value */
81 
82 static int
83 sysctl_kern_quantum SYSCTL_HANDLER_ARGS
84 {
85 	int error;
86 	int new_val = quantum;
87 
88 	new_val = quantum;
89 	error = sysctl_handle_int(oidp, &new_val, 0, req);
90 	if (error == 0) {
91 		if ((new_val > 0) && (new_val < MAXIMUM_SCHEDULE_QUANTUM)) {
92 			quantum = new_val;
93 		} else {
94 			error = EINVAL;
95 		}
96 	}
97 	return (error);
98 }
99 
100 SYSCTL_PROC(_kern, OID_AUTO, quantum, CTLTYPE_INT|CTLFLAG_RW,
101 	0, sizeof quantum, sysctl_kern_quantum, "I", "");
102 
103 /* maybe_resched: Decide if you need to reschedule or not
104  * taking the priorities and schedulers into account.
105  */
106 static void maybe_resched(struct proc *chk)
107 {
108 	struct proc *p = curproc; /* XXX */
109 
110 	/*
111 	 * Compare priorities if the new process is on the same scheduler,
112 	 * otherwise the one on the more realtimeish scheduler wins.
113 	 *
114 	 * XXX idle scheduler still broken because proccess stays on idle
115 	 * scheduler during waits (such as when getting FS locks).  If a
116 	 * standard process becomes runaway cpu-bound, the system can lockup
117 	 * due to idle-scheduler processes in wakeup never getting any cpu.
118 	 */
119 	if (p == 0 ||
120 		(chk->p_priority < curpriority && RTP_PRIO_BASE(p->p_rtprio.type) == RTP_PRIO_BASE(chk->p_rtprio.type)) ||
121 		RTP_PRIO_BASE(chk->p_rtprio.type) < RTP_PRIO_BASE(p->p_rtprio.type)
122 	) {
123 		need_resched();
124 	}
125 }
126 
127 #define ROUNDROBIN_INTERVAL (hz / quantum)
128 int roundrobin_interval(void)
129 {
130 	return ROUNDROBIN_INTERVAL;
131 }
132 
133 /*
134  * Force switch among equal priority processes every 100ms.
135  */
136 /* ARGSUSED */
137 static void
138 roundrobin(arg)
139 	void *arg;
140 {
141 #ifndef SMP
142  	struct proc *p = curproc; /* XXX */
143 #endif
144 
145 #ifdef SMP
146 	need_resched();
147 	forward_roundrobin();
148 #else
149  	if (p == 0 || RTP_PRIO_NEED_RR(p->p_rtprio.type))
150  		need_resched();
151 #endif
152 
153  	timeout(roundrobin, NULL, ROUNDROBIN_INTERVAL);
154 }
155 
156 /*
157  * Constants for digital decay and forget:
158  *	90% of (p_estcpu) usage in 5 * loadav time
159  *	95% of (p_pctcpu) usage in 60 seconds (load insensitive)
160  *          Note that, as ps(1) mentions, this can let percentages
161  *          total over 100% (I've seen 137.9% for 3 processes).
162  *
163  * Note that statclock() updates p_estcpu and p_cpticks asynchronously.
164  *
165  * We wish to decay away 90% of p_estcpu in (5 * loadavg) seconds.
166  * That is, the system wants to compute a value of decay such
167  * that the following for loop:
168  * 	for (i = 0; i < (5 * loadavg); i++)
169  * 		p_estcpu *= decay;
170  * will compute
171  * 	p_estcpu *= 0.1;
172  * for all values of loadavg:
173  *
174  * Mathematically this loop can be expressed by saying:
175  * 	decay ** (5 * loadavg) ~= .1
176  *
177  * The system computes decay as:
178  * 	decay = (2 * loadavg) / (2 * loadavg + 1)
179  *
180  * We wish to prove that the system's computation of decay
181  * will always fulfill the equation:
182  * 	decay ** (5 * loadavg) ~= .1
183  *
184  * If we compute b as:
185  * 	b = 2 * loadavg
186  * then
187  * 	decay = b / (b + 1)
188  *
189  * We now need to prove two things:
190  *	1) Given factor ** (5 * loadavg) ~= .1, prove factor == b/(b+1)
191  *	2) Given b/(b+1) ** power ~= .1, prove power == (5 * loadavg)
192  *
193  * Facts:
194  *         For x close to zero, exp(x) =~ 1 + x, since
195  *              exp(x) = 0! + x**1/1! + x**2/2! + ... .
196  *              therefore exp(-1/b) =~ 1 - (1/b) = (b-1)/b.
197  *         For x close to zero, ln(1+x) =~ x, since
198  *              ln(1+x) = x - x**2/2 + x**3/3 - ...     -1 < x < 1
199  *              therefore ln(b/(b+1)) = ln(1 - 1/(b+1)) =~ -1/(b+1).
200  *         ln(.1) =~ -2.30
201  *
202  * Proof of (1):
203  *    Solve (factor)**(power) =~ .1 given power (5*loadav):
204  *	solving for factor,
205  *      ln(factor) =~ (-2.30/5*loadav), or
206  *      factor =~ exp(-1/((5/2.30)*loadav)) =~ exp(-1/(2*loadav)) =
207  *          exp(-1/b) =~ (b-1)/b =~ b/(b+1).                    QED
208  *
209  * Proof of (2):
210  *    Solve (factor)**(power) =~ .1 given factor == (b/(b+1)):
211  *	solving for power,
212  *      power*ln(b/(b+1)) =~ -2.30, or
213  *      power =~ 2.3 * (b + 1) = 4.6*loadav + 2.3 =~ 5*loadav.  QED
214  *
215  * Actual power values for the implemented algorithm are as follows:
216  *      loadav: 1       2       3       4
217  *      power:  5.68    10.32   14.94   19.55
218  */
219 
220 /* calculations for digital decay to forget 90% of usage in 5*loadav sec */
221 #define	loadfactor(loadav)	(2 * (loadav))
222 #define	decay_cpu(loadfac, cpu)	(((loadfac) * (cpu)) / ((loadfac) + FSCALE))
223 
224 /* decay 95% of `p_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */
225 static fixpt_t	ccpu = 0.95122942450071400909 * FSCALE;	/* exp(-1/20) */
226 SYSCTL_INT(_kern, OID_AUTO, ccpu, CTLFLAG_RD, &ccpu, 0, "");
227 
228 /* kernel uses `FSCALE', userland (SHOULD) use kern.fscale */
229 static int	fscale __unused = FSCALE;
230 SYSCTL_INT(_kern, OID_AUTO, fscale, CTLFLAG_RD, 0, FSCALE, "");
231 
232 /*
233  * If `ccpu' is not equal to `exp(-1/20)' and you still want to use the
234  * faster/more-accurate formula, you'll have to estimate CCPU_SHIFT below
235  * and possibly adjust FSHIFT in "param.h" so that (FSHIFT >= CCPU_SHIFT).
236  *
237  * To estimate CCPU_SHIFT for exp(-1/20), the following formula was used:
238  *	1 - exp(-1/20) ~= 0.0487 ~= 0.0488 == 1 (fixed pt, *11* bits).
239  *
240  * If you don't want to bother with the faster/more-accurate formula, you
241  * can set CCPU_SHIFT to (FSHIFT + 1) which will use a slower/less-accurate
242  * (more general) method of calculating the %age of CPU used by a process.
243  */
244 #define	CCPU_SHIFT	11
245 
246 /*
247  * Recompute process priorities, every hz ticks.
248  */
249 /* ARGSUSED */
250 static void
251 schedcpu(arg)
252 	void *arg;
253 {
254 	register fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
255 	register struct proc *p;
256 	register int realstathz, s;
257 	register unsigned int newcpu;
258 
259 	realstathz = stathz ? stathz : hz;
260 	for (p = allproc.lh_first; p != 0; p = p->p_list.le_next) {
261 		/*
262 		 * Increment time in/out of memory and sleep time
263 		 * (if sleeping).  We ignore overflow; with 16-bit int's
264 		 * (remember them?) overflow takes 45 days.
265 		 */
266 		p->p_swtime++;
267 		if (p->p_stat == SSLEEP || p->p_stat == SSTOP)
268 			p->p_slptime++;
269 		p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT;
270 		/*
271 		 * If the process has slept the entire second,
272 		 * stop recalculating its priority until it wakes up.
273 		 */
274 		if (p->p_slptime > 1)
275 			continue;
276 		s = splhigh();	/* prevent state changes and protect run queue */
277 		/*
278 		 * p_pctcpu is only for ps.
279 		 */
280 #if	(FSHIFT >= CCPU_SHIFT)
281 		p->p_pctcpu += (realstathz == 100)?
282 			((fixpt_t) p->p_cpticks) << (FSHIFT - CCPU_SHIFT):
283                 	100 * (((fixpt_t) p->p_cpticks)
284 				<< (FSHIFT - CCPU_SHIFT)) / realstathz;
285 #else
286 		p->p_pctcpu += ((FSCALE - ccpu) *
287 			(p->p_cpticks * FSCALE / realstathz)) >> FSHIFT;
288 #endif
289 		p->p_cpticks = 0;
290 		newcpu = (u_int) decay_cpu(loadfac, p->p_estcpu) + p->p_nice;
291 		p->p_estcpu = min(newcpu, UCHAR_MAX);
292 		resetpriority(p);
293 		if (p->p_priority >= PUSER) {
294 #define	PPQ	(128 / NQS)		/* priorities per queue */
295 			if ((p != curproc) &&
296 #ifdef SMP
297 			    (u_char)p->p_oncpu == 0xff && 	/* idle */
298 #endif
299 			    p->p_stat == SRUN &&
300 			    (p->p_flag & P_INMEM) &&
301 			    (p->p_priority / PPQ) != (p->p_usrpri / PPQ)) {
302 				remrq(p);
303 				p->p_priority = p->p_usrpri;
304 				setrunqueue(p);
305 			} else
306 				p->p_priority = p->p_usrpri;
307 		}
308 		splx(s);
309 	}
310 	vmmeter();
311 	wakeup((caddr_t)&lbolt);
312 	timeout(schedcpu, (void *)0, hz);
313 }
314 
315 /*
316  * Recalculate the priority of a process after it has slept for a while.
317  * For all load averages >= 1 and max p_estcpu of 255, sleeping for at
318  * least six times the loadfactor will decay p_estcpu to zero.
319  */
320 static void
321 updatepri(p)
322 	register struct proc *p;
323 {
324 	register unsigned int newcpu = p->p_estcpu;
325 	register fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
326 
327 	if (p->p_slptime > 5 * loadfac)
328 		p->p_estcpu = 0;
329 	else {
330 		p->p_slptime--;	/* the first time was done in schedcpu */
331 		while (newcpu && --p->p_slptime)
332 			newcpu = (int) decay_cpu(loadfac, newcpu);
333 		p->p_estcpu = min(newcpu, UCHAR_MAX);
334 	}
335 	resetpriority(p);
336 }
337 
338 /*
339  * We're only looking at 7 bits of the address; everything is
340  * aligned to 4, lots of things are aligned to greater powers
341  * of 2.  Shift right by 8, i.e. drop the bottom 256 worth.
342  */
343 #define TABLESIZE	128
344 static TAILQ_HEAD(slpquehead, proc) slpque[TABLESIZE];
345 #define LOOKUP(x)	(((intptr_t)(x) >> 8) & (TABLESIZE - 1))
346 
347 /*
348  * During autoconfiguration or after a panic, a sleep will simply
349  * lower the priority briefly to allow interrupts, then return.
350  * The priority to be used (safepri) is machine-dependent, thus this
351  * value is initialized and maintained in the machine-dependent layers.
352  * This priority will typically be 0, or the lowest priority
353  * that is safe for use on the interrupt stack; it can be made
354  * higher to block network software interrupts after panics.
355  */
356 int safepri;
357 
358 void
359 sleepinit()
360 {
361 	int i;
362 
363 	for (i = 0; i < TABLESIZE; i++)
364 		TAILQ_INIT(&slpque[i]);
365 }
366 
367 /*
368  * General sleep call.  Suspends the current process until a wakeup is
369  * performed on the specified identifier.  The process will then be made
370  * runnable with the specified priority.  Sleeps at most timo/hz seconds
371  * (0 means no timeout).  If pri includes PCATCH flag, signals are checked
372  * before and after sleeping, else signals are not checked.  Returns 0 if
373  * awakened, EWOULDBLOCK if the timeout expires.  If PCATCH is set and a
374  * signal needs to be delivered, ERESTART is returned if the current system
375  * call should be restarted if possible, and EINTR is returned if the system
376  * call should be interrupted by the signal (return EINTR).
377  */
378 int
379 tsleep(ident, priority, wmesg, timo)
380 	void *ident;
381 	int priority, timo;
382 	const char *wmesg;
383 {
384 	struct proc *p = curproc;
385 	int s, sig, catch = priority & PCATCH;
386 	struct callout_handle thandle;
387 
388 #ifdef KTRACE
389 	if (KTRPOINT(p, KTR_CSW))
390 		ktrcsw(p->p_tracep, 1, 0);
391 #endif
392 	s = splhigh();
393 	if (cold || panicstr) {
394 		/*
395 		 * After a panic, or during autoconfiguration,
396 		 * just give interrupts a chance, then just return;
397 		 * don't run any other procs or panic below,
398 		 * in case this is the idle process and already asleep.
399 		 */
400 		splx(safepri);
401 		splx(s);
402 		return (0);
403 	}
404 	KASSERT(p != NULL, ("tsleep1"));
405 	KASSERT(ident != NULL && p->p_stat == SRUN, ("tsleep"));
406 	/*
407 	 * Process may be sitting on a slpque if asleep() was called, remove
408 	 * it before re-adding.
409 	 */
410 	if (p->p_wchan != NULL)
411 		unsleep(p);
412 
413 	p->p_wchan = ident;
414 	p->p_wmesg = wmesg;
415 	p->p_slptime = 0;
416 	p->p_priority = priority & PRIMASK;
417 	TAILQ_INSERT_TAIL(&slpque[LOOKUP(ident)], p, p_procq);
418 	if (timo)
419 		thandle = timeout(endtsleep, (void *)p, timo);
420 	/*
421 	 * We put ourselves on the sleep queue and start our timeout
422 	 * before calling CURSIG, as we could stop there, and a wakeup
423 	 * or a SIGCONT (or both) could occur while we were stopped.
424 	 * A SIGCONT would cause us to be marked as SSLEEP
425 	 * without resuming us, thus we must be ready for sleep
426 	 * when CURSIG is called.  If the wakeup happens while we're
427 	 * stopped, p->p_wchan will be 0 upon return from CURSIG.
428 	 */
429 	if (catch) {
430 		p->p_flag |= P_SINTR;
431 		if ((sig = CURSIG(p))) {
432 			if (p->p_wchan)
433 				unsleep(p);
434 			p->p_stat = SRUN;
435 			goto resume;
436 		}
437 		if (p->p_wchan == 0) {
438 			catch = 0;
439 			goto resume;
440 		}
441 	} else
442 		sig = 0;
443 	p->p_stat = SSLEEP;
444 	p->p_stats->p_ru.ru_nvcsw++;
445 	mi_switch();
446 resume:
447 	curpriority = p->p_usrpri;
448 	splx(s);
449 	p->p_flag &= ~P_SINTR;
450 	if (p->p_flag & P_TIMEOUT) {
451 		p->p_flag &= ~P_TIMEOUT;
452 		if (sig == 0) {
453 #ifdef KTRACE
454 			if (KTRPOINT(p, KTR_CSW))
455 				ktrcsw(p->p_tracep, 0, 0);
456 #endif
457 			return (EWOULDBLOCK);
458 		}
459 	} else if (timo)
460 		untimeout(endtsleep, (void *)p, thandle);
461 	if (catch && (sig != 0 || (sig = CURSIG(p)))) {
462 #ifdef KTRACE
463 		if (KTRPOINT(p, KTR_CSW))
464 			ktrcsw(p->p_tracep, 0, 0);
465 #endif
466 		if (p->p_sigacts->ps_sigintr & sigmask(sig))
467 			return (EINTR);
468 		return (ERESTART);
469 	}
470 #ifdef KTRACE
471 	if (KTRPOINT(p, KTR_CSW))
472 		ktrcsw(p->p_tracep, 0, 0);
473 #endif
474 	return (0);
475 }
476 
477 /*
478  * asleep() - async sleep call.  Place process on wait queue and return
479  * immediately without blocking.  The process stays runnable until await()
480  * is called.  If ident is NULL, remove process from wait queue if it is still
481  * on one.
482  *
483  * Only the most recent sleep condition is effective when making successive
484  * calls to asleep() or when calling tsleep().
485  *
486  * The timeout, if any, is not initiated until await() is called.  The sleep
487  * priority, signal, and timeout is specified in the asleep() call but may be
488  * overriden in the await() call.
489  *
490  * <<<<<<<< EXPERIMENTAL, UNTESTED >>>>>>>>>>
491  */
492 
493 int
494 asleep(void *ident, int priority, const char *wmesg, int timo)
495 {
496 	struct proc *p = curproc;
497 	int s;
498 
499 	/*
500 	 * splhigh() while manipulating sleep structures and slpque.
501 	 *
502 	 * Remove preexisting wait condition (if any) and place process
503 	 * on appropriate slpque, but do not put process to sleep.
504 	 */
505 
506 	s = splhigh();
507 
508 	if (p->p_wchan != NULL)
509 		unsleep(p);
510 
511 	if (ident) {
512 		p->p_wchan = ident;
513 		p->p_wmesg = wmesg;
514 		p->p_slptime = 0;
515 		p->p_asleep.as_priority = priority;
516 		p->p_asleep.as_timo = timo;
517 		TAILQ_INSERT_TAIL(&slpque[LOOKUP(ident)], p, p_procq);
518 	}
519 
520 	splx(s);
521 
522 	return(0);
523 }
524 
525 /*
526  * await() - wait for async condition to occur.   The process blocks until
527  * wakeup() is called on the most recent asleep() address.  If wakeup is called
528  * priority to await(), await() winds up being a NOP.
529  *
530  * If await() is called more then once (without an intervening asleep() call),
531  * await() is still effectively a NOP but it calls mi_switch() to give other
532  * processes some cpu before returning.  The process is left runnable.
533  *
534  * <<<<<<<< EXPERIMENTAL, UNTESTED >>>>>>>>>>
535  */
536 
537 int
538 await(int priority, int timo)
539 {
540 	struct proc *p = curproc;
541 	int s;
542 
543 	s = splhigh();
544 
545 	if (p->p_wchan != NULL) {
546 		struct callout_handle thandle;
547 		int sig;
548 		int catch;
549 
550 		/*
551 		 * The call to await() can override defaults specified in
552 		 * the original asleep().
553 		 */
554 		if (priority < 0)
555 			priority = p->p_asleep.as_priority;
556 		if (timo < 0)
557 			timo = p->p_asleep.as_timo;
558 
559 		/*
560 		 * Install timeout
561 		 */
562 
563 		if (timo)
564 			thandle = timeout(endtsleep, (void *)p, timo);
565 
566 		sig = 0;
567 		catch = priority & PCATCH;
568 
569 		if (catch) {
570 			p->p_flag |= P_SINTR;
571 			if ((sig = CURSIG(p))) {
572 				if (p->p_wchan)
573 					unsleep(p);
574 				p->p_stat = SRUN;
575 				goto resume;
576 			}
577 			if (p->p_wchan == NULL) {
578 				catch = 0;
579 				goto resume;
580 			}
581 		}
582 		p->p_stat = SSLEEP;
583 		p->p_stats->p_ru.ru_nvcsw++;
584 		mi_switch();
585 resume:
586 		curpriority = p->p_usrpri;
587 
588 		splx(s);
589 		p->p_flag &= ~P_SINTR;
590 		if (p->p_flag & P_TIMEOUT) {
591 			p->p_flag &= ~P_TIMEOUT;
592 			if (sig == 0) {
593 #ifdef KTRACE
594 				if (KTRPOINT(p, KTR_CSW))
595 					ktrcsw(p->p_tracep, 0, 0);
596 #endif
597 				return (EWOULDBLOCK);
598 			}
599 		} else if (timo)
600 			untimeout(endtsleep, (void *)p, thandle);
601 		if (catch && (sig != 0 || (sig = CURSIG(p)))) {
602 #ifdef KTRACE
603 			if (KTRPOINT(p, KTR_CSW))
604 				ktrcsw(p->p_tracep, 0, 0);
605 #endif
606 			if (p->p_sigacts->ps_sigintr & sigmask(sig))
607 				return (EINTR);
608 			return (ERESTART);
609 		}
610 #ifdef KTRACE
611 		if (KTRPOINT(p, KTR_CSW))
612 			ktrcsw(p->p_tracep, 0, 0);
613 #endif
614 	} else {
615 		/*
616 		 * If as_priority is 0, await() has been called without an
617 		 * intervening asleep().  We are still effectively a NOP,
618 		 * but we call mi_switch() for safety.
619 		 */
620 
621 		if (p->p_asleep.as_priority == 0) {
622 			p->p_stats->p_ru.ru_nvcsw++;
623 			mi_switch();
624 		}
625 		splx(s);
626 	}
627 
628 	/*
629 	 * clear p_asleep.as_priority as an indication that await() has been
630 	 * called.  If await() is called again without an intervening asleep(),
631 	 * await() is still effectively a NOP but the above mi_switch() code
632 	 * is triggered as a safety.
633 	 */
634 	p->p_asleep.as_priority = 0;
635 
636 	return (0);
637 }
638 
639 /*
640  * Implement timeout for tsleep or asleep()/await()
641  *
642  * If process hasn't been awakened (wchan non-zero),
643  * set timeout flag and undo the sleep.  If proc
644  * is stopped, just unsleep so it will remain stopped.
645  */
646 static void
647 endtsleep(arg)
648 	void *arg;
649 {
650 	register struct proc *p;
651 	int s;
652 
653 	p = (struct proc *)arg;
654 	s = splhigh();
655 	if (p->p_wchan) {
656 		if (p->p_stat == SSLEEP)
657 			setrunnable(p);
658 		else
659 			unsleep(p);
660 		p->p_flag |= P_TIMEOUT;
661 	}
662 	splx(s);
663 }
664 
665 /*
666  * Remove a process from its wait queue
667  */
668 void
669 unsleep(p)
670 	register struct proc *p;
671 {
672 	int s;
673 
674 	s = splhigh();
675 	if (p->p_wchan) {
676 		TAILQ_REMOVE(&slpque[LOOKUP(p->p_wchan)], p, p_procq);
677 		p->p_wchan = 0;
678 	}
679 	splx(s);
680 }
681 
682 /*
683  * Make all processes sleeping on the specified identifier runnable.
684  */
685 void
686 wakeup(ident)
687 	register void *ident;
688 {
689 	register struct slpquehead *qp;
690 	register struct proc *p;
691 	int s;
692 
693 	s = splhigh();
694 	qp = &slpque[LOOKUP(ident)];
695 restart:
696 	for (p = qp->tqh_first; p != NULL; p = p->p_procq.tqe_next) {
697 		if (p->p_wchan == ident) {
698 			TAILQ_REMOVE(qp, p, p_procq);
699 			p->p_wchan = 0;
700 			if (p->p_stat == SSLEEP) {
701 				/* OPTIMIZED EXPANSION OF setrunnable(p); */
702 				if (p->p_slptime > 1)
703 					updatepri(p);
704 				p->p_slptime = 0;
705 				p->p_stat = SRUN;
706 				if (p->p_flag & P_INMEM) {
707 					setrunqueue(p);
708 					maybe_resched(p);
709 				} else {
710 					p->p_flag |= P_SWAPINREQ;
711 					wakeup((caddr_t)&proc0);
712 				}
713 				/* END INLINE EXPANSION */
714 				goto restart;
715 			}
716 		}
717 	}
718 	splx(s);
719 }
720 
721 /*
722  * Make a process sleeping on the specified identifier runnable.
723  * May wake more than one process if a target prcoess is currently
724  * swapped out.
725  */
726 void
727 wakeup_one(ident)
728 	register void *ident;
729 {
730 	register struct slpquehead *qp;
731 	register struct proc *p;
732 	int s;
733 
734 	s = splhigh();
735 	qp = &slpque[LOOKUP(ident)];
736 
737 	for (p = qp->tqh_first; p != NULL; p = p->p_procq.tqe_next) {
738 		if (p->p_wchan == ident) {
739 			TAILQ_REMOVE(qp, p, p_procq);
740 			p->p_wchan = 0;
741 			if (p->p_stat == SSLEEP) {
742 				/* OPTIMIZED EXPANSION OF setrunnable(p); */
743 				if (p->p_slptime > 1)
744 					updatepri(p);
745 				p->p_slptime = 0;
746 				p->p_stat = SRUN;
747 				if (p->p_flag & P_INMEM) {
748 					setrunqueue(p);
749 					maybe_resched(p);
750 					break;
751 				} else {
752 					p->p_flag |= P_SWAPINREQ;
753 					wakeup((caddr_t)&proc0);
754 				}
755 				/* END INLINE EXPANSION */
756 			}
757 		}
758 	}
759 	splx(s);
760 }
761 
762 /*
763  * The machine independent parts of mi_switch().
764  * Must be called at splstatclock() or higher.
765  */
766 void
767 mi_switch()
768 {
769 	register struct proc *p = curproc;	/* XXX */
770 	register struct rlimit *rlim;
771 	int x;
772 
773 	/*
774 	 * XXX this spl is almost unnecessary.  It is partly to allow for
775 	 * sloppy callers that don't do it (issignal() via CURSIG() is the
776 	 * main offender).  It is partly to work around a bug in the i386
777 	 * cpu_switch() (the ipl is not preserved).  We ran for years
778 	 * without it.  I think there was only a interrupt latency problem.
779 	 * The main caller, tsleep(), does an splx() a couple of instructions
780 	 * after calling here.  The buggy caller, issignal(), usually calls
781 	 * here at spl0() and sometimes returns at splhigh().  The process
782 	 * then runs for a little too long at splhigh().  The ipl gets fixed
783 	 * when the process returns to user mode (or earlier).
784 	 *
785 	 * It would probably be better to always call here at spl0(). Callers
786 	 * are prepared to give up control to another process, so they must
787 	 * be prepared to be interrupted.  The clock stuff here may not
788 	 * actually need splstatclock().
789 	 */
790 	x = splstatclock();
791 
792 #ifdef SIMPLELOCK_DEBUG
793 	if (p->p_simple_locks)
794 		printf("sleep: holding simple lock\n");
795 #endif
796 	/*
797 	 * Compute the amount of time during which the current
798 	 * process was running, and add that to its total so far.
799 	 */
800 	microuptime(&switchtime);
801 	p->p_runtime += (switchtime.tv_usec - p->p_switchtime.tv_usec) +
802 	    (switchtime.tv_sec - p->p_switchtime.tv_sec) * (int64_t)1000000;
803 
804 	/*
805 	 * Check if the process exceeds its cpu resource allocation.
806 	 * If over max, kill it.
807 	 */
808 	if (p->p_stat != SZOMB && p->p_limit->p_cpulimit != RLIM_INFINITY &&
809 	    p->p_runtime > p->p_limit->p_cpulimit) {
810 		rlim = &p->p_rlimit[RLIMIT_CPU];
811 		if (p->p_runtime / (rlim_t)1000000 >= rlim->rlim_max) {
812 			killproc(p, "exceeded maximum CPU limit");
813 		} else {
814 			psignal(p, SIGXCPU);
815 			if (rlim->rlim_cur < rlim->rlim_max) {
816 				/* XXX: we should make a private copy */
817 				rlim->rlim_cur += 5;
818 			}
819 		}
820 	}
821 
822 	/*
823 	 * Pick a new current process and record its start time.
824 	 */
825 	cnt.v_swtch++;
826 	cpu_switch(p);
827 	if (switchtime.tv_sec)
828 		p->p_switchtime = switchtime;
829 	else
830 		microuptime(&p->p_switchtime);
831 	splx(x);
832 }
833 
834 /*
835  * Initialize the (doubly-linked) run queues
836  * to be empty.
837  */
838 /* ARGSUSED*/
839 static void
840 rqinit(dummy)
841 	void *dummy;
842 {
843 	register int i;
844 
845 	for (i = 0; i < NQS; i++) {
846 		qs[i].ph_link = qs[i].ph_rlink = (struct proc *)&qs[i];
847 		rtqs[i].ph_link = rtqs[i].ph_rlink = (struct proc *)&rtqs[i];
848 		idqs[i].ph_link = idqs[i].ph_rlink = (struct proc *)&idqs[i];
849 	}
850 }
851 
852 /*
853  * Change process state to be runnable,
854  * placing it on the run queue if it is in memory,
855  * and awakening the swapper if it isn't in memory.
856  */
857 void
858 setrunnable(p)
859 	register struct proc *p;
860 {
861 	register int s;
862 
863 	s = splhigh();
864 	switch (p->p_stat) {
865 	case 0:
866 	case SRUN:
867 	case SZOMB:
868 	default:
869 		panic("setrunnable");
870 	case SSTOP:
871 	case SSLEEP:
872 		unsleep(p);		/* e.g. when sending signals */
873 		break;
874 
875 	case SIDL:
876 		break;
877 	}
878 	p->p_stat = SRUN;
879 	if (p->p_flag & P_INMEM)
880 		setrunqueue(p);
881 	splx(s);
882 	if (p->p_slptime > 1)
883 		updatepri(p);
884 	p->p_slptime = 0;
885 	if ((p->p_flag & P_INMEM) == 0) {
886 		p->p_flag |= P_SWAPINREQ;
887 		wakeup((caddr_t)&proc0);
888 	}
889 	else
890 		maybe_resched(p);
891 }
892 
893 /*
894  * Compute the priority of a process when running in user mode.
895  * Arrange to reschedule if the resulting priority is better
896  * than that of the current process.
897  */
898 void
899 resetpriority(p)
900 	register struct proc *p;
901 {
902 	register unsigned int newpriority;
903 
904 	if (p->p_rtprio.type == RTP_PRIO_NORMAL) {
905 		newpriority = PUSER + p->p_estcpu / 4 + 2 * p->p_nice;
906 		newpriority = min(newpriority, MAXPRI);
907 		p->p_usrpri = newpriority;
908 	}
909 	maybe_resched(p);
910 }
911 
912 /* ARGSUSED */
913 static void sched_setup __P((void *dummy));
914 static void
915 sched_setup(dummy)
916 	void *dummy;
917 {
918 	/* Kick off timeout driven events by calling first time. */
919 	roundrobin(NULL);
920 	schedcpu(NULL);
921 }
922 SYSINIT(sched_setup, SI_SUB_KICK_SCHEDULER, SI_ORDER_FIRST, sched_setup, NULL)
923 
924