xref: /freebsd/sys/kern/kern_synch.c (revision 271c3a9060f2ee55607ebe146523f888e1db2654)
1 /*-
2  * Copyright (c) 1982, 1986, 1990, 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  * (c) UNIX System Laboratories, Inc.
5  * All or some portions of this file are derived from material licensed
6  * to the University of California by American Telephone and Telegraph
7  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8  * the permission of UNIX System Laboratories, Inc.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 4. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  *	@(#)kern_synch.c	8.9 (Berkeley) 5/19/95
35  */
36 
37 #include <sys/cdefs.h>
38 __FBSDID("$FreeBSD$");
39 
40 #include "opt_ktrace.h"
41 #include "opt_sched.h"
42 
43 #include <sys/param.h>
44 #include <sys/systm.h>
45 #include <sys/condvar.h>
46 #include <sys/kdb.h>
47 #include <sys/kernel.h>
48 #include <sys/ktr.h>
49 #include <sys/lock.h>
50 #include <sys/mutex.h>
51 #include <sys/proc.h>
52 #include <sys/resourcevar.h>
53 #include <sys/sched.h>
54 #include <sys/signalvar.h>
55 #include <sys/sleepqueue.h>
56 #include <sys/smp.h>
57 #include <sys/sx.h>
58 #include <sys/sysctl.h>
59 #include <sys/sysproto.h>
60 #include <sys/vmmeter.h>
61 #ifdef KTRACE
62 #include <sys/uio.h>
63 #include <sys/ktrace.h>
64 #endif
65 
66 #include <machine/cpu.h>
67 
68 static void synch_setup(void *dummy);
69 SYSINIT(synch_setup, SI_SUB_KICK_SCHEDULER, SI_ORDER_FIRST, synch_setup,
70     NULL);
71 
72 int	hogticks;
73 static int pause_wchan;
74 
75 static struct callout loadav_callout;
76 
77 struct loadavg averunnable =
78 	{ {0, 0, 0}, FSCALE };	/* load average, of runnable procs */
79 /*
80  * Constants for averages over 1, 5, and 15 minutes
81  * when sampling at 5 second intervals.
82  */
83 static fixpt_t cexp[3] = {
84 	0.9200444146293232 * FSCALE,	/* exp(-1/12) */
85 	0.9834714538216174 * FSCALE,	/* exp(-1/60) */
86 	0.9944598480048967 * FSCALE,	/* exp(-1/180) */
87 };
88 
89 /* kernel uses `FSCALE', userland (SHOULD) use kern.fscale */
90 static int      fscale __unused = FSCALE;
91 SYSCTL_INT(_kern, OID_AUTO, fscale, CTLFLAG_RD, 0, FSCALE, "");
92 
93 static void	loadav(void *arg);
94 
95 void
96 sleepinit(void)
97 {
98 
99 	hogticks = (hz / 10) * 2;	/* Default only. */
100 	init_sleepqueues();
101 }
102 
103 /*
104  * General sleep call.  Suspends the current thread until a wakeup is
105  * performed on the specified identifier.  The thread will then be made
106  * runnable with the specified priority.  Sleeps at most timo/hz seconds
107  * (0 means no timeout).  If pri includes PCATCH flag, signals are checked
108  * before and after sleeping, else signals are not checked.  Returns 0 if
109  * awakened, EWOULDBLOCK if the timeout expires.  If PCATCH is set and a
110  * signal needs to be delivered, ERESTART is returned if the current system
111  * call should be restarted if possible, and EINTR is returned if the system
112  * call should be interrupted by the signal (return EINTR).
113  *
114  * The lock argument is unlocked before the caller is suspended, and
115  * re-locked before _sleep() returns.  If priority includes the PDROP
116  * flag the lock is not re-locked before returning.
117  */
118 int
119 _sleep(void *ident, struct lock_object *lock, int priority,
120     const char *wmesg, int timo)
121 {
122 	struct thread *td;
123 	struct proc *p;
124 	struct lock_class *class;
125 	int catch, flags, lock_state, pri, rval;
126 	WITNESS_SAVE_DECL(lock_witness);
127 
128 	td = curthread;
129 	p = td->td_proc;
130 #ifdef KTRACE
131 	if (KTRPOINT(td, KTR_CSW))
132 		ktrcsw(1, 0);
133 #endif
134 	WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, lock,
135 	    "Sleeping on \"%s\"", wmesg);
136 	KASSERT(timo != 0 || mtx_owned(&Giant) || lock != NULL,
137 	    ("sleeping without a lock"));
138 	KASSERT(p != NULL, ("msleep1"));
139 	KASSERT(ident != NULL && TD_IS_RUNNING(td), ("msleep"));
140 	if (priority & PDROP)
141 		KASSERT(lock != NULL && lock != &Giant.lock_object,
142 		    ("PDROP requires a non-Giant lock"));
143 	if (lock != NULL)
144 		class = LOCK_CLASS(lock);
145 	else
146 		class = NULL;
147 
148 	if (cold) {
149 		/*
150 		 * During autoconfiguration, just return;
151 		 * don't run any other threads or panic below,
152 		 * in case this is the idle thread and already asleep.
153 		 * XXX: this used to do "s = splhigh(); splx(safepri);
154 		 * splx(s);" to give interrupts a chance, but there is
155 		 * no way to give interrupts a chance now.
156 		 */
157 		if (lock != NULL && priority & PDROP)
158 			class->lc_unlock(lock);
159 		return (0);
160 	}
161 	catch = priority & PCATCH;
162 	pri = priority & PRIMASK;
163 	rval = 0;
164 
165 	/*
166 	 * If we are already on a sleep queue, then remove us from that
167 	 * sleep queue first.  We have to do this to handle recursive
168 	 * sleeps.
169 	 */
170 	if (TD_ON_SLEEPQ(td))
171 		sleepq_remove(td, td->td_wchan);
172 
173 	if (ident == &pause_wchan)
174 		flags = SLEEPQ_PAUSE;
175 	else
176 		flags = SLEEPQ_SLEEP;
177 	if (catch)
178 		flags |= SLEEPQ_INTERRUPTIBLE;
179 
180 	sleepq_lock(ident);
181 	CTR5(KTR_PROC, "sleep: thread %ld (pid %ld, %s) on %s (%p)",
182 	    td->td_tid, p->p_pid, td->td_name, wmesg, ident);
183 
184 	DROP_GIANT();
185 	if (lock != NULL && lock != &Giant.lock_object &&
186 	    !(class->lc_flags & LC_SLEEPABLE)) {
187 		WITNESS_SAVE(lock, lock_witness);
188 		lock_state = class->lc_unlock(lock);
189 	} else
190 		/* GCC needs to follow the Yellow Brick Road */
191 		lock_state = -1;
192 
193 	/*
194 	 * We put ourselves on the sleep queue and start our timeout
195 	 * before calling thread_suspend_check, as we could stop there,
196 	 * and a wakeup or a SIGCONT (or both) could occur while we were
197 	 * stopped without resuming us.  Thus, we must be ready for sleep
198 	 * when cursig() is called.  If the wakeup happens while we're
199 	 * stopped, then td will no longer be on a sleep queue upon
200 	 * return from cursig().
201 	 */
202 	sleepq_add(ident, lock, wmesg, flags, 0);
203 	if (timo)
204 		sleepq_set_timeout(ident, timo);
205 	if (lock != NULL && class->lc_flags & LC_SLEEPABLE) {
206 		sleepq_release(ident);
207 		WITNESS_SAVE(lock, lock_witness);
208 		lock_state = class->lc_unlock(lock);
209 		sleepq_lock(ident);
210 	}
211 	if (timo && catch)
212 		rval = sleepq_timedwait_sig(ident, pri);
213 	else if (timo)
214 		rval = sleepq_timedwait(ident, pri);
215 	else if (catch)
216 		rval = sleepq_wait_sig(ident, pri);
217 	else {
218 		sleepq_wait(ident, pri);
219 		rval = 0;
220 	}
221 #ifdef KTRACE
222 	if (KTRPOINT(td, KTR_CSW))
223 		ktrcsw(0, 0);
224 #endif
225 	PICKUP_GIANT();
226 	if (lock != NULL && lock != &Giant.lock_object && !(priority & PDROP)) {
227 		class->lc_lock(lock, lock_state);
228 		WITNESS_RESTORE(lock, lock_witness);
229 	}
230 	return (rval);
231 }
232 
233 int
234 msleep_spin(void *ident, struct mtx *mtx, const char *wmesg, int timo)
235 {
236 	struct thread *td;
237 	struct proc *p;
238 	int rval;
239 	WITNESS_SAVE_DECL(mtx);
240 
241 	td = curthread;
242 	p = td->td_proc;
243 	KASSERT(mtx != NULL, ("sleeping without a mutex"));
244 	KASSERT(p != NULL, ("msleep1"));
245 	KASSERT(ident != NULL && TD_IS_RUNNING(td), ("msleep"));
246 
247 	if (cold) {
248 		/*
249 		 * During autoconfiguration, just return;
250 		 * don't run any other threads or panic below,
251 		 * in case this is the idle thread and already asleep.
252 		 * XXX: this used to do "s = splhigh(); splx(safepri);
253 		 * splx(s);" to give interrupts a chance, but there is
254 		 * no way to give interrupts a chance now.
255 		 */
256 		return (0);
257 	}
258 
259 	sleepq_lock(ident);
260 	CTR5(KTR_PROC, "msleep_spin: thread %ld (pid %ld, %s) on %s (%p)",
261 	    td->td_tid, p->p_pid, td->td_name, wmesg, ident);
262 
263 	DROP_GIANT();
264 	mtx_assert(mtx, MA_OWNED | MA_NOTRECURSED);
265 	WITNESS_SAVE(&mtx->lock_object, mtx);
266 	mtx_unlock_spin(mtx);
267 
268 	/*
269 	 * We put ourselves on the sleep queue and start our timeout.
270 	 */
271 	sleepq_add(ident, &mtx->lock_object, wmesg, SLEEPQ_SLEEP, 0);
272 	if (timo)
273 		sleepq_set_timeout(ident, timo);
274 
275 	/*
276 	 * Can't call ktrace with any spin locks held so it can lock the
277 	 * ktrace_mtx lock, and WITNESS_WARN considers it an error to hold
278 	 * any spin lock.  Thus, we have to drop the sleepq spin lock while
279 	 * we handle those requests.  This is safe since we have placed our
280 	 * thread on the sleep queue already.
281 	 */
282 #ifdef KTRACE
283 	if (KTRPOINT(td, KTR_CSW)) {
284 		sleepq_release(ident);
285 		ktrcsw(1, 0);
286 		sleepq_lock(ident);
287 	}
288 #endif
289 #ifdef WITNESS
290 	sleepq_release(ident);
291 	WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, "Sleeping on \"%s\"",
292 	    wmesg);
293 	sleepq_lock(ident);
294 #endif
295 	if (timo)
296 		rval = sleepq_timedwait(ident, 0);
297 	else {
298 		sleepq_wait(ident, 0);
299 		rval = 0;
300 	}
301 #ifdef KTRACE
302 	if (KTRPOINT(td, KTR_CSW))
303 		ktrcsw(0, 0);
304 #endif
305 	PICKUP_GIANT();
306 	mtx_lock_spin(mtx);
307 	WITNESS_RESTORE(&mtx->lock_object, mtx);
308 	return (rval);
309 }
310 
311 /*
312  * pause() is like tsleep() except that the intention is to not be
313  * explicitly woken up by another thread.  Instead, the current thread
314  * simply wishes to sleep until the timeout expires.  It is
315  * implemented using a dummy wait channel.
316  */
317 int
318 pause(const char *wmesg, int timo)
319 {
320 
321 	KASSERT(timo != 0, ("pause: timeout required"));
322 	return (tsleep(&pause_wchan, 0, wmesg, timo));
323 }
324 
325 /*
326  * Make all threads sleeping on the specified identifier runnable.
327  */
328 void
329 wakeup(void *ident)
330 {
331 	int wakeup_swapper;
332 
333 	sleepq_lock(ident);
334 	wakeup_swapper = sleepq_broadcast(ident, SLEEPQ_SLEEP, 0, 0);
335 	sleepq_release(ident);
336 	if (wakeup_swapper)
337 		kick_proc0();
338 }
339 
340 /*
341  * Make a thread sleeping on the specified identifier runnable.
342  * May wake more than one thread if a target thread is currently
343  * swapped out.
344  */
345 void
346 wakeup_one(void *ident)
347 {
348 	int wakeup_swapper;
349 
350 	sleepq_lock(ident);
351 	wakeup_swapper = sleepq_signal(ident, SLEEPQ_SLEEP, 0, 0);
352 	sleepq_release(ident);
353 	if (wakeup_swapper)
354 		kick_proc0();
355 }
356 
357 static void
358 kdb_switch(void)
359 {
360 	thread_unlock(curthread);
361 	kdb_backtrace();
362 	kdb_reenter();
363 	panic("%s: did not reenter debugger", __func__);
364 }
365 
366 /*
367  * The machine independent parts of context switching.
368  */
369 void
370 mi_switch(int flags, struct thread *newtd)
371 {
372 	uint64_t runtime, new_switchtime;
373 	struct thread *td;
374 	struct proc *p;
375 
376 	td = curthread;			/* XXX */
377 	THREAD_LOCK_ASSERT(td, MA_OWNED | MA_NOTRECURSED);
378 	p = td->td_proc;		/* XXX */
379 	KASSERT(!TD_ON_RUNQ(td), ("mi_switch: called by old code"));
380 #ifdef INVARIANTS
381 	if (!TD_ON_LOCK(td) && !TD_IS_RUNNING(td))
382 		mtx_assert(&Giant, MA_NOTOWNED);
383 #endif
384 	KASSERT(td->td_critnest == 1 || (td->td_critnest == 2 &&
385 	    (td->td_owepreempt) && (flags & SW_INVOL) != 0 &&
386 	    newtd == NULL) || panicstr,
387 	    ("mi_switch: switch in a critical section"));
388 	KASSERT((flags & (SW_INVOL | SW_VOL)) != 0,
389 	    ("mi_switch: switch must be voluntary or involuntary"));
390 	KASSERT(newtd != curthread, ("mi_switch: preempting back to ourself"));
391 
392 	/*
393 	 * Don't perform context switches from the debugger.
394 	 */
395 	if (kdb_active)
396 		kdb_switch();
397 	if (flags & SW_VOL)
398 		td->td_ru.ru_nvcsw++;
399 	else
400 		td->td_ru.ru_nivcsw++;
401 #ifdef SCHED_STATS
402 	SCHED_STAT_INC(sched_switch_stats[flags & SW_TYPE_MASK]);
403 #endif
404 	/*
405 	 * Compute the amount of time during which the current
406 	 * thread was running, and add that to its total so far.
407 	 */
408 	new_switchtime = cpu_ticks();
409 	runtime = new_switchtime - PCPU_GET(switchtime);
410 	td->td_runtime += runtime;
411 	td->td_incruntime += runtime;
412 	PCPU_SET(switchtime, new_switchtime);
413 	td->td_generation++;	/* bump preempt-detect counter */
414 	PCPU_INC(cnt.v_swtch);
415 	PCPU_SET(switchticks, ticks);
416 	CTR4(KTR_PROC, "mi_switch: old thread %ld (td_sched %p, pid %ld, %s)",
417 	    td->td_tid, td->td_sched, p->p_pid, td->td_name);
418 #if (KTR_COMPILE & KTR_SCHED) != 0
419 	if (TD_IS_IDLETHREAD(td))
420 		CTR3(KTR_SCHED, "mi_switch: %p(%s) prio %d idle",
421 		    td, td->td_name, td->td_priority);
422 	else if (newtd != NULL)
423 		CTR5(KTR_SCHED,
424 		    "mi_switch: %p(%s) prio %d preempted by %p(%s)",
425 		    td, td->td_name, td->td_priority, newtd,
426 		    newtd->td_name);
427 	else
428 		CTR6(KTR_SCHED,
429 		    "mi_switch: %p(%s) prio %d inhibit %d wmesg %s lock %s",
430 		    td, td->td_name, td->td_priority,
431 		    td->td_inhibitors, td->td_wmesg, td->td_lockname);
432 #endif
433 	sched_switch(td, newtd, flags);
434 	CTR3(KTR_SCHED, "mi_switch: running %p(%s) prio %d",
435 	    td, td->td_name, td->td_priority);
436 
437 	CTR4(KTR_PROC, "mi_switch: new thread %ld (td_sched %p, pid %ld, %s)",
438 	    td->td_tid, td->td_sched, p->p_pid, td->td_name);
439 
440 	/*
441 	 * If the last thread was exiting, finish cleaning it up.
442 	 */
443 	if ((td = PCPU_GET(deadthread))) {
444 		PCPU_SET(deadthread, NULL);
445 		thread_stash(td);
446 	}
447 }
448 
449 /*
450  * Change thread state to be runnable, placing it on the run queue if
451  * it is in memory.  If it is swapped out, return true so our caller
452  * will know to awaken the swapper.
453  */
454 int
455 setrunnable(struct thread *td)
456 {
457 
458 	THREAD_LOCK_ASSERT(td, MA_OWNED);
459 	KASSERT(td->td_proc->p_state != PRS_ZOMBIE,
460 	    ("setrunnable: pid %d is a zombie", td->td_proc->p_pid));
461 	switch (td->td_state) {
462 	case TDS_RUNNING:
463 	case TDS_RUNQ:
464 		return (0);
465 	case TDS_INHIBITED:
466 		/*
467 		 * If we are only inhibited because we are swapped out
468 		 * then arange to swap in this process. Otherwise just return.
469 		 */
470 		if (td->td_inhibitors != TDI_SWAPPED)
471 			return (0);
472 		/* FALLTHROUGH */
473 	case TDS_CAN_RUN:
474 		break;
475 	default:
476 		printf("state is 0x%x", td->td_state);
477 		panic("setrunnable(2)");
478 	}
479 	if ((td->td_flags & TDF_INMEM) == 0) {
480 		if ((td->td_flags & TDF_SWAPINREQ) == 0) {
481 			td->td_flags |= TDF_SWAPINREQ;
482 			return (1);
483 		}
484 	} else
485 		sched_wakeup(td);
486 	return (0);
487 }
488 
489 /*
490  * Compute a tenex style load average of a quantity on
491  * 1, 5 and 15 minute intervals.
492  */
493 static void
494 loadav(void *arg)
495 {
496 	int i, nrun;
497 	struct loadavg *avg;
498 
499 	nrun = sched_load();
500 	avg = &averunnable;
501 
502 	for (i = 0; i < 3; i++)
503 		avg->ldavg[i] = (cexp[i] * avg->ldavg[i] +
504 		    nrun * FSCALE * (FSCALE - cexp[i])) >> FSHIFT;
505 
506 	/*
507 	 * Schedule the next update to occur after 5 seconds, but add a
508 	 * random variation to avoid synchronisation with processes that
509 	 * run at regular intervals.
510 	 */
511 	callout_reset(&loadav_callout, hz * 4 + (int)(random() % (hz * 2 + 1)),
512 	    loadav, NULL);
513 }
514 
515 /* ARGSUSED */
516 static void
517 synch_setup(void *dummy)
518 {
519 	callout_init(&loadav_callout, CALLOUT_MPSAFE);
520 
521 	/* Kick off timeout driven events by calling first time. */
522 	loadav(NULL);
523 }
524 
525 /*
526  * General purpose yield system call.
527  */
528 int
529 yield(struct thread *td, struct yield_args *uap)
530 {
531 
532 	thread_lock(td);
533 	sched_prio(td, PRI_MAX_TIMESHARE);
534 	mi_switch(SW_VOL | SWT_RELINQUISH, NULL);
535 	thread_unlock(td);
536 	td->td_retval[0] = 0;
537 	return (0);
538 }
539