1 /*- 2 * Copyright (c) 1982, 1986, 1990, 1991, 1993 3 * The Regents of the University of California. All rights reserved. 4 * (c) UNIX System Laboratories, Inc. 5 * All or some portions of this file are derived from material licensed 6 * to the University of California by American Telephone and Telegraph 7 * Co. or Unix System Laboratories, Inc. and are reproduced herein with 8 * the permission of UNIX System Laboratories, Inc. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 3. All advertising materials mentioning features or use of this software 19 * must display the following acknowledgement: 20 * This product includes software developed by the University of 21 * California, Berkeley and its contributors. 22 * 4. Neither the name of the University nor the names of its contributors 23 * may be used to endorse or promote products derived from this software 24 * without specific prior written permission. 25 * 26 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 28 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 29 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 30 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 36 * SUCH DAMAGE. 37 * 38 * @(#)kern_synch.c 8.9 (Berkeley) 5/19/95 39 * $FreeBSD$ 40 */ 41 42 #include "opt_ktrace.h" 43 44 #include <sys/param.h> 45 #include <sys/systm.h> 46 #include <sys/proc.h> 47 #include <sys/kernel.h> 48 #include <sys/signalvar.h> 49 #include <sys/resourcevar.h> 50 #include <sys/vmmeter.h> 51 #include <sys/sysctl.h> 52 #include <vm/vm.h> 53 #include <vm/vm_extern.h> 54 #ifdef KTRACE 55 #include <sys/uio.h> 56 #include <sys/ktrace.h> 57 #endif 58 59 #include <machine/cpu.h> 60 #include <machine/ipl.h> 61 #include <machine/smp.h> 62 63 static void sched_setup __P((void *dummy)); 64 SYSINIT(sched_setup, SI_SUB_KICK_SCHEDULER, SI_ORDER_FIRST, sched_setup, NULL) 65 66 u_char curpriority; 67 int hogticks; 68 int lbolt; 69 int sched_quantum; /* Roundrobin scheduling quantum in ticks. */ 70 71 static int curpriority_cmp __P((struct proc *p)); 72 static void endtsleep __P((void *)); 73 static void maybe_resched __P((struct proc *chk)); 74 static void roundrobin __P((void *arg)); 75 static void schedcpu __P((void *arg)); 76 static void updatepri __P((struct proc *p)); 77 78 static int 79 sysctl_kern_quantum SYSCTL_HANDLER_ARGS 80 { 81 int error, new_val; 82 83 new_val = sched_quantum * tick; 84 error = sysctl_handle_int(oidp, &new_val, 0, req); 85 if (error != 0 || req->newptr == NULL) 86 return (error); 87 if (new_val < tick) 88 return (EINVAL); 89 sched_quantum = new_val / tick; 90 hogticks = 2 * sched_quantum; 91 return (0); 92 } 93 94 SYSCTL_PROC(_kern, OID_AUTO, quantum, CTLTYPE_INT|CTLFLAG_RW, 95 0, sizeof sched_quantum, sysctl_kern_quantum, "I", ""); 96 97 /*- 98 * Compare priorities. Return: 99 * <0: priority of p < current priority 100 * 0: priority of p == current priority 101 * >0: priority of p > current priority 102 * The priorities are the normal priorities or the normal realtime priorities 103 * if p is on the same scheduler as curproc. Otherwise the process on the 104 * more realtimeish scheduler has lowest priority. As usual, a higher 105 * priority really means a lower priority. 106 */ 107 static int 108 curpriority_cmp(p) 109 struct proc *p; 110 { 111 int c_class, p_class; 112 113 c_class = RTP_PRIO_BASE(curproc->p_rtprio.type); 114 p_class = RTP_PRIO_BASE(p->p_rtprio.type); 115 if (p_class != c_class) 116 return (p_class - c_class); 117 if (p_class == RTP_PRIO_NORMAL) 118 return (((int)p->p_priority - (int)curpriority) / PPQ); 119 return ((int)p->p_rtprio.prio - (int)curproc->p_rtprio.prio); 120 } 121 122 /* 123 * Arrange to reschedule if necessary, taking the priorities and 124 * schedulers into account. 125 */ 126 static void 127 maybe_resched(chk) 128 struct proc *chk; 129 { 130 struct proc *p = curproc; /* XXX */ 131 132 /* 133 * XXX idle scheduler still broken because proccess stays on idle 134 * scheduler during waits (such as when getting FS locks). If a 135 * standard process becomes runaway cpu-bound, the system can lockup 136 * due to idle-scheduler processes in wakeup never getting any cpu. 137 */ 138 if (p == NULL) { 139 #if 0 140 need_resched(); 141 #endif 142 } else if (chk == p) { 143 /* We may need to yield if our priority has been raised. */ 144 if (curpriority_cmp(chk) > 0) 145 need_resched(); 146 } else if (curpriority_cmp(chk) < 0) 147 need_resched(); 148 } 149 150 int 151 roundrobin_interval(void) 152 { 153 return (sched_quantum); 154 } 155 156 /* 157 * Force switch among equal priority processes every 100ms. 158 */ 159 /* ARGSUSED */ 160 static void 161 roundrobin(arg) 162 void *arg; 163 { 164 #ifndef SMP 165 struct proc *p = curproc; /* XXX */ 166 #endif 167 168 #ifdef SMP 169 need_resched(); 170 forward_roundrobin(); 171 #else 172 if (p == 0 || RTP_PRIO_NEED_RR(p->p_rtprio.type)) 173 need_resched(); 174 #endif 175 176 timeout(roundrobin, NULL, sched_quantum); 177 } 178 179 /* 180 * Constants for digital decay and forget: 181 * 90% of (p_estcpu) usage in 5 * loadav time 182 * 95% of (p_pctcpu) usage in 60 seconds (load insensitive) 183 * Note that, as ps(1) mentions, this can let percentages 184 * total over 100% (I've seen 137.9% for 3 processes). 185 * 186 * Note that schedclock() updates p_estcpu and p_cpticks asynchronously. 187 * 188 * We wish to decay away 90% of p_estcpu in (5 * loadavg) seconds. 189 * That is, the system wants to compute a value of decay such 190 * that the following for loop: 191 * for (i = 0; i < (5 * loadavg); i++) 192 * p_estcpu *= decay; 193 * will compute 194 * p_estcpu *= 0.1; 195 * for all values of loadavg: 196 * 197 * Mathematically this loop can be expressed by saying: 198 * decay ** (5 * loadavg) ~= .1 199 * 200 * The system computes decay as: 201 * decay = (2 * loadavg) / (2 * loadavg + 1) 202 * 203 * We wish to prove that the system's computation of decay 204 * will always fulfill the equation: 205 * decay ** (5 * loadavg) ~= .1 206 * 207 * If we compute b as: 208 * b = 2 * loadavg 209 * then 210 * decay = b / (b + 1) 211 * 212 * We now need to prove two things: 213 * 1) Given factor ** (5 * loadavg) ~= .1, prove factor == b/(b+1) 214 * 2) Given b/(b+1) ** power ~= .1, prove power == (5 * loadavg) 215 * 216 * Facts: 217 * For x close to zero, exp(x) =~ 1 + x, since 218 * exp(x) = 0! + x**1/1! + x**2/2! + ... . 219 * therefore exp(-1/b) =~ 1 - (1/b) = (b-1)/b. 220 * For x close to zero, ln(1+x) =~ x, since 221 * ln(1+x) = x - x**2/2 + x**3/3 - ... -1 < x < 1 222 * therefore ln(b/(b+1)) = ln(1 - 1/(b+1)) =~ -1/(b+1). 223 * ln(.1) =~ -2.30 224 * 225 * Proof of (1): 226 * Solve (factor)**(power) =~ .1 given power (5*loadav): 227 * solving for factor, 228 * ln(factor) =~ (-2.30/5*loadav), or 229 * factor =~ exp(-1/((5/2.30)*loadav)) =~ exp(-1/(2*loadav)) = 230 * exp(-1/b) =~ (b-1)/b =~ b/(b+1). QED 231 * 232 * Proof of (2): 233 * Solve (factor)**(power) =~ .1 given factor == (b/(b+1)): 234 * solving for power, 235 * power*ln(b/(b+1)) =~ -2.30, or 236 * power =~ 2.3 * (b + 1) = 4.6*loadav + 2.3 =~ 5*loadav. QED 237 * 238 * Actual power values for the implemented algorithm are as follows: 239 * loadav: 1 2 3 4 240 * power: 5.68 10.32 14.94 19.55 241 */ 242 243 /* calculations for digital decay to forget 90% of usage in 5*loadav sec */ 244 #define loadfactor(loadav) (2 * (loadav)) 245 #define decay_cpu(loadfac, cpu) (((loadfac) * (cpu)) / ((loadfac) + FSCALE)) 246 247 /* decay 95% of `p_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */ 248 static fixpt_t ccpu = 0.95122942450071400909 * FSCALE; /* exp(-1/20) */ 249 SYSCTL_INT(_kern, OID_AUTO, ccpu, CTLFLAG_RD, &ccpu, 0, ""); 250 251 /* kernel uses `FSCALE', userland (SHOULD) use kern.fscale */ 252 static int fscale __unused = FSCALE; 253 SYSCTL_INT(_kern, OID_AUTO, fscale, CTLFLAG_RD, 0, FSCALE, ""); 254 255 /* 256 * If `ccpu' is not equal to `exp(-1/20)' and you still want to use the 257 * faster/more-accurate formula, you'll have to estimate CCPU_SHIFT below 258 * and possibly adjust FSHIFT in "param.h" so that (FSHIFT >= CCPU_SHIFT). 259 * 260 * To estimate CCPU_SHIFT for exp(-1/20), the following formula was used: 261 * 1 - exp(-1/20) ~= 0.0487 ~= 0.0488 == 1 (fixed pt, *11* bits). 262 * 263 * If you don't want to bother with the faster/more-accurate formula, you 264 * can set CCPU_SHIFT to (FSHIFT + 1) which will use a slower/less-accurate 265 * (more general) method of calculating the %age of CPU used by a process. 266 */ 267 #define CCPU_SHIFT 11 268 269 /* 270 * Recompute process priorities, every hz ticks. 271 */ 272 /* ARGSUSED */ 273 static void 274 schedcpu(arg) 275 void *arg; 276 { 277 register fixpt_t loadfac = loadfactor(averunnable.ldavg[0]); 278 register struct proc *p; 279 register int realstathz, s; 280 281 realstathz = stathz ? stathz : hz; 282 LIST_FOREACH(p, &allproc, p_list) { 283 /* 284 * Increment time in/out of memory and sleep time 285 * (if sleeping). We ignore overflow; with 16-bit int's 286 * (remember them?) overflow takes 45 days. 287 */ 288 p->p_swtime++; 289 if (p->p_stat == SSLEEP || p->p_stat == SSTOP) 290 p->p_slptime++; 291 p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT; 292 /* 293 * If the process has slept the entire second, 294 * stop recalculating its priority until it wakes up. 295 */ 296 if (p->p_slptime > 1) 297 continue; 298 s = splhigh(); /* prevent state changes and protect run queue */ 299 /* 300 * p_pctcpu is only for ps. 301 */ 302 #if (FSHIFT >= CCPU_SHIFT) 303 p->p_pctcpu += (realstathz == 100)? 304 ((fixpt_t) p->p_cpticks) << (FSHIFT - CCPU_SHIFT): 305 100 * (((fixpt_t) p->p_cpticks) 306 << (FSHIFT - CCPU_SHIFT)) / realstathz; 307 #else 308 p->p_pctcpu += ((FSCALE - ccpu) * 309 (p->p_cpticks * FSCALE / realstathz)) >> FSHIFT; 310 #endif 311 p->p_cpticks = 0; 312 p->p_estcpu = decay_cpu(loadfac, p->p_estcpu); 313 resetpriority(p); 314 if (p->p_priority >= PUSER) { 315 if ((p != curproc) && 316 #ifdef SMP 317 p->p_oncpu == 0xff && /* idle */ 318 #endif 319 p->p_stat == SRUN && 320 (p->p_flag & P_INMEM) && 321 (p->p_priority / PPQ) != (p->p_usrpri / PPQ)) { 322 remrunqueue(p); 323 p->p_priority = p->p_usrpri; 324 setrunqueue(p); 325 } else 326 p->p_priority = p->p_usrpri; 327 } 328 splx(s); 329 } 330 vmmeter(); 331 wakeup((caddr_t)&lbolt); 332 timeout(schedcpu, (void *)0, hz); 333 } 334 335 /* 336 * Recalculate the priority of a process after it has slept for a while. 337 * For all load averages >= 1 and max p_estcpu of 255, sleeping for at 338 * least six times the loadfactor will decay p_estcpu to zero. 339 */ 340 static void 341 updatepri(p) 342 register struct proc *p; 343 { 344 register unsigned int newcpu = p->p_estcpu; 345 register fixpt_t loadfac = loadfactor(averunnable.ldavg[0]); 346 347 if (p->p_slptime > 5 * loadfac) 348 p->p_estcpu = 0; 349 else { 350 p->p_slptime--; /* the first time was done in schedcpu */ 351 while (newcpu && --p->p_slptime) 352 newcpu = decay_cpu(loadfac, newcpu); 353 p->p_estcpu = newcpu; 354 } 355 resetpriority(p); 356 } 357 358 /* 359 * We're only looking at 7 bits of the address; everything is 360 * aligned to 4, lots of things are aligned to greater powers 361 * of 2. Shift right by 8, i.e. drop the bottom 256 worth. 362 */ 363 #define TABLESIZE 128 364 static TAILQ_HEAD(slpquehead, proc) slpque[TABLESIZE]; 365 #define LOOKUP(x) (((intptr_t)(x) >> 8) & (TABLESIZE - 1)) 366 367 /* 368 * During autoconfiguration or after a panic, a sleep will simply 369 * lower the priority briefly to allow interrupts, then return. 370 * The priority to be used (safepri) is machine-dependent, thus this 371 * value is initialized and maintained in the machine-dependent layers. 372 * This priority will typically be 0, or the lowest priority 373 * that is safe for use on the interrupt stack; it can be made 374 * higher to block network software interrupts after panics. 375 */ 376 int safepri; 377 378 void 379 sleepinit(void) 380 { 381 int i; 382 383 sched_quantum = hz/10; 384 hogticks = 2 * sched_quantum; 385 for (i = 0; i < TABLESIZE; i++) 386 TAILQ_INIT(&slpque[i]); 387 } 388 389 /* 390 * General sleep call. Suspends the current process until a wakeup is 391 * performed on the specified identifier. The process will then be made 392 * runnable with the specified priority. Sleeps at most timo/hz seconds 393 * (0 means no timeout). If pri includes PCATCH flag, signals are checked 394 * before and after sleeping, else signals are not checked. Returns 0 if 395 * awakened, EWOULDBLOCK if the timeout expires. If PCATCH is set and a 396 * signal needs to be delivered, ERESTART is returned if the current system 397 * call should be restarted if possible, and EINTR is returned if the system 398 * call should be interrupted by the signal (return EINTR). 399 */ 400 int 401 tsleep(ident, priority, wmesg, timo) 402 void *ident; 403 int priority, timo; 404 const char *wmesg; 405 { 406 struct proc *p = curproc; 407 int s, sig, catch = priority & PCATCH; 408 struct callout_handle thandle; 409 410 #ifdef KTRACE 411 if (p && KTRPOINT(p, KTR_CSW)) 412 ktrcsw(p->p_tracep, 1, 0); 413 #endif 414 s = splhigh(); 415 if (cold || panicstr) { 416 /* 417 * After a panic, or during autoconfiguration, 418 * just give interrupts a chance, then just return; 419 * don't run any other procs or panic below, 420 * in case this is the idle process and already asleep. 421 */ 422 splx(safepri); 423 splx(s); 424 return (0); 425 } 426 KASSERT(p != NULL, ("tsleep1")); 427 KASSERT(ident != NULL && p->p_stat == SRUN, ("tsleep")); 428 /* 429 * Process may be sitting on a slpque if asleep() was called, remove 430 * it before re-adding. 431 */ 432 if (p->p_wchan != NULL) 433 unsleep(p); 434 435 p->p_wchan = ident; 436 p->p_wmesg = wmesg; 437 p->p_slptime = 0; 438 p->p_priority = priority & PRIMASK; 439 TAILQ_INSERT_TAIL(&slpque[LOOKUP(ident)], p, p_procq); 440 if (timo) 441 thandle = timeout(endtsleep, (void *)p, timo); 442 /* 443 * We put ourselves on the sleep queue and start our timeout 444 * before calling CURSIG, as we could stop there, and a wakeup 445 * or a SIGCONT (or both) could occur while we were stopped. 446 * A SIGCONT would cause us to be marked as SSLEEP 447 * without resuming us, thus we must be ready for sleep 448 * when CURSIG is called. If the wakeup happens while we're 449 * stopped, p->p_wchan will be 0 upon return from CURSIG. 450 */ 451 if (catch) { 452 p->p_flag |= P_SINTR; 453 if ((sig = CURSIG(p))) { 454 if (p->p_wchan) 455 unsleep(p); 456 p->p_stat = SRUN; 457 goto resume; 458 } 459 if (p->p_wchan == 0) { 460 catch = 0; 461 goto resume; 462 } 463 } else 464 sig = 0; 465 p->p_stat = SSLEEP; 466 p->p_stats->p_ru.ru_nvcsw++; 467 mi_switch(); 468 resume: 469 curpriority = p->p_usrpri; 470 splx(s); 471 p->p_flag &= ~P_SINTR; 472 if (p->p_flag & P_TIMEOUT) { 473 p->p_flag &= ~P_TIMEOUT; 474 if (sig == 0) { 475 #ifdef KTRACE 476 if (KTRPOINT(p, KTR_CSW)) 477 ktrcsw(p->p_tracep, 0, 0); 478 #endif 479 return (EWOULDBLOCK); 480 } 481 } else if (timo) 482 untimeout(endtsleep, (void *)p, thandle); 483 if (catch && (sig != 0 || (sig = CURSIG(p)))) { 484 #ifdef KTRACE 485 if (KTRPOINT(p, KTR_CSW)) 486 ktrcsw(p->p_tracep, 0, 0); 487 #endif 488 if (SIGISMEMBER(p->p_sigacts->ps_sigintr, sig)) 489 return (EINTR); 490 return (ERESTART); 491 } 492 #ifdef KTRACE 493 if (KTRPOINT(p, KTR_CSW)) 494 ktrcsw(p->p_tracep, 0, 0); 495 #endif 496 return (0); 497 } 498 499 /* 500 * asleep() - async sleep call. Place process on wait queue and return 501 * immediately without blocking. The process stays runnable until await() 502 * is called. If ident is NULL, remove process from wait queue if it is still 503 * on one. 504 * 505 * Only the most recent sleep condition is effective when making successive 506 * calls to asleep() or when calling tsleep(). 507 * 508 * The timeout, if any, is not initiated until await() is called. The sleep 509 * priority, signal, and timeout is specified in the asleep() call but may be 510 * overriden in the await() call. 511 * 512 * <<<<<<<< EXPERIMENTAL, UNTESTED >>>>>>>>>> 513 */ 514 515 int 516 asleep(void *ident, int priority, const char *wmesg, int timo) 517 { 518 struct proc *p = curproc; 519 int s; 520 521 /* 522 * splhigh() while manipulating sleep structures and slpque. 523 * 524 * Remove preexisting wait condition (if any) and place process 525 * on appropriate slpque, but do not put process to sleep. 526 */ 527 528 s = splhigh(); 529 530 if (p->p_wchan != NULL) 531 unsleep(p); 532 533 if (ident) { 534 p->p_wchan = ident; 535 p->p_wmesg = wmesg; 536 p->p_slptime = 0; 537 p->p_asleep.as_priority = priority; 538 p->p_asleep.as_timo = timo; 539 TAILQ_INSERT_TAIL(&slpque[LOOKUP(ident)], p, p_procq); 540 } 541 542 splx(s); 543 544 return(0); 545 } 546 547 /* 548 * await() - wait for async condition to occur. The process blocks until 549 * wakeup() is called on the most recent asleep() address. If wakeup is called 550 * priority to await(), await() winds up being a NOP. 551 * 552 * If await() is called more then once (without an intervening asleep() call), 553 * await() is still effectively a NOP but it calls mi_switch() to give other 554 * processes some cpu before returning. The process is left runnable. 555 * 556 * <<<<<<<< EXPERIMENTAL, UNTESTED >>>>>>>>>> 557 */ 558 559 int 560 await(int priority, int timo) 561 { 562 struct proc *p = curproc; 563 int s; 564 565 s = splhigh(); 566 567 if (p->p_wchan != NULL) { 568 struct callout_handle thandle; 569 int sig; 570 int catch; 571 572 /* 573 * The call to await() can override defaults specified in 574 * the original asleep(). 575 */ 576 if (priority < 0) 577 priority = p->p_asleep.as_priority; 578 if (timo < 0) 579 timo = p->p_asleep.as_timo; 580 581 /* 582 * Install timeout 583 */ 584 585 if (timo) 586 thandle = timeout(endtsleep, (void *)p, timo); 587 588 sig = 0; 589 catch = priority & PCATCH; 590 591 if (catch) { 592 p->p_flag |= P_SINTR; 593 if ((sig = CURSIG(p))) { 594 if (p->p_wchan) 595 unsleep(p); 596 p->p_stat = SRUN; 597 goto resume; 598 } 599 if (p->p_wchan == NULL) { 600 catch = 0; 601 goto resume; 602 } 603 } 604 p->p_stat = SSLEEP; 605 p->p_stats->p_ru.ru_nvcsw++; 606 mi_switch(); 607 resume: 608 curpriority = p->p_usrpri; 609 610 splx(s); 611 p->p_flag &= ~P_SINTR; 612 if (p->p_flag & P_TIMEOUT) { 613 p->p_flag &= ~P_TIMEOUT; 614 if (sig == 0) { 615 #ifdef KTRACE 616 if (KTRPOINT(p, KTR_CSW)) 617 ktrcsw(p->p_tracep, 0, 0); 618 #endif 619 return (EWOULDBLOCK); 620 } 621 } else if (timo) 622 untimeout(endtsleep, (void *)p, thandle); 623 if (catch && (sig != 0 || (sig = CURSIG(p)))) { 624 #ifdef KTRACE 625 if (KTRPOINT(p, KTR_CSW)) 626 ktrcsw(p->p_tracep, 0, 0); 627 #endif 628 if (SIGISMEMBER(p->p_sigacts->ps_sigintr, sig)) 629 return (EINTR); 630 return (ERESTART); 631 } 632 #ifdef KTRACE 633 if (KTRPOINT(p, KTR_CSW)) 634 ktrcsw(p->p_tracep, 0, 0); 635 #endif 636 } else { 637 /* 638 * If as_priority is 0, await() has been called without an 639 * intervening asleep(). We are still effectively a NOP, 640 * but we call mi_switch() for safety. 641 */ 642 643 if (p->p_asleep.as_priority == 0) { 644 p->p_stats->p_ru.ru_nvcsw++; 645 mi_switch(); 646 } 647 splx(s); 648 } 649 650 /* 651 * clear p_asleep.as_priority as an indication that await() has been 652 * called. If await() is called again without an intervening asleep(), 653 * await() is still effectively a NOP but the above mi_switch() code 654 * is triggered as a safety. 655 */ 656 p->p_asleep.as_priority = 0; 657 658 return (0); 659 } 660 661 /* 662 * Implement timeout for tsleep or asleep()/await() 663 * 664 * If process hasn't been awakened (wchan non-zero), 665 * set timeout flag and undo the sleep. If proc 666 * is stopped, just unsleep so it will remain stopped. 667 */ 668 static void 669 endtsleep(arg) 670 void *arg; 671 { 672 register struct proc *p; 673 int s; 674 675 p = (struct proc *)arg; 676 s = splhigh(); 677 if (p->p_wchan) { 678 if (p->p_stat == SSLEEP) 679 setrunnable(p); 680 else 681 unsleep(p); 682 p->p_flag |= P_TIMEOUT; 683 } 684 splx(s); 685 } 686 687 /* 688 * Remove a process from its wait queue 689 */ 690 void 691 unsleep(p) 692 register struct proc *p; 693 { 694 int s; 695 696 s = splhigh(); 697 if (p->p_wchan) { 698 TAILQ_REMOVE(&slpque[LOOKUP(p->p_wchan)], p, p_procq); 699 p->p_wchan = 0; 700 } 701 splx(s); 702 } 703 704 /* 705 * Make all processes sleeping on the specified identifier runnable. 706 */ 707 void 708 wakeup(ident) 709 register void *ident; 710 { 711 register struct slpquehead *qp; 712 register struct proc *p; 713 int s; 714 715 s = splhigh(); 716 qp = &slpque[LOOKUP(ident)]; 717 restart: 718 TAILQ_FOREACH(p, qp, p_procq) { 719 if (p->p_wchan == ident) { 720 TAILQ_REMOVE(qp, p, p_procq); 721 p->p_wchan = 0; 722 if (p->p_stat == SSLEEP) { 723 /* OPTIMIZED EXPANSION OF setrunnable(p); */ 724 if (p->p_slptime > 1) 725 updatepri(p); 726 p->p_slptime = 0; 727 p->p_stat = SRUN; 728 if (p->p_flag & P_INMEM) { 729 setrunqueue(p); 730 maybe_resched(p); 731 } else { 732 p->p_flag |= P_SWAPINREQ; 733 wakeup((caddr_t)&proc0); 734 } 735 /* END INLINE EXPANSION */ 736 goto restart; 737 } 738 } 739 } 740 splx(s); 741 } 742 743 /* 744 * Make a process sleeping on the specified identifier runnable. 745 * May wake more than one process if a target prcoess is currently 746 * swapped out. 747 */ 748 void 749 wakeup_one(ident) 750 register void *ident; 751 { 752 register struct slpquehead *qp; 753 register struct proc *p; 754 int s; 755 756 s = splhigh(); 757 qp = &slpque[LOOKUP(ident)]; 758 759 TAILQ_FOREACH(p, qp, p_procq) { 760 if (p->p_wchan == ident) { 761 TAILQ_REMOVE(qp, p, p_procq); 762 p->p_wchan = 0; 763 if (p->p_stat == SSLEEP) { 764 /* OPTIMIZED EXPANSION OF setrunnable(p); */ 765 if (p->p_slptime > 1) 766 updatepri(p); 767 p->p_slptime = 0; 768 p->p_stat = SRUN; 769 if (p->p_flag & P_INMEM) { 770 setrunqueue(p); 771 maybe_resched(p); 772 break; 773 } else { 774 p->p_flag |= P_SWAPINREQ; 775 wakeup((caddr_t)&proc0); 776 } 777 /* END INLINE EXPANSION */ 778 } 779 } 780 } 781 splx(s); 782 } 783 784 /* 785 * The machine independent parts of mi_switch(). 786 * Must be called at splstatclock() or higher. 787 */ 788 void 789 mi_switch() 790 { 791 struct timeval new_switchtime; 792 register struct proc *p = curproc; /* XXX */ 793 register struct rlimit *rlim; 794 int x; 795 796 /* 797 * XXX this spl is almost unnecessary. It is partly to allow for 798 * sloppy callers that don't do it (issignal() via CURSIG() is the 799 * main offender). It is partly to work around a bug in the i386 800 * cpu_switch() (the ipl is not preserved). We ran for years 801 * without it. I think there was only a interrupt latency problem. 802 * The main caller, tsleep(), does an splx() a couple of instructions 803 * after calling here. The buggy caller, issignal(), usually calls 804 * here at spl0() and sometimes returns at splhigh(). The process 805 * then runs for a little too long at splhigh(). The ipl gets fixed 806 * when the process returns to user mode (or earlier). 807 * 808 * It would probably be better to always call here at spl0(). Callers 809 * are prepared to give up control to another process, so they must 810 * be prepared to be interrupted. The clock stuff here may not 811 * actually need splstatclock(). 812 */ 813 x = splstatclock(); 814 815 #ifdef SIMPLELOCK_DEBUG 816 if (p->p_simple_locks) 817 printf("sleep: holding simple lock\n"); 818 #endif 819 /* 820 * Compute the amount of time during which the current 821 * process was running, and add that to its total so far. 822 */ 823 microuptime(&new_switchtime); 824 if (timevalcmp(&new_switchtime, &switchtime, <)) { 825 printf("microuptime() went backwards (%ld.%06ld -> %ld,%06ld)\n", 826 switchtime.tv_sec, switchtime.tv_usec, 827 new_switchtime.tv_sec, new_switchtime.tv_usec); 828 new_switchtime = switchtime; 829 } else { 830 p->p_runtime += (new_switchtime.tv_usec - switchtime.tv_usec) + 831 (new_switchtime.tv_sec - switchtime.tv_sec) * (int64_t)1000000; 832 } 833 834 /* 835 * Check if the process exceeds its cpu resource allocation. 836 * If over max, kill it. 837 */ 838 if (p->p_stat != SZOMB && p->p_limit->p_cpulimit != RLIM_INFINITY && 839 p->p_runtime > p->p_limit->p_cpulimit) { 840 rlim = &p->p_rlimit[RLIMIT_CPU]; 841 if (p->p_runtime / (rlim_t)1000000 >= rlim->rlim_max) { 842 killproc(p, "exceeded maximum CPU limit"); 843 } else { 844 psignal(p, SIGXCPU); 845 if (rlim->rlim_cur < rlim->rlim_max) { 846 /* XXX: we should make a private copy */ 847 rlim->rlim_cur += 5; 848 } 849 } 850 } 851 852 /* 853 * Pick a new current process and record its start time. 854 */ 855 cnt.v_swtch++; 856 switchtime = new_switchtime; 857 cpu_switch(p); 858 if (switchtime.tv_sec == 0) 859 microuptime(&switchtime); 860 switchticks = ticks; 861 862 splx(x); 863 } 864 865 /* 866 * Change process state to be runnable, 867 * placing it on the run queue if it is in memory, 868 * and awakening the swapper if it isn't in memory. 869 */ 870 void 871 setrunnable(p) 872 register struct proc *p; 873 { 874 register int s; 875 876 s = splhigh(); 877 switch (p->p_stat) { 878 case 0: 879 case SRUN: 880 case SZOMB: 881 default: 882 panic("setrunnable"); 883 case SSTOP: 884 case SSLEEP: 885 unsleep(p); /* e.g. when sending signals */ 886 break; 887 888 case SIDL: 889 break; 890 } 891 p->p_stat = SRUN; 892 if (p->p_flag & P_INMEM) 893 setrunqueue(p); 894 splx(s); 895 if (p->p_slptime > 1) 896 updatepri(p); 897 p->p_slptime = 0; 898 if ((p->p_flag & P_INMEM) == 0) { 899 p->p_flag |= P_SWAPINREQ; 900 wakeup((caddr_t)&proc0); 901 } 902 else 903 maybe_resched(p); 904 } 905 906 /* 907 * Compute the priority of a process when running in user mode. 908 * Arrange to reschedule if the resulting priority is better 909 * than that of the current process. 910 */ 911 void 912 resetpriority(p) 913 register struct proc *p; 914 { 915 register unsigned int newpriority; 916 917 if (p->p_rtprio.type == RTP_PRIO_NORMAL) { 918 newpriority = PUSER + p->p_estcpu / INVERSE_ESTCPU_WEIGHT + 919 NICE_WEIGHT * (p->p_nice - PRIO_MIN); 920 newpriority = min(newpriority, MAXPRI); 921 p->p_usrpri = newpriority; 922 } 923 maybe_resched(p); 924 } 925 926 /* ARGSUSED */ 927 static void 928 sched_setup(dummy) 929 void *dummy; 930 { 931 /* Kick off timeout driven events by calling first time. */ 932 roundrobin(NULL); 933 schedcpu(NULL); 934 } 935 936 /* 937 * We adjust the priority of the current process. The priority of 938 * a process gets worse as it accumulates CPU time. The cpu usage 939 * estimator (p_estcpu) is increased here. resetpriority() will 940 * compute a different priority each time p_estcpu increases by 941 * INVERSE_ESTCPU_WEIGHT 942 * (until MAXPRI is reached). The cpu usage estimator ramps up 943 * quite quickly when the process is running (linearly), and decays 944 * away exponentially, at a rate which is proportionally slower when 945 * the system is busy. The basic principle is that the system will 946 * 90% forget that the process used a lot of CPU time in 5 * loadav 947 * seconds. This causes the system to favor processes which haven't 948 * run much recently, and to round-robin among other processes. 949 */ 950 void 951 schedclock(p) 952 struct proc *p; 953 { 954 955 p->p_cpticks++; 956 p->p_estcpu = ESTCPULIM(p->p_estcpu + 1); 957 if ((p->p_estcpu % INVERSE_ESTCPU_WEIGHT) == 0) { 958 resetpriority(p); 959 if (p->p_priority >= PUSER) 960 p->p_priority = p->p_usrpri; 961 } 962 } 963