xref: /freebsd/sys/kern/kern_synch.c (revision 1d66272a85cde1c8a69c58f4b5dd649babd6eca6)
1 /*-
2  * Copyright (c) 1982, 1986, 1990, 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  * (c) UNIX System Laboratories, Inc.
5  * All or some portions of this file are derived from material licensed
6  * to the University of California by American Telephone and Telegraph
7  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8  * the permission of UNIX System Laboratories, Inc.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. All advertising materials mentioning features or use of this software
19  *    must display the following acknowledgement:
20  *	This product includes software developed by the University of
21  *	California, Berkeley and its contributors.
22  * 4. Neither the name of the University nor the names of its contributors
23  *    may be used to endorse or promote products derived from this software
24  *    without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36  * SUCH DAMAGE.
37  *
38  *	@(#)kern_synch.c	8.9 (Berkeley) 5/19/95
39  * $FreeBSD$
40  */
41 
42 #include "opt_ktrace.h"
43 
44 #include <sys/param.h>
45 #include <sys/systm.h>
46 #include <sys/proc.h>
47 #include <sys/ipl.h>
48 #include <sys/kernel.h>
49 #include <sys/ktr.h>
50 #include <sys/lock.h>
51 #include <sys/mutex.h>
52 #include <sys/signalvar.h>
53 #include <sys/resourcevar.h>
54 #include <sys/vmmeter.h>
55 #include <sys/sysctl.h>
56 #include <sys/sysproto.h>
57 #include <vm/vm.h>
58 #include <vm/vm_extern.h>
59 #ifdef KTRACE
60 #include <sys/uio.h>
61 #include <sys/ktrace.h>
62 #endif
63 
64 #include <machine/cpu.h>
65 #include <machine/smp.h>
66 
67 static void sched_setup __P((void *dummy));
68 SYSINIT(sched_setup, SI_SUB_KICK_SCHEDULER, SI_ORDER_FIRST, sched_setup, NULL)
69 
70 u_char	curpriority;
71 int	hogticks;
72 int	lbolt;
73 int	sched_quantum;		/* Roundrobin scheduling quantum in ticks. */
74 
75 static struct callout schedcpu_callout;
76 static struct callout roundrobin_callout;
77 
78 static int	curpriority_cmp __P((struct proc *p));
79 static void	endtsleep __P((void *));
80 static void	maybe_resched __P((struct proc *chk));
81 static void	roundrobin __P((void *arg));
82 static void	schedcpu __P((void *arg));
83 static void	updatepri __P((struct proc *p));
84 
85 static int
86 sysctl_kern_quantum(SYSCTL_HANDLER_ARGS)
87 {
88 	int error, new_val;
89 
90 	new_val = sched_quantum * tick;
91 	error = sysctl_handle_int(oidp, &new_val, 0, req);
92         if (error != 0 || req->newptr == NULL)
93 		return (error);
94 	if (new_val < tick)
95 		return (EINVAL);
96 	sched_quantum = new_val / tick;
97 	hogticks = 2 * sched_quantum;
98 	return (0);
99 }
100 
101 SYSCTL_PROC(_kern, OID_AUTO, quantum, CTLTYPE_INT|CTLFLAG_RW,
102 	0, sizeof sched_quantum, sysctl_kern_quantum, "I", "");
103 
104 /*-
105  * Compare priorities.  Return:
106  *     <0: priority of p < current priority
107  *      0: priority of p == current priority
108  *     >0: priority of p > current priority
109  * The priorities are the normal priorities or the normal realtime priorities
110  * if p is on the same scheduler as curproc.  Otherwise the process on the
111  * more realtimeish scheduler has lowest priority.  As usual, a higher
112  * priority really means a lower priority.
113  */
114 static int
115 curpriority_cmp(p)
116 	struct proc *p;
117 {
118 	int c_class, p_class;
119 
120 	c_class = RTP_PRIO_BASE(curproc->p_rtprio.type);
121 	p_class = RTP_PRIO_BASE(p->p_rtprio.type);
122 	if (p_class != c_class)
123 		return (p_class - c_class);
124 	if (p_class == RTP_PRIO_NORMAL)
125 		return (((int)p->p_priority - (int)curpriority) / PPQ);
126 	return ((int)p->p_rtprio.prio - (int)curproc->p_rtprio.prio);
127 }
128 
129 /*
130  * Arrange to reschedule if necessary, taking the priorities and
131  * schedulers into account.
132  */
133 static void
134 maybe_resched(chk)
135 	struct proc *chk;
136 {
137 	struct proc *p = curproc; /* XXX */
138 
139 	/*
140 	 * XXX idle scheduler still broken because proccess stays on idle
141 	 * scheduler during waits (such as when getting FS locks).  If a
142 	 * standard process becomes runaway cpu-bound, the system can lockup
143 	 * due to idle-scheduler processes in wakeup never getting any cpu.
144 	 */
145 	if (p == PCPU_GET(idleproc)) {
146 #if 0
147 		need_resched();
148 #endif
149 	} else if (chk == p) {
150 		/* We may need to yield if our priority has been raised. */
151 		if (curpriority_cmp(chk) > 0)
152 			need_resched();
153 	} else if (curpriority_cmp(chk) < 0)
154 		need_resched();
155 }
156 
157 int
158 roundrobin_interval(void)
159 {
160 	return (sched_quantum);
161 }
162 
163 /*
164  * Force switch among equal priority processes every 100ms.
165  */
166 /* ARGSUSED */
167 static void
168 roundrobin(arg)
169 	void *arg;
170 {
171 #ifndef SMP
172  	struct proc *p = curproc; /* XXX */
173 #endif
174 
175 #ifdef SMP
176 	need_resched();
177 	forward_roundrobin();
178 #else
179  	if (p == PCPU_GET(idleproc) || RTP_PRIO_NEED_RR(p->p_rtprio.type))
180  		need_resched();
181 #endif
182 
183 	callout_reset(&roundrobin_callout, sched_quantum, roundrobin, NULL);
184 }
185 
186 /*
187  * Constants for digital decay and forget:
188  *	90% of (p_estcpu) usage in 5 * loadav time
189  *	95% of (p_pctcpu) usage in 60 seconds (load insensitive)
190  *          Note that, as ps(1) mentions, this can let percentages
191  *          total over 100% (I've seen 137.9% for 3 processes).
192  *
193  * Note that schedclock() updates p_estcpu and p_cpticks asynchronously.
194  *
195  * We wish to decay away 90% of p_estcpu in (5 * loadavg) seconds.
196  * That is, the system wants to compute a value of decay such
197  * that the following for loop:
198  * 	for (i = 0; i < (5 * loadavg); i++)
199  * 		p_estcpu *= decay;
200  * will compute
201  * 	p_estcpu *= 0.1;
202  * for all values of loadavg:
203  *
204  * Mathematically this loop can be expressed by saying:
205  * 	decay ** (5 * loadavg) ~= .1
206  *
207  * The system computes decay as:
208  * 	decay = (2 * loadavg) / (2 * loadavg + 1)
209  *
210  * We wish to prove that the system's computation of decay
211  * will always fulfill the equation:
212  * 	decay ** (5 * loadavg) ~= .1
213  *
214  * If we compute b as:
215  * 	b = 2 * loadavg
216  * then
217  * 	decay = b / (b + 1)
218  *
219  * We now need to prove two things:
220  *	1) Given factor ** (5 * loadavg) ~= .1, prove factor == b/(b+1)
221  *	2) Given b/(b+1) ** power ~= .1, prove power == (5 * loadavg)
222  *
223  * Facts:
224  *         For x close to zero, exp(x) =~ 1 + x, since
225  *              exp(x) = 0! + x**1/1! + x**2/2! + ... .
226  *              therefore exp(-1/b) =~ 1 - (1/b) = (b-1)/b.
227  *         For x close to zero, ln(1+x) =~ x, since
228  *              ln(1+x) = x - x**2/2 + x**3/3 - ...     -1 < x < 1
229  *              therefore ln(b/(b+1)) = ln(1 - 1/(b+1)) =~ -1/(b+1).
230  *         ln(.1) =~ -2.30
231  *
232  * Proof of (1):
233  *    Solve (factor)**(power) =~ .1 given power (5*loadav):
234  *	solving for factor,
235  *      ln(factor) =~ (-2.30/5*loadav), or
236  *      factor =~ exp(-1/((5/2.30)*loadav)) =~ exp(-1/(2*loadav)) =
237  *          exp(-1/b) =~ (b-1)/b =~ b/(b+1).                    QED
238  *
239  * Proof of (2):
240  *    Solve (factor)**(power) =~ .1 given factor == (b/(b+1)):
241  *	solving for power,
242  *      power*ln(b/(b+1)) =~ -2.30, or
243  *      power =~ 2.3 * (b + 1) = 4.6*loadav + 2.3 =~ 5*loadav.  QED
244  *
245  * Actual power values for the implemented algorithm are as follows:
246  *      loadav: 1       2       3       4
247  *      power:  5.68    10.32   14.94   19.55
248  */
249 
250 /* calculations for digital decay to forget 90% of usage in 5*loadav sec */
251 #define	loadfactor(loadav)	(2 * (loadav))
252 #define	decay_cpu(loadfac, cpu)	(((loadfac) * (cpu)) / ((loadfac) + FSCALE))
253 
254 /* decay 95% of `p_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */
255 static fixpt_t	ccpu = 0.95122942450071400909 * FSCALE;	/* exp(-1/20) */
256 SYSCTL_INT(_kern, OID_AUTO, ccpu, CTLFLAG_RD, &ccpu, 0, "");
257 
258 /* kernel uses `FSCALE', userland (SHOULD) use kern.fscale */
259 static int	fscale __unused = FSCALE;
260 SYSCTL_INT(_kern, OID_AUTO, fscale, CTLFLAG_RD, 0, FSCALE, "");
261 
262 /*
263  * If `ccpu' is not equal to `exp(-1/20)' and you still want to use the
264  * faster/more-accurate formula, you'll have to estimate CCPU_SHIFT below
265  * and possibly adjust FSHIFT in "param.h" so that (FSHIFT >= CCPU_SHIFT).
266  *
267  * To estimate CCPU_SHIFT for exp(-1/20), the following formula was used:
268  *	1 - exp(-1/20) ~= 0.0487 ~= 0.0488 == 1 (fixed pt, *11* bits).
269  *
270  * If you don't want to bother with the faster/more-accurate formula, you
271  * can set CCPU_SHIFT to (FSHIFT + 1) which will use a slower/less-accurate
272  * (more general) method of calculating the %age of CPU used by a process.
273  */
274 #define	CCPU_SHIFT	11
275 
276 /*
277  * Recompute process priorities, every hz ticks.
278  * MP-safe, called without the Giant mutex.
279  */
280 /* ARGSUSED */
281 static void
282 schedcpu(arg)
283 	void *arg;
284 {
285 	register fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
286 	register struct proc *p;
287 	register int realstathz, s;
288 
289 	realstathz = stathz ? stathz : hz;
290 	ALLPROC_LOCK(AP_SHARED);
291 	LIST_FOREACH(p, &allproc, p_list) {
292 		/*
293 		 * Increment time in/out of memory and sleep time
294 		 * (if sleeping).  We ignore overflow; with 16-bit int's
295 		 * (remember them?) overflow takes 45 days.
296 		if (p->p_stat == SWAIT)
297 			continue;
298 		 */
299 		mtx_enter(&sched_lock, MTX_SPIN);
300 		p->p_swtime++;
301 		if (p->p_stat == SSLEEP || p->p_stat == SSTOP)
302 			p->p_slptime++;
303 		p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT;
304 		/*
305 		 * If the process has slept the entire second,
306 		 * stop recalculating its priority until it wakes up.
307 		 */
308 		if (p->p_slptime > 1) {
309 			mtx_exit(&sched_lock, MTX_SPIN);
310 			continue;
311 		}
312 
313 		/*
314 		 * prevent state changes and protect run queue
315 		 */
316 		s = splhigh();
317 
318 		/*
319 		 * p_pctcpu is only for ps.
320 		 */
321 #if	(FSHIFT >= CCPU_SHIFT)
322 		p->p_pctcpu += (realstathz == 100)?
323 			((fixpt_t) p->p_cpticks) << (FSHIFT - CCPU_SHIFT):
324                 	100 * (((fixpt_t) p->p_cpticks)
325 				<< (FSHIFT - CCPU_SHIFT)) / realstathz;
326 #else
327 		p->p_pctcpu += ((FSCALE - ccpu) *
328 			(p->p_cpticks * FSCALE / realstathz)) >> FSHIFT;
329 #endif
330 		p->p_cpticks = 0;
331 		p->p_estcpu = decay_cpu(loadfac, p->p_estcpu);
332 		resetpriority(p);
333 		if (p->p_priority >= PUSER) {
334 			if ((p != curproc) &&
335 #ifdef SMP
336 			    p->p_oncpu == 0xff && 	/* idle */
337 #endif
338 			    p->p_stat == SRUN &&
339 			    (p->p_flag & P_INMEM) &&
340 			    (p->p_priority / PPQ) != (p->p_usrpri / PPQ)) {
341 				remrunqueue(p);
342 				p->p_priority = p->p_usrpri;
343 				setrunqueue(p);
344 			} else
345 				p->p_priority = p->p_usrpri;
346 		}
347 		mtx_exit(&sched_lock, MTX_SPIN);
348 		splx(s);
349 	}
350 	ALLPROC_LOCK(AP_RELEASE);
351 	vmmeter();
352 	wakeup((caddr_t)&lbolt);
353 	callout_reset(&schedcpu_callout, hz, schedcpu, NULL);
354 }
355 
356 /*
357  * Recalculate the priority of a process after it has slept for a while.
358  * For all load averages >= 1 and max p_estcpu of 255, sleeping for at
359  * least six times the loadfactor will decay p_estcpu to zero.
360  */
361 static void
362 updatepri(p)
363 	register struct proc *p;
364 {
365 	register unsigned int newcpu = p->p_estcpu;
366 	register fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
367 
368 	if (p->p_slptime > 5 * loadfac)
369 		p->p_estcpu = 0;
370 	else {
371 		p->p_slptime--;	/* the first time was done in schedcpu */
372 		while (newcpu && --p->p_slptime)
373 			newcpu = decay_cpu(loadfac, newcpu);
374 		p->p_estcpu = newcpu;
375 	}
376 	resetpriority(p);
377 }
378 
379 /*
380  * We're only looking at 7 bits of the address; everything is
381  * aligned to 4, lots of things are aligned to greater powers
382  * of 2.  Shift right by 8, i.e. drop the bottom 256 worth.
383  */
384 #define TABLESIZE	128
385 static TAILQ_HEAD(slpquehead, proc) slpque[TABLESIZE];
386 #define LOOKUP(x)	(((intptr_t)(x) >> 8) & (TABLESIZE - 1))
387 
388 void
389 sleepinit(void)
390 {
391 	int i;
392 
393 	sched_quantum = hz/10;
394 	hogticks = 2 * sched_quantum;
395 	for (i = 0; i < TABLESIZE; i++)
396 		TAILQ_INIT(&slpque[i]);
397 }
398 
399 /*
400  * General sleep call.  Suspends the current process until a wakeup is
401  * performed on the specified identifier.  The process will then be made
402  * runnable with the specified priority.  Sleeps at most timo/hz seconds
403  * (0 means no timeout).  If pri includes PCATCH flag, signals are checked
404  * before and after sleeping, else signals are not checked.  Returns 0 if
405  * awakened, EWOULDBLOCK if the timeout expires.  If PCATCH is set and a
406  * signal needs to be delivered, ERESTART is returned if the current system
407  * call should be restarted if possible, and EINTR is returned if the system
408  * call should be interrupted by the signal (return EINTR).
409  *
410  * The mutex argument is exited before the caller is suspended, and
411  * entered before msleep returns.  If priority includes the PDROP
412  * flag the mutex is not entered before returning.
413  */
414 int
415 msleep(ident, mtx, priority, wmesg, timo)
416 	void *ident;
417 	struct mtx *mtx;
418 	int priority, timo;
419 	const char *wmesg;
420 {
421 	struct proc *p = curproc;
422 	int s, sig, catch = priority & PCATCH;
423 	int rval = 0;
424 	WITNESS_SAVE_DECL(mtx);
425 
426 #ifdef KTRACE
427 	if (p && KTRPOINT(p, KTR_CSW))
428 		ktrcsw(p->p_tracep, 1, 0);
429 #endif
430 	WITNESS_SLEEP(0, mtx);
431 	mtx_enter(&sched_lock, MTX_SPIN);
432 	s = splhigh();
433 	if (cold || panicstr) {
434 		/*
435 		 * After a panic, or during autoconfiguration,
436 		 * just give interrupts a chance, then just return;
437 		 * don't run any other procs or panic below,
438 		 * in case this is the idle process and already asleep.
439 		 */
440 		if (mtx != NULL && priority & PDROP)
441 			mtx_exit(mtx, MTX_DEF | MTX_NOSWITCH);
442 		mtx_exit(&sched_lock, MTX_SPIN);
443 		splx(s);
444 		return (0);
445 	}
446 
447 	DROP_GIANT_NOSWITCH();
448 
449 	if (mtx != NULL) {
450 		mtx_assert(mtx, MA_OWNED | MA_NOTRECURSED);
451 		WITNESS_SAVE(mtx, mtx);
452 		mtx_exit(mtx, MTX_DEF | MTX_NOSWITCH);
453 		if (priority & PDROP)
454 			mtx = NULL;
455 	}
456 
457 	KASSERT(p != NULL, ("msleep1"));
458 	KASSERT(ident != NULL && p->p_stat == SRUN, ("msleep"));
459 	/*
460 	 * Process may be sitting on a slpque if asleep() was called, remove
461 	 * it before re-adding.
462 	 */
463 	if (p->p_wchan != NULL)
464 		unsleep(p);
465 
466 	p->p_wchan = ident;
467 	p->p_wmesg = wmesg;
468 	p->p_slptime = 0;
469 	p->p_priority = priority & PRIMASK;
470 	CTR4(KTR_PROC, "msleep: proc %p (pid %d, %s), schedlock %p",
471 		p, p->p_pid, p->p_comm, (void *) sched_lock.mtx_lock);
472 	TAILQ_INSERT_TAIL(&slpque[LOOKUP(ident)], p, p_slpq);
473 	if (timo)
474 		callout_reset(&p->p_slpcallout, timo, endtsleep, p);
475 	/*
476 	 * We put ourselves on the sleep queue and start our timeout
477 	 * before calling CURSIG, as we could stop there, and a wakeup
478 	 * or a SIGCONT (or both) could occur while we were stopped.
479 	 * A SIGCONT would cause us to be marked as SSLEEP
480 	 * without resuming us, thus we must be ready for sleep
481 	 * when CURSIG is called.  If the wakeup happens while we're
482 	 * stopped, p->p_wchan will be 0 upon return from CURSIG.
483 	 */
484 	if (catch) {
485 		CTR4(KTR_PROC,
486 		        "msleep caught: proc %p (pid %d, %s), schedlock %p",
487 			p, p->p_pid, p->p_comm, (void *) sched_lock.mtx_lock);
488 		p->p_flag |= P_SINTR;
489 		mtx_exit(&sched_lock, MTX_SPIN);
490 		if ((sig = CURSIG(p))) {
491 			mtx_enter(&sched_lock, MTX_SPIN);
492 			if (p->p_wchan)
493 				unsleep(p);
494 			p->p_stat = SRUN;
495 			goto resume;
496 		}
497 		mtx_enter(&sched_lock, MTX_SPIN);
498 		if (p->p_wchan == 0) {
499 			catch = 0;
500 			goto resume;
501 		}
502 	} else
503 		sig = 0;
504 	p->p_stat = SSLEEP;
505 	p->p_stats->p_ru.ru_nvcsw++;
506 	mi_switch();
507 	CTR4(KTR_PROC,
508 	        "msleep resume: proc %p (pid %d, %s), schedlock %p",
509 		p, p->p_pid, p->p_comm, (void *) sched_lock.mtx_lock);
510 resume:
511 	curpriority = p->p_usrpri;
512 	splx(s);
513 	p->p_flag &= ~P_SINTR;
514 	if (p->p_flag & P_TIMEOUT) {
515 		p->p_flag &= ~P_TIMEOUT;
516 		if (sig == 0) {
517 #ifdef KTRACE
518 			if (KTRPOINT(p, KTR_CSW))
519 				ktrcsw(p->p_tracep, 0, 0);
520 #endif
521 			rval = EWOULDBLOCK;
522 			mtx_exit(&sched_lock, MTX_SPIN);
523 			goto out;
524 		}
525 	} else if (timo)
526 		callout_stop(&p->p_slpcallout);
527 	mtx_exit(&sched_lock, MTX_SPIN);
528 
529 	if (catch && (sig != 0 || (sig = CURSIG(p)))) {
530 #ifdef KTRACE
531 		if (KTRPOINT(p, KTR_CSW))
532 			ktrcsw(p->p_tracep, 0, 0);
533 #endif
534 		if (SIGISMEMBER(p->p_sigacts->ps_sigintr, sig))
535 			rval = EINTR;
536 		else
537 			rval = ERESTART;
538 		goto out;
539 	}
540 out:
541 #ifdef KTRACE
542 	if (KTRPOINT(p, KTR_CSW))
543 		ktrcsw(p->p_tracep, 0, 0);
544 #endif
545 	PICKUP_GIANT();
546 	if (mtx != NULL) {
547 		mtx_enter(mtx, MTX_DEF);
548 		WITNESS_RESTORE(mtx, mtx);
549 	}
550 	return (rval);
551 }
552 
553 /*
554  * asleep() - async sleep call.  Place process on wait queue and return
555  * immediately without blocking.  The process stays runnable until mawait()
556  * is called.  If ident is NULL, remove process from wait queue if it is still
557  * on one.
558  *
559  * Only the most recent sleep condition is effective when making successive
560  * calls to asleep() or when calling msleep().
561  *
562  * The timeout, if any, is not initiated until mawait() is called.  The sleep
563  * priority, signal, and timeout is specified in the asleep() call but may be
564  * overriden in the mawait() call.
565  *
566  * <<<<<<<< EXPERIMENTAL, UNTESTED >>>>>>>>>>
567  */
568 
569 int
570 asleep(void *ident, int priority, const char *wmesg, int timo)
571 {
572 	struct proc *p = curproc;
573 	int s;
574 
575 	/*
576 	 * obtain sched_lock while manipulating sleep structures and slpque.
577 	 *
578 	 * Remove preexisting wait condition (if any) and place process
579 	 * on appropriate slpque, but do not put process to sleep.
580 	 */
581 
582 	s = splhigh();
583 	mtx_enter(&sched_lock, MTX_SPIN);
584 
585 	if (p->p_wchan != NULL)
586 		unsleep(p);
587 
588 	if (ident) {
589 		p->p_wchan = ident;
590 		p->p_wmesg = wmesg;
591 		p->p_slptime = 0;
592 		p->p_asleep.as_priority = priority;
593 		p->p_asleep.as_timo = timo;
594 		TAILQ_INSERT_TAIL(&slpque[LOOKUP(ident)], p, p_slpq);
595 	}
596 
597 	mtx_exit(&sched_lock, MTX_SPIN);
598 	splx(s);
599 
600 	return(0);
601 }
602 
603 /*
604  * mawait() - wait for async condition to occur.   The process blocks until
605  * wakeup() is called on the most recent asleep() address.  If wakeup is called
606  * prior to mawait(), mawait() winds up being a NOP.
607  *
608  * If mawait() is called more then once (without an intervening asleep() call),
609  * mawait() is still effectively a NOP but it calls mi_switch() to give other
610  * processes some cpu before returning.  The process is left runnable.
611  *
612  * <<<<<<<< EXPERIMENTAL, UNTESTED >>>>>>>>>>
613  */
614 
615 int
616 mawait(struct mtx *mtx, int priority, int timo)
617 {
618 	struct proc *p = curproc;
619 	int rval = 0;
620 	int s;
621 	WITNESS_SAVE_DECL(mtx);
622 
623 	WITNESS_SLEEP(0, mtx);
624 	mtx_enter(&sched_lock, MTX_SPIN);
625 	DROP_GIANT_NOSWITCH();
626 	if (mtx != NULL) {
627 		mtx_assert(mtx, MA_OWNED | MA_NOTRECURSED);
628 		WITNESS_SAVE(mtx, mtx);
629 		mtx_exit(mtx, MTX_DEF | MTX_NOSWITCH);
630 		if (priority & PDROP)
631 			mtx = NULL;
632 	}
633 
634 	s = splhigh();
635 
636 	if (p->p_wchan != NULL) {
637 		int sig;
638 		int catch;
639 
640 		/*
641 		 * The call to mawait() can override defaults specified in
642 		 * the original asleep().
643 		 */
644 		if (priority < 0)
645 			priority = p->p_asleep.as_priority;
646 		if (timo < 0)
647 			timo = p->p_asleep.as_timo;
648 
649 		/*
650 		 * Install timeout
651 		 */
652 
653 		if (timo)
654 			callout_reset(&p->p_slpcallout, timo, endtsleep, p);
655 
656 		sig = 0;
657 		catch = priority & PCATCH;
658 
659 		if (catch) {
660 			p->p_flag |= P_SINTR;
661 			mtx_exit(&sched_lock, MTX_SPIN);
662 			if ((sig = CURSIG(p))) {
663 				mtx_enter(&sched_lock, MTX_SPIN);
664 				if (p->p_wchan)
665 					unsleep(p);
666 				p->p_stat = SRUN;
667 				goto resume;
668 			}
669 			mtx_enter(&sched_lock, MTX_SPIN);
670 			if (p->p_wchan == NULL) {
671 				catch = 0;
672 				goto resume;
673 			}
674 		}
675 		p->p_stat = SSLEEP;
676 		p->p_stats->p_ru.ru_nvcsw++;
677 		mi_switch();
678 resume:
679 		curpriority = p->p_usrpri;
680 
681 		splx(s);
682 		p->p_flag &= ~P_SINTR;
683 		if (p->p_flag & P_TIMEOUT) {
684 			p->p_flag &= ~P_TIMEOUT;
685 			if (sig == 0) {
686 #ifdef KTRACE
687 				if (KTRPOINT(p, KTR_CSW))
688 					ktrcsw(p->p_tracep, 0, 0);
689 #endif
690 				rval = EWOULDBLOCK;
691 				mtx_exit(&sched_lock, MTX_SPIN);
692 				goto out;
693 			}
694 		} else if (timo)
695 			callout_stop(&p->p_slpcallout);
696 		mtx_exit(&sched_lock, MTX_SPIN);
697 
698 		if (catch && (sig != 0 || (sig = CURSIG(p)))) {
699 #ifdef KTRACE
700 			if (KTRPOINT(p, KTR_CSW))
701 				ktrcsw(p->p_tracep, 0, 0);
702 #endif
703 			if (SIGISMEMBER(p->p_sigacts->ps_sigintr, sig))
704 				rval = EINTR;
705 			else
706 				rval = ERESTART;
707 			goto out;
708 		}
709 #ifdef KTRACE
710 		if (KTRPOINT(p, KTR_CSW))
711 			ktrcsw(p->p_tracep, 0, 0);
712 #endif
713 	} else {
714 		/*
715 		 * If as_priority is 0, mawait() has been called without an
716 		 * intervening asleep().  We are still effectively a NOP,
717 		 * but we call mi_switch() for safety.
718 		 */
719 
720 		if (p->p_asleep.as_priority == 0) {
721 			p->p_stats->p_ru.ru_nvcsw++;
722 			mi_switch();
723 		}
724 		mtx_exit(&sched_lock, MTX_SPIN);
725 		splx(s);
726 	}
727 
728 	/*
729 	 * clear p_asleep.as_priority as an indication that mawait() has been
730 	 * called.  If mawait() is called again without an intervening asleep(),
731 	 * mawait() is still effectively a NOP but the above mi_switch() code
732 	 * is triggered as a safety.
733 	 */
734 	p->p_asleep.as_priority = 0;
735 
736 out:
737 	PICKUP_GIANT();
738 	if (mtx != NULL) {
739 		mtx_enter(mtx, MTX_DEF);
740 		WITNESS_RESTORE(mtx, mtx);
741 	}
742 	return (rval);
743 }
744 
745 /*
746  * Implement timeout for msleep or asleep()/mawait()
747  *
748  * If process hasn't been awakened (wchan non-zero),
749  * set timeout flag and undo the sleep.  If proc
750  * is stopped, just unsleep so it will remain stopped.
751  * MP-safe, called without the Giant mutex.
752  */
753 static void
754 endtsleep(arg)
755 	void *arg;
756 {
757 	register struct proc *p;
758 	int s;
759 
760 	p = (struct proc *)arg;
761 	CTR4(KTR_PROC,
762 	        "endtsleep: proc %p (pid %d, %s), schedlock %p",
763 		p, p->p_pid, p->p_comm, (void *) sched_lock.mtx_lock);
764 	s = splhigh();
765 	mtx_enter(&sched_lock, MTX_SPIN);
766 	if (p->p_wchan) {
767 		if (p->p_stat == SSLEEP)
768 			setrunnable(p);
769 		else
770 			unsleep(p);
771 		p->p_flag |= P_TIMEOUT;
772 	}
773 	mtx_exit(&sched_lock, MTX_SPIN);
774 	splx(s);
775 }
776 
777 /*
778  * Remove a process from its wait queue
779  */
780 void
781 unsleep(p)
782 	register struct proc *p;
783 {
784 	int s;
785 
786 	s = splhigh();
787 	mtx_enter(&sched_lock, MTX_SPIN);
788 	if (p->p_wchan) {
789 		TAILQ_REMOVE(&slpque[LOOKUP(p->p_wchan)], p, p_slpq);
790 		p->p_wchan = 0;
791 	}
792 	mtx_exit(&sched_lock, MTX_SPIN);
793 	splx(s);
794 }
795 
796 /*
797  * Make all processes sleeping on the specified identifier runnable.
798  */
799 void
800 wakeup(ident)
801 	register void *ident;
802 {
803 	register struct slpquehead *qp;
804 	register struct proc *p;
805 	int s;
806 
807 	s = splhigh();
808 	mtx_enter(&sched_lock, MTX_SPIN);
809 	qp = &slpque[LOOKUP(ident)];
810 restart:
811 	TAILQ_FOREACH(p, qp, p_slpq) {
812 		if (p->p_wchan == ident) {
813 			TAILQ_REMOVE(qp, p, p_slpq);
814 			p->p_wchan = 0;
815 			if (p->p_stat == SSLEEP) {
816 				/* OPTIMIZED EXPANSION OF setrunnable(p); */
817 				CTR4(KTR_PROC,
818 				        "wakeup: proc %p (pid %d, %s), schedlock %p",
819 					p, p->p_pid, p->p_comm, (void *) sched_lock.mtx_lock);
820 				if (p->p_slptime > 1)
821 					updatepri(p);
822 				p->p_slptime = 0;
823 				p->p_stat = SRUN;
824 				if (p->p_flag & P_INMEM) {
825 					setrunqueue(p);
826 					maybe_resched(p);
827 				} else {
828 					p->p_flag |= P_SWAPINREQ;
829 					wakeup((caddr_t)&proc0);
830 				}
831 				/* END INLINE EXPANSION */
832 				goto restart;
833 			}
834 		}
835 	}
836 	mtx_exit(&sched_lock, MTX_SPIN);
837 	splx(s);
838 }
839 
840 /*
841  * Make a process sleeping on the specified identifier runnable.
842  * May wake more than one process if a target process is currently
843  * swapped out.
844  */
845 void
846 wakeup_one(ident)
847 	register void *ident;
848 {
849 	register struct slpquehead *qp;
850 	register struct proc *p;
851 	int s;
852 
853 	s = splhigh();
854 	mtx_enter(&sched_lock, MTX_SPIN);
855 	qp = &slpque[LOOKUP(ident)];
856 
857 	TAILQ_FOREACH(p, qp, p_slpq) {
858 		if (p->p_wchan == ident) {
859 			TAILQ_REMOVE(qp, p, p_slpq);
860 			p->p_wchan = 0;
861 			if (p->p_stat == SSLEEP) {
862 				/* OPTIMIZED EXPANSION OF setrunnable(p); */
863 				CTR4(KTR_PROC,
864 				        "wakeup1: proc %p (pid %d, %s), schedlock %p",
865 					p, p->p_pid, p->p_comm, (void *) sched_lock.mtx_lock);
866 				if (p->p_slptime > 1)
867 					updatepri(p);
868 				p->p_slptime = 0;
869 				p->p_stat = SRUN;
870 				if (p->p_flag & P_INMEM) {
871 					setrunqueue(p);
872 					maybe_resched(p);
873 					break;
874 				} else {
875 					p->p_flag |= P_SWAPINREQ;
876 					wakeup((caddr_t)&proc0);
877 				}
878 				/* END INLINE EXPANSION */
879 			}
880 		}
881 	}
882 	mtx_exit(&sched_lock, MTX_SPIN);
883 	splx(s);
884 }
885 
886 /*
887  * The machine independent parts of mi_switch().
888  * Must be called at splstatclock() or higher.
889  */
890 void
891 mi_switch()
892 {
893 	struct timeval new_switchtime;
894 	register struct proc *p = curproc;	/* XXX */
895 	register struct rlimit *rlim;
896 	int x;
897 
898 	/*
899 	 * XXX this spl is almost unnecessary.  It is partly to allow for
900 	 * sloppy callers that don't do it (issignal() via CURSIG() is the
901 	 * main offender).  It is partly to work around a bug in the i386
902 	 * cpu_switch() (the ipl is not preserved).  We ran for years
903 	 * without it.  I think there was only a interrupt latency problem.
904 	 * The main caller, msleep(), does an splx() a couple of instructions
905 	 * after calling here.  The buggy caller, issignal(), usually calls
906 	 * here at spl0() and sometimes returns at splhigh().  The process
907 	 * then runs for a little too long at splhigh().  The ipl gets fixed
908 	 * when the process returns to user mode (or earlier).
909 	 *
910 	 * It would probably be better to always call here at spl0(). Callers
911 	 * are prepared to give up control to another process, so they must
912 	 * be prepared to be interrupted.  The clock stuff here may not
913 	 * actually need splstatclock().
914 	 */
915 	x = splstatclock();
916 
917 	mtx_assert(&sched_lock, MA_OWNED);
918 
919 #ifdef SIMPLELOCK_DEBUG
920 	if (p->p_simple_locks)
921 		printf("sleep: holding simple lock\n");
922 #endif
923 	/*
924 	 * Compute the amount of time during which the current
925 	 * process was running, and add that to its total so far.
926 	 */
927 	microuptime(&new_switchtime);
928 	if (timevalcmp(&new_switchtime, PCPU_PTR(switchtime), <)) {
929 		printf("microuptime() went backwards (%ld.%06ld -> %ld.%06ld)\n",
930 		    PCPU_GET(switchtime.tv_sec), PCPU_GET(switchtime.tv_usec),
931 		    new_switchtime.tv_sec, new_switchtime.tv_usec);
932 		new_switchtime = PCPU_GET(switchtime);
933 	} else {
934 		p->p_runtime += (new_switchtime.tv_usec - PCPU_GET(switchtime.tv_usec)) +
935 		    (new_switchtime.tv_sec - PCPU_GET(switchtime.tv_sec)) *
936 		    (int64_t)1000000;
937 	}
938 
939 	/*
940 	 * Check if the process exceeds its cpu resource allocation.
941 	 * If over max, kill it.
942 	 *
943 	 * XXX drop sched_lock, pickup Giant
944 	 */
945 	if (p->p_stat != SZOMB && p->p_limit->p_cpulimit != RLIM_INFINITY &&
946 	    p->p_runtime > p->p_limit->p_cpulimit) {
947 		rlim = &p->p_rlimit[RLIMIT_CPU];
948 		if (p->p_runtime / (rlim_t)1000000 >= rlim->rlim_max) {
949 			killproc(p, "exceeded maximum CPU limit");
950 		} else {
951 			psignal(p, SIGXCPU);
952 			if (rlim->rlim_cur < rlim->rlim_max) {
953 				/* XXX: we should make a private copy */
954 				rlim->rlim_cur += 5;
955 			}
956 		}
957 	}
958 
959 	/*
960 	 * Pick a new current process and record its start time.
961 	 */
962 	cnt.v_swtch++;
963 	PCPU_SET(switchtime, new_switchtime);
964 	CTR4(KTR_PROC, "mi_switch: old proc %p (pid %d, %s), schedlock %p",
965 		p, p->p_pid, p->p_comm, (void *) sched_lock.mtx_lock);
966 	cpu_switch();
967 	CTR4(KTR_PROC, "mi_switch: new proc %p (pid %d, %s), schedlock %p",
968 		p, p->p_pid, p->p_comm, (void *) sched_lock.mtx_lock);
969 	if (PCPU_GET(switchtime.tv_sec) == 0)
970 		microuptime(PCPU_PTR(switchtime));
971 	PCPU_SET(switchticks, ticks);
972 	splx(x);
973 }
974 
975 /*
976  * Change process state to be runnable,
977  * placing it on the run queue if it is in memory,
978  * and awakening the swapper if it isn't in memory.
979  */
980 void
981 setrunnable(p)
982 	register struct proc *p;
983 {
984 	register int s;
985 
986 	s = splhigh();
987 	mtx_enter(&sched_lock, MTX_SPIN);
988 	switch (p->p_stat) {
989 	case 0:
990 	case SRUN:
991 	case SZOMB:
992 	case SWAIT:
993 	default:
994 		panic("setrunnable");
995 	case SSTOP:
996 	case SSLEEP:
997 		unsleep(p);		/* e.g. when sending signals */
998 		break;
999 
1000 	case SIDL:
1001 		break;
1002 	}
1003 	p->p_stat = SRUN;
1004 	if (p->p_flag & P_INMEM)
1005 		setrunqueue(p);
1006 	splx(s);
1007 	if (p->p_slptime > 1)
1008 		updatepri(p);
1009 	p->p_slptime = 0;
1010 	if ((p->p_flag & P_INMEM) == 0) {
1011 		p->p_flag |= P_SWAPINREQ;
1012 		wakeup((caddr_t)&proc0);
1013 	}
1014 	else
1015 		maybe_resched(p);
1016 	mtx_exit(&sched_lock, MTX_SPIN);
1017 }
1018 
1019 /*
1020  * Compute the priority of a process when running in user mode.
1021  * Arrange to reschedule if the resulting priority is better
1022  * than that of the current process.
1023  */
1024 void
1025 resetpriority(p)
1026 	register struct proc *p;
1027 {
1028 	register unsigned int newpriority;
1029 
1030 	mtx_enter(&sched_lock, MTX_SPIN);
1031 	if (p->p_rtprio.type == RTP_PRIO_NORMAL) {
1032 		newpriority = PUSER + p->p_estcpu / INVERSE_ESTCPU_WEIGHT +
1033 		    NICE_WEIGHT * (p->p_nice - PRIO_MIN);
1034 		newpriority = min(newpriority, MAXPRI);
1035 		p->p_usrpri = newpriority;
1036 	}
1037 	maybe_resched(p);
1038 	mtx_exit(&sched_lock, MTX_SPIN);
1039 }
1040 
1041 /* ARGSUSED */
1042 static void
1043 sched_setup(dummy)
1044 	void *dummy;
1045 {
1046 
1047 	callout_init(&schedcpu_callout, 1);
1048 	callout_init(&roundrobin_callout, 0);
1049 
1050 	/* Kick off timeout driven events by calling first time. */
1051 	roundrobin(NULL);
1052 	schedcpu(NULL);
1053 }
1054 
1055 /*
1056  * We adjust the priority of the current process.  The priority of
1057  * a process gets worse as it accumulates CPU time.  The cpu usage
1058  * estimator (p_estcpu) is increased here.  resetpriority() will
1059  * compute a different priority each time p_estcpu increases by
1060  * INVERSE_ESTCPU_WEIGHT
1061  * (until MAXPRI is reached).  The cpu usage estimator ramps up
1062  * quite quickly when the process is running (linearly), and decays
1063  * away exponentially, at a rate which is proportionally slower when
1064  * the system is busy.  The basic principle is that the system will
1065  * 90% forget that the process used a lot of CPU time in 5 * loadav
1066  * seconds.  This causes the system to favor processes which haven't
1067  * run much recently, and to round-robin among other processes.
1068  */
1069 void
1070 schedclock(p)
1071 	struct proc *p;
1072 {
1073 
1074 	p->p_cpticks++;
1075 	p->p_estcpu = ESTCPULIM(p->p_estcpu + 1);
1076 	if ((p->p_estcpu % INVERSE_ESTCPU_WEIGHT) == 0) {
1077 		resetpriority(p);
1078 		if (p->p_priority >= PUSER)
1079 			p->p_priority = p->p_usrpri;
1080 	}
1081 }
1082 
1083 /*
1084  * General purpose yield system call
1085  */
1086 int
1087 yield(struct proc *p, struct yield_args *uap)
1088 {
1089 	int s;
1090 
1091 	p->p_retval[0] = 0;
1092 
1093 	s = splhigh();
1094 	mtx_enter(&sched_lock, MTX_SPIN);
1095 	DROP_GIANT_NOSWITCH();
1096 	p->p_priority = MAXPRI;
1097 	setrunqueue(p);
1098 	p->p_stats->p_ru.ru_nvcsw++;
1099 	mi_switch();
1100 	mtx_exit(&sched_lock, MTX_SPIN);
1101 	PICKUP_GIANT();
1102 	splx(s);
1103 
1104 	return (0);
1105 }
1106