1 /*- 2 * Copyright (c) 1982, 1986, 1990, 1991, 1993 3 * The Regents of the University of California. All rights reserved. 4 * (c) UNIX System Laboratories, Inc. 5 * All or some portions of this file are derived from material licensed 6 * to the University of California by American Telephone and Telegraph 7 * Co. or Unix System Laboratories, Inc. and are reproduced herein with 8 * the permission of UNIX System Laboratories, Inc. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 4. Neither the name of the University nor the names of its contributors 19 * may be used to endorse or promote products derived from this software 20 * without specific prior written permission. 21 * 22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 32 * SUCH DAMAGE. 33 * 34 * @(#)kern_synch.c 8.9 (Berkeley) 5/19/95 35 */ 36 37 #include <sys/cdefs.h> 38 __FBSDID("$FreeBSD$"); 39 40 #include "opt_ktrace.h" 41 #include "opt_sched.h" 42 43 #include <sys/param.h> 44 #include <sys/systm.h> 45 #include <sys/condvar.h> 46 #include <sys/kdb.h> 47 #include <sys/kernel.h> 48 #include <sys/ktr.h> 49 #include <sys/lock.h> 50 #include <sys/mutex.h> 51 #include <sys/proc.h> 52 #include <sys/resourcevar.h> 53 #include <sys/sched.h> 54 #include <sys/signalvar.h> 55 #include <sys/sleepqueue.h> 56 #include <sys/smp.h> 57 #include <sys/sx.h> 58 #include <sys/sysctl.h> 59 #include <sys/sysproto.h> 60 #include <sys/vmmeter.h> 61 #ifdef KTRACE 62 #include <sys/uio.h> 63 #include <sys/ktrace.h> 64 #endif 65 66 #include <machine/cpu.h> 67 68 #ifdef XEN 69 #include <vm/vm.h> 70 #include <vm/vm_param.h> 71 #include <vm/pmap.h> 72 #endif 73 74 #define KTDSTATE(td) \ 75 (((td)->td_inhibitors & TDI_SLEEPING) != 0 ? "sleep" : \ 76 ((td)->td_inhibitors & TDI_SUSPENDED) != 0 ? "suspended" : \ 77 ((td)->td_inhibitors & TDI_SWAPPED) != 0 ? "swapped" : \ 78 ((td)->td_inhibitors & TDI_LOCK) != 0 ? "blocked" : \ 79 ((td)->td_inhibitors & TDI_IWAIT) != 0 ? "iwait" : "yielding") 80 81 static void synch_setup(void *dummy); 82 SYSINIT(synch_setup, SI_SUB_KICK_SCHEDULER, SI_ORDER_FIRST, synch_setup, 83 NULL); 84 85 int hogticks; 86 static int pause_wchan; 87 88 static struct callout loadav_callout; 89 90 struct loadavg averunnable = 91 { {0, 0, 0}, FSCALE }; /* load average, of runnable procs */ 92 /* 93 * Constants for averages over 1, 5, and 15 minutes 94 * when sampling at 5 second intervals. 95 */ 96 static fixpt_t cexp[3] = { 97 0.9200444146293232 * FSCALE, /* exp(-1/12) */ 98 0.9834714538216174 * FSCALE, /* exp(-1/60) */ 99 0.9944598480048967 * FSCALE, /* exp(-1/180) */ 100 }; 101 102 /* kernel uses `FSCALE', userland (SHOULD) use kern.fscale */ 103 static int fscale __unused = FSCALE; 104 SYSCTL_INT(_kern, OID_AUTO, fscale, CTLFLAG_RD, 0, FSCALE, ""); 105 106 static void loadav(void *arg); 107 108 void 109 sleepinit(void) 110 { 111 112 hogticks = (hz / 10) * 2; /* Default only. */ 113 init_sleepqueues(); 114 } 115 116 /* 117 * General sleep call. Suspends the current thread until a wakeup is 118 * performed on the specified identifier. The thread will then be made 119 * runnable with the specified priority. Sleeps at most timo/hz seconds 120 * (0 means no timeout). If pri includes PCATCH flag, signals are checked 121 * before and after sleeping, else signals are not checked. Returns 0 if 122 * awakened, EWOULDBLOCK if the timeout expires. If PCATCH is set and a 123 * signal needs to be delivered, ERESTART is returned if the current system 124 * call should be restarted if possible, and EINTR is returned if the system 125 * call should be interrupted by the signal (return EINTR). 126 * 127 * The lock argument is unlocked before the caller is suspended, and 128 * re-locked before _sleep() returns. If priority includes the PDROP 129 * flag the lock is not re-locked before returning. 130 */ 131 int 132 _sleep(void *ident, struct lock_object *lock, int priority, 133 const char *wmesg, int timo) 134 { 135 struct thread *td; 136 struct proc *p; 137 struct lock_class *class; 138 int catch, flags, lock_state, pri, rval; 139 WITNESS_SAVE_DECL(lock_witness); 140 141 td = curthread; 142 p = td->td_proc; 143 #ifdef KTRACE 144 if (KTRPOINT(td, KTR_CSW)) 145 ktrcsw(1, 0); 146 #endif 147 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, lock, 148 "Sleeping on \"%s\"", wmesg); 149 KASSERT(timo != 0 || mtx_owned(&Giant) || lock != NULL, 150 ("sleeping without a lock")); 151 KASSERT(p != NULL, ("msleep1")); 152 KASSERT(ident != NULL && TD_IS_RUNNING(td), ("msleep")); 153 if (priority & PDROP) 154 KASSERT(lock != NULL && lock != &Giant.lock_object, 155 ("PDROP requires a non-Giant lock")); 156 if (lock != NULL) 157 class = LOCK_CLASS(lock); 158 else 159 class = NULL; 160 161 if (cold) { 162 /* 163 * During autoconfiguration, just return; 164 * don't run any other threads or panic below, 165 * in case this is the idle thread and already asleep. 166 * XXX: this used to do "s = splhigh(); splx(safepri); 167 * splx(s);" to give interrupts a chance, but there is 168 * no way to give interrupts a chance now. 169 */ 170 if (lock != NULL && priority & PDROP) 171 class->lc_unlock(lock); 172 return (0); 173 } 174 catch = priority & PCATCH; 175 pri = priority & PRIMASK; 176 177 /* 178 * If we are already on a sleep queue, then remove us from that 179 * sleep queue first. We have to do this to handle recursive 180 * sleeps. 181 */ 182 if (TD_ON_SLEEPQ(td)) 183 sleepq_remove(td, td->td_wchan); 184 185 if (ident == &pause_wchan) 186 flags = SLEEPQ_PAUSE; 187 else 188 flags = SLEEPQ_SLEEP; 189 if (catch) 190 flags |= SLEEPQ_INTERRUPTIBLE; 191 192 sleepq_lock(ident); 193 CTR5(KTR_PROC, "sleep: thread %ld (pid %ld, %s) on %s (%p)", 194 td->td_tid, p->p_pid, td->td_name, wmesg, ident); 195 196 if (lock == &Giant.lock_object) 197 mtx_assert(&Giant, MA_OWNED); 198 DROP_GIANT(); 199 if (lock != NULL && lock != &Giant.lock_object && 200 !(class->lc_flags & LC_SLEEPABLE)) { 201 WITNESS_SAVE(lock, lock_witness); 202 lock_state = class->lc_unlock(lock); 203 } else 204 /* GCC needs to follow the Yellow Brick Road */ 205 lock_state = -1; 206 207 /* 208 * We put ourselves on the sleep queue and start our timeout 209 * before calling thread_suspend_check, as we could stop there, 210 * and a wakeup or a SIGCONT (or both) could occur while we were 211 * stopped without resuming us. Thus, we must be ready for sleep 212 * when cursig() is called. If the wakeup happens while we're 213 * stopped, then td will no longer be on a sleep queue upon 214 * return from cursig(). 215 */ 216 sleepq_add(ident, lock, wmesg, flags, 0); 217 if (timo) 218 sleepq_set_timeout(ident, timo); 219 if (lock != NULL && class->lc_flags & LC_SLEEPABLE) { 220 sleepq_release(ident); 221 WITNESS_SAVE(lock, lock_witness); 222 lock_state = class->lc_unlock(lock); 223 sleepq_lock(ident); 224 } 225 if (timo && catch) 226 rval = sleepq_timedwait_sig(ident, pri); 227 else if (timo) 228 rval = sleepq_timedwait(ident, pri); 229 else if (catch) 230 rval = sleepq_wait_sig(ident, pri); 231 else { 232 sleepq_wait(ident, pri); 233 rval = 0; 234 } 235 #ifdef KTRACE 236 if (KTRPOINT(td, KTR_CSW)) 237 ktrcsw(0, 0); 238 #endif 239 PICKUP_GIANT(); 240 if (lock != NULL && lock != &Giant.lock_object && !(priority & PDROP)) { 241 class->lc_lock(lock, lock_state); 242 WITNESS_RESTORE(lock, lock_witness); 243 } 244 return (rval); 245 } 246 247 int 248 msleep_spin(void *ident, struct mtx *mtx, const char *wmesg, int timo) 249 { 250 struct thread *td; 251 struct proc *p; 252 int rval; 253 WITNESS_SAVE_DECL(mtx); 254 255 td = curthread; 256 p = td->td_proc; 257 KASSERT(mtx != NULL, ("sleeping without a mutex")); 258 KASSERT(p != NULL, ("msleep1")); 259 KASSERT(ident != NULL && TD_IS_RUNNING(td), ("msleep")); 260 261 if (cold) { 262 /* 263 * During autoconfiguration, just return; 264 * don't run any other threads or panic below, 265 * in case this is the idle thread and already asleep. 266 * XXX: this used to do "s = splhigh(); splx(safepri); 267 * splx(s);" to give interrupts a chance, but there is 268 * no way to give interrupts a chance now. 269 */ 270 return (0); 271 } 272 273 sleepq_lock(ident); 274 CTR5(KTR_PROC, "msleep_spin: thread %ld (pid %ld, %s) on %s (%p)", 275 td->td_tid, p->p_pid, td->td_name, wmesg, ident); 276 277 DROP_GIANT(); 278 mtx_assert(mtx, MA_OWNED | MA_NOTRECURSED); 279 WITNESS_SAVE(&mtx->lock_object, mtx); 280 mtx_unlock_spin(mtx); 281 282 /* 283 * We put ourselves on the sleep queue and start our timeout. 284 */ 285 sleepq_add(ident, &mtx->lock_object, wmesg, SLEEPQ_SLEEP, 0); 286 if (timo) 287 sleepq_set_timeout(ident, timo); 288 289 /* 290 * Can't call ktrace with any spin locks held so it can lock the 291 * ktrace_mtx lock, and WITNESS_WARN considers it an error to hold 292 * any spin lock. Thus, we have to drop the sleepq spin lock while 293 * we handle those requests. This is safe since we have placed our 294 * thread on the sleep queue already. 295 */ 296 #ifdef KTRACE 297 if (KTRPOINT(td, KTR_CSW)) { 298 sleepq_release(ident); 299 ktrcsw(1, 0); 300 sleepq_lock(ident); 301 } 302 #endif 303 #ifdef WITNESS 304 sleepq_release(ident); 305 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, "Sleeping on \"%s\"", 306 wmesg); 307 sleepq_lock(ident); 308 #endif 309 if (timo) 310 rval = sleepq_timedwait(ident, 0); 311 else { 312 sleepq_wait(ident, 0); 313 rval = 0; 314 } 315 #ifdef KTRACE 316 if (KTRPOINT(td, KTR_CSW)) 317 ktrcsw(0, 0); 318 #endif 319 PICKUP_GIANT(); 320 mtx_lock_spin(mtx); 321 WITNESS_RESTORE(&mtx->lock_object, mtx); 322 return (rval); 323 } 324 325 /* 326 * pause() is like tsleep() except that the intention is to not be 327 * explicitly woken up by another thread. Instead, the current thread 328 * simply wishes to sleep until the timeout expires. It is 329 * implemented using a dummy wait channel. 330 */ 331 int 332 pause(const char *wmesg, int timo) 333 { 334 335 KASSERT(timo != 0, ("pause: timeout required")); 336 return (tsleep(&pause_wchan, 0, wmesg, timo)); 337 } 338 339 /* 340 * Make all threads sleeping on the specified identifier runnable. 341 */ 342 void 343 wakeup(void *ident) 344 { 345 int wakeup_swapper; 346 347 sleepq_lock(ident); 348 wakeup_swapper = sleepq_broadcast(ident, SLEEPQ_SLEEP, 0, 0); 349 sleepq_release(ident); 350 if (wakeup_swapper) 351 kick_proc0(); 352 } 353 354 /* 355 * Make a thread sleeping on the specified identifier runnable. 356 * May wake more than one thread if a target thread is currently 357 * swapped out. 358 */ 359 void 360 wakeup_one(void *ident) 361 { 362 int wakeup_swapper; 363 364 sleepq_lock(ident); 365 wakeup_swapper = sleepq_signal(ident, SLEEPQ_SLEEP, 0, 0); 366 sleepq_release(ident); 367 if (wakeup_swapper) 368 kick_proc0(); 369 } 370 371 static void 372 kdb_switch(void) 373 { 374 thread_unlock(curthread); 375 kdb_backtrace(); 376 kdb_reenter(); 377 panic("%s: did not reenter debugger", __func__); 378 } 379 380 /* 381 * The machine independent parts of context switching. 382 */ 383 void 384 mi_switch(int flags, struct thread *newtd) 385 { 386 uint64_t runtime, new_switchtime; 387 struct thread *td; 388 struct proc *p; 389 390 td = curthread; /* XXX */ 391 THREAD_LOCK_ASSERT(td, MA_OWNED | MA_NOTRECURSED); 392 p = td->td_proc; /* XXX */ 393 KASSERT(!TD_ON_RUNQ(td), ("mi_switch: called by old code")); 394 #ifdef INVARIANTS 395 if (!TD_ON_LOCK(td) && !TD_IS_RUNNING(td)) 396 mtx_assert(&Giant, MA_NOTOWNED); 397 #endif 398 KASSERT(td->td_critnest == 1 || (td->td_critnest == 2 && 399 (td->td_owepreempt) && (flags & SW_INVOL) != 0 && 400 newtd == NULL) || panicstr, 401 ("mi_switch: switch in a critical section")); 402 KASSERT((flags & (SW_INVOL | SW_VOL)) != 0, 403 ("mi_switch: switch must be voluntary or involuntary")); 404 KASSERT(newtd != curthread, ("mi_switch: preempting back to ourself")); 405 406 /* 407 * Don't perform context switches from the debugger. 408 */ 409 if (kdb_active) 410 kdb_switch(); 411 if (flags & SW_VOL) 412 td->td_ru.ru_nvcsw++; 413 else 414 td->td_ru.ru_nivcsw++; 415 #ifdef SCHED_STATS 416 SCHED_STAT_INC(sched_switch_stats[flags & SW_TYPE_MASK]); 417 #endif 418 /* 419 * Compute the amount of time during which the current 420 * thread was running, and add that to its total so far. 421 */ 422 new_switchtime = cpu_ticks(); 423 runtime = new_switchtime - PCPU_GET(switchtime); 424 td->td_runtime += runtime; 425 td->td_incruntime += runtime; 426 PCPU_SET(switchtime, new_switchtime); 427 td->td_generation++; /* bump preempt-detect counter */ 428 PCPU_INC(cnt.v_swtch); 429 PCPU_SET(switchticks, ticks); 430 CTR4(KTR_PROC, "mi_switch: old thread %ld (td_sched %p, pid %ld, %s)", 431 td->td_tid, td->td_sched, p->p_pid, td->td_name); 432 #if (KTR_COMPILE & KTR_SCHED) != 0 433 if (TD_IS_IDLETHREAD(td)) 434 KTR_STATE1(KTR_SCHED, "thread", sched_tdname(td), "idle", 435 "prio:%d", td->td_priority); 436 else 437 KTR_STATE3(KTR_SCHED, "thread", sched_tdname(td), KTDSTATE(td), 438 "prio:%d", td->td_priority, "wmesg:\"%s\"", td->td_wmesg, 439 "lockname:\"%s\"", td->td_lockname); 440 #endif 441 #ifdef XEN 442 PT_UPDATES_FLUSH(); 443 #endif 444 sched_switch(td, newtd, flags); 445 KTR_STATE1(KTR_SCHED, "thread", sched_tdname(td), "running", 446 "prio:%d", td->td_priority); 447 448 CTR4(KTR_PROC, "mi_switch: new thread %ld (td_sched %p, pid %ld, %s)", 449 td->td_tid, td->td_sched, p->p_pid, td->td_name); 450 451 /* 452 * If the last thread was exiting, finish cleaning it up. 453 */ 454 if ((td = PCPU_GET(deadthread))) { 455 PCPU_SET(deadthread, NULL); 456 thread_stash(td); 457 } 458 } 459 460 /* 461 * Change thread state to be runnable, placing it on the run queue if 462 * it is in memory. If it is swapped out, return true so our caller 463 * will know to awaken the swapper. 464 */ 465 int 466 setrunnable(struct thread *td) 467 { 468 469 THREAD_LOCK_ASSERT(td, MA_OWNED); 470 KASSERT(td->td_proc->p_state != PRS_ZOMBIE, 471 ("setrunnable: pid %d is a zombie", td->td_proc->p_pid)); 472 switch (td->td_state) { 473 case TDS_RUNNING: 474 case TDS_RUNQ: 475 return (0); 476 case TDS_INHIBITED: 477 /* 478 * If we are only inhibited because we are swapped out 479 * then arange to swap in this process. Otherwise just return. 480 */ 481 if (td->td_inhibitors != TDI_SWAPPED) 482 return (0); 483 /* FALLTHROUGH */ 484 case TDS_CAN_RUN: 485 break; 486 default: 487 printf("state is 0x%x", td->td_state); 488 panic("setrunnable(2)"); 489 } 490 if ((td->td_flags & TDF_INMEM) == 0) { 491 if ((td->td_flags & TDF_SWAPINREQ) == 0) { 492 td->td_flags |= TDF_SWAPINREQ; 493 return (1); 494 } 495 } else 496 sched_wakeup(td); 497 return (0); 498 } 499 500 /* 501 * Compute a tenex style load average of a quantity on 502 * 1, 5 and 15 minute intervals. 503 */ 504 static void 505 loadav(void *arg) 506 { 507 int i, nrun; 508 struct loadavg *avg; 509 510 nrun = sched_load(); 511 avg = &averunnable; 512 513 for (i = 0; i < 3; i++) 514 avg->ldavg[i] = (cexp[i] * avg->ldavg[i] + 515 nrun * FSCALE * (FSCALE - cexp[i])) >> FSHIFT; 516 517 /* 518 * Schedule the next update to occur after 5 seconds, but add a 519 * random variation to avoid synchronisation with processes that 520 * run at regular intervals. 521 */ 522 callout_reset(&loadav_callout, hz * 4 + (int)(random() % (hz * 2 + 1)), 523 loadav, NULL); 524 } 525 526 /* ARGSUSED */ 527 static void 528 synch_setup(void *dummy) 529 { 530 callout_init(&loadav_callout, CALLOUT_MPSAFE); 531 532 /* Kick off timeout driven events by calling first time. */ 533 loadav(NULL); 534 } 535 536 /* 537 * General purpose yield system call. 538 */ 539 int 540 yield(struct thread *td, struct yield_args *uap) 541 { 542 543 thread_lock(td); 544 sched_prio(td, PRI_MAX_TIMESHARE); 545 mi_switch(SW_VOL | SWT_RELINQUISH, NULL); 546 thread_unlock(td); 547 td->td_retval[0] = 0; 548 return (0); 549 } 550