xref: /freebsd/sys/kern/kern_synch.c (revision 0fddbf874719b9bd50cf66ac26d1140bb3f2be69)
1 /*-
2  * Copyright (c) 1982, 1986, 1990, 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  * (c) UNIX System Laboratories, Inc.
5  * All or some portions of this file are derived from material licensed
6  * to the University of California by American Telephone and Telegraph
7  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8  * the permission of UNIX System Laboratories, Inc.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. All advertising materials mentioning features or use of this software
19  *    must display the following acknowledgement:
20  *	This product includes software developed by the University of
21  *	California, Berkeley and its contributors.
22  * 4. Neither the name of the University nor the names of its contributors
23  *    may be used to endorse or promote products derived from this software
24  *    without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36  * SUCH DAMAGE.
37  *
38  *	@(#)kern_synch.c	8.9 (Berkeley) 5/19/95
39  * $FreeBSD$
40  */
41 
42 #include "opt_ddb.h"
43 #include "opt_ktrace.h"
44 
45 #include <sys/param.h>
46 #include <sys/systm.h>
47 #include <sys/condvar.h>
48 #include <sys/kernel.h>
49 #include <sys/ktr.h>
50 #include <sys/lock.h>
51 #include <sys/mutex.h>
52 #include <sys/proc.h>
53 #include <sys/resourcevar.h>
54 #include <sys/signalvar.h>
55 #include <sys/smp.h>
56 #include <sys/sx.h>
57 #include <sys/sysctl.h>
58 #include <sys/sysproto.h>
59 #include <sys/vmmeter.h>
60 #include <vm/vm.h>
61 #include <vm/vm_extern.h>
62 #ifdef DDB
63 #include <ddb/ddb.h>
64 #endif
65 #ifdef KTRACE
66 #include <sys/uio.h>
67 #include <sys/ktrace.h>
68 #endif
69 
70 #include <machine/cpu.h>
71 
72 static void sched_setup __P((void *dummy));
73 SYSINIT(sched_setup, SI_SUB_KICK_SCHEDULER, SI_ORDER_FIRST, sched_setup, NULL)
74 
75 int	hogticks;
76 int	lbolt;
77 int	sched_quantum;		/* Roundrobin scheduling quantum in ticks. */
78 
79 static struct callout schedcpu_callout;
80 static struct callout roundrobin_callout;
81 
82 static void	endtsleep __P((void *));
83 static void	roundrobin __P((void *arg));
84 static void	schedcpu __P((void *arg));
85 
86 static int
87 sysctl_kern_quantum(SYSCTL_HANDLER_ARGS)
88 {
89 	int error, new_val;
90 
91 	new_val = sched_quantum * tick;
92 	error = sysctl_handle_int(oidp, &new_val, 0, req);
93         if (error != 0 || req->newptr == NULL)
94 		return (error);
95 	if (new_val < tick)
96 		return (EINVAL);
97 	sched_quantum = new_val / tick;
98 	hogticks = 2 * sched_quantum;
99 	return (0);
100 }
101 
102 SYSCTL_PROC(_kern, OID_AUTO, quantum, CTLTYPE_INT|CTLFLAG_RW,
103 	0, sizeof sched_quantum, sysctl_kern_quantum, "I", "");
104 
105 /*
106  * Arrange to reschedule if necessary, taking the priorities and
107  * schedulers into account.
108  */
109 void
110 maybe_resched(p)
111 	struct proc *p;
112 {
113 
114 	mtx_assert(&sched_lock, MA_OWNED);
115 	if (p->p_pri.pri_level < curproc->p_pri.pri_level)
116 		curproc->p_sflag |= PS_NEEDRESCHED;
117 }
118 
119 int
120 roundrobin_interval(void)
121 {
122 	return (sched_quantum);
123 }
124 
125 /*
126  * Force switch among equal priority processes every 100ms.
127  * We don't actually need to force a context switch of the current process.
128  * The act of firing the event triggers a context switch to softclock() and
129  * then switching back out again which is equivalent to a preemption, thus
130  * no further work is needed on the local CPU.
131  */
132 /* ARGSUSED */
133 static void
134 roundrobin(arg)
135 	void *arg;
136 {
137 
138 #ifdef SMP
139 	mtx_lock_spin(&sched_lock);
140 	forward_roundrobin();
141 	mtx_unlock_spin(&sched_lock);
142 #endif
143 
144 	callout_reset(&roundrobin_callout, sched_quantum, roundrobin, NULL);
145 }
146 
147 /*
148  * Constants for digital decay and forget:
149  *	90% of (p_estcpu) usage in 5 * loadav time
150  *	95% of (p_pctcpu) usage in 60 seconds (load insensitive)
151  *          Note that, as ps(1) mentions, this can let percentages
152  *          total over 100% (I've seen 137.9% for 3 processes).
153  *
154  * Note that schedclock() updates p_estcpu and p_cpticks asynchronously.
155  *
156  * We wish to decay away 90% of p_estcpu in (5 * loadavg) seconds.
157  * That is, the system wants to compute a value of decay such
158  * that the following for loop:
159  * 	for (i = 0; i < (5 * loadavg); i++)
160  * 		p_estcpu *= decay;
161  * will compute
162  * 	p_estcpu *= 0.1;
163  * for all values of loadavg:
164  *
165  * Mathematically this loop can be expressed by saying:
166  * 	decay ** (5 * loadavg) ~= .1
167  *
168  * The system computes decay as:
169  * 	decay = (2 * loadavg) / (2 * loadavg + 1)
170  *
171  * We wish to prove that the system's computation of decay
172  * will always fulfill the equation:
173  * 	decay ** (5 * loadavg) ~= .1
174  *
175  * If we compute b as:
176  * 	b = 2 * loadavg
177  * then
178  * 	decay = b / (b + 1)
179  *
180  * We now need to prove two things:
181  *	1) Given factor ** (5 * loadavg) ~= .1, prove factor == b/(b+1)
182  *	2) Given b/(b+1) ** power ~= .1, prove power == (5 * loadavg)
183  *
184  * Facts:
185  *         For x close to zero, exp(x) =~ 1 + x, since
186  *              exp(x) = 0! + x**1/1! + x**2/2! + ... .
187  *              therefore exp(-1/b) =~ 1 - (1/b) = (b-1)/b.
188  *         For x close to zero, ln(1+x) =~ x, since
189  *              ln(1+x) = x - x**2/2 + x**3/3 - ...     -1 < x < 1
190  *              therefore ln(b/(b+1)) = ln(1 - 1/(b+1)) =~ -1/(b+1).
191  *         ln(.1) =~ -2.30
192  *
193  * Proof of (1):
194  *    Solve (factor)**(power) =~ .1 given power (5*loadav):
195  *	solving for factor,
196  *      ln(factor) =~ (-2.30/5*loadav), or
197  *      factor =~ exp(-1/((5/2.30)*loadav)) =~ exp(-1/(2*loadav)) =
198  *          exp(-1/b) =~ (b-1)/b =~ b/(b+1).                    QED
199  *
200  * Proof of (2):
201  *    Solve (factor)**(power) =~ .1 given factor == (b/(b+1)):
202  *	solving for power,
203  *      power*ln(b/(b+1)) =~ -2.30, or
204  *      power =~ 2.3 * (b + 1) = 4.6*loadav + 2.3 =~ 5*loadav.  QED
205  *
206  * Actual power values for the implemented algorithm are as follows:
207  *      loadav: 1       2       3       4
208  *      power:  5.68    10.32   14.94   19.55
209  */
210 
211 /* calculations for digital decay to forget 90% of usage in 5*loadav sec */
212 #define	loadfactor(loadav)	(2 * (loadav))
213 #define	decay_cpu(loadfac, cpu)	(((loadfac) * (cpu)) / ((loadfac) + FSCALE))
214 
215 /* decay 95% of `p_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */
216 static fixpt_t	ccpu = 0.95122942450071400909 * FSCALE;	/* exp(-1/20) */
217 SYSCTL_INT(_kern, OID_AUTO, ccpu, CTLFLAG_RD, &ccpu, 0, "");
218 
219 /* kernel uses `FSCALE', userland (SHOULD) use kern.fscale */
220 static int	fscale __unused = FSCALE;
221 SYSCTL_INT(_kern, OID_AUTO, fscale, CTLFLAG_RD, 0, FSCALE, "");
222 
223 /*
224  * If `ccpu' is not equal to `exp(-1/20)' and you still want to use the
225  * faster/more-accurate formula, you'll have to estimate CCPU_SHIFT below
226  * and possibly adjust FSHIFT in "param.h" so that (FSHIFT >= CCPU_SHIFT).
227  *
228  * To estimate CCPU_SHIFT for exp(-1/20), the following formula was used:
229  *	1 - exp(-1/20) ~= 0.0487 ~= 0.0488 == 1 (fixed pt, *11* bits).
230  *
231  * If you don't want to bother with the faster/more-accurate formula, you
232  * can set CCPU_SHIFT to (FSHIFT + 1) which will use a slower/less-accurate
233  * (more general) method of calculating the %age of CPU used by a process.
234  */
235 #define	CCPU_SHIFT	11
236 
237 /*
238  * Recompute process priorities, every hz ticks.
239  * MP-safe, called without the Giant mutex.
240  */
241 /* ARGSUSED */
242 static void
243 schedcpu(arg)
244 	void *arg;
245 {
246 	register fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
247 	register struct proc *p;
248 	register int realstathz;
249 
250 	realstathz = stathz ? stathz : hz;
251 	sx_slock(&allproc_lock);
252 	LIST_FOREACH(p, &allproc, p_list) {
253 		/*
254 		 * Increment time in/out of memory and sleep time
255 		 * (if sleeping).  We ignore overflow; with 16-bit int's
256 		 * (remember them?) overflow takes 45 days.
257 		 */
258 		mtx_lock_spin(&sched_lock);
259 		p->p_swtime++;
260 		if (p->p_stat == SSLEEP || p->p_stat == SSTOP)
261 			p->p_slptime++;
262 		p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT;
263 		/*
264 		 * If the process has slept the entire second,
265 		 * stop recalculating its priority until it wakes up.
266 		 */
267 		if (p->p_slptime > 1) {
268 			mtx_unlock_spin(&sched_lock);
269 			continue;
270 		}
271 
272 		/*
273 		 * p_pctcpu is only for ps.
274 		 */
275 #if	(FSHIFT >= CCPU_SHIFT)
276 		p->p_pctcpu += (realstathz == 100)?
277 			((fixpt_t) p->p_cpticks) << (FSHIFT - CCPU_SHIFT):
278                 	100 * (((fixpt_t) p->p_cpticks)
279 				<< (FSHIFT - CCPU_SHIFT)) / realstathz;
280 #else
281 		p->p_pctcpu += ((FSCALE - ccpu) *
282 			(p->p_cpticks * FSCALE / realstathz)) >> FSHIFT;
283 #endif
284 		p->p_cpticks = 0;
285 		p->p_estcpu = decay_cpu(loadfac, p->p_estcpu);
286 		resetpriority(p);
287 		if (p->p_pri.pri_level >= PUSER) {
288 			if (p->p_oncpu == NOCPU && 	/* idle */
289 			    p->p_stat == SRUN &&
290 			    (p->p_sflag & PS_INMEM) &&
291 			    (p->p_pri.pri_level / RQ_PPQ) !=
292 			    (p->p_pri.pri_user / RQ_PPQ)) {
293 				remrunqueue(p);
294 				p->p_pri.pri_level = p->p_pri.pri_user;
295 				setrunqueue(p);
296 			} else
297 				p->p_pri.pri_level = p->p_pri.pri_user;
298 		}
299 		mtx_unlock_spin(&sched_lock);
300 	}
301 	sx_sunlock(&allproc_lock);
302 	vmmeter();
303 	wakeup((caddr_t)&lbolt);
304 	callout_reset(&schedcpu_callout, hz, schedcpu, NULL);
305 }
306 
307 /*
308  * Recalculate the priority of a process after it has slept for a while.
309  * For all load averages >= 1 and max p_estcpu of 255, sleeping for at
310  * least six times the loadfactor will decay p_estcpu to zero.
311  */
312 void
313 updatepri(p)
314 	register struct proc *p;
315 {
316 	register unsigned int newcpu = p->p_estcpu;
317 	register fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
318 
319 	if (p->p_slptime > 5 * loadfac)
320 		p->p_estcpu = 0;
321 	else {
322 		p->p_slptime--;	/* the first time was done in schedcpu */
323 		while (newcpu && --p->p_slptime)
324 			newcpu = decay_cpu(loadfac, newcpu);
325 		p->p_estcpu = newcpu;
326 	}
327 	resetpriority(p);
328 }
329 
330 /*
331  * We're only looking at 7 bits of the address; everything is
332  * aligned to 4, lots of things are aligned to greater powers
333  * of 2.  Shift right by 8, i.e. drop the bottom 256 worth.
334  */
335 #define TABLESIZE	128
336 static TAILQ_HEAD(slpquehead, proc) slpque[TABLESIZE];
337 #define LOOKUP(x)	(((intptr_t)(x) >> 8) & (TABLESIZE - 1))
338 
339 void
340 sleepinit(void)
341 {
342 	int i;
343 
344 	sched_quantum = hz/10;
345 	hogticks = 2 * sched_quantum;
346 	for (i = 0; i < TABLESIZE; i++)
347 		TAILQ_INIT(&slpque[i]);
348 }
349 
350 /*
351  * General sleep call.  Suspends the current process until a wakeup is
352  * performed on the specified identifier.  The process will then be made
353  * runnable with the specified priority.  Sleeps at most timo/hz seconds
354  * (0 means no timeout).  If pri includes PCATCH flag, signals are checked
355  * before and after sleeping, else signals are not checked.  Returns 0 if
356  * awakened, EWOULDBLOCK if the timeout expires.  If PCATCH is set and a
357  * signal needs to be delivered, ERESTART is returned if the current system
358  * call should be restarted if possible, and EINTR is returned if the system
359  * call should be interrupted by the signal (return EINTR).
360  *
361  * The mutex argument is exited before the caller is suspended, and
362  * entered before msleep returns.  If priority includes the PDROP
363  * flag the mutex is not entered before returning.
364  */
365 int
366 msleep(ident, mtx, priority, wmesg, timo)
367 	void *ident;
368 	struct mtx *mtx;
369 	int priority, timo;
370 	const char *wmesg;
371 {
372 	struct proc *p = curproc;
373 	int sig, catch = priority & PCATCH;
374 	int rval = 0;
375 	WITNESS_SAVE_DECL(mtx);
376 
377 #ifdef KTRACE
378 	if (p && KTRPOINT(p, KTR_CSW))
379 		ktrcsw(p->p_tracep, 1, 0);
380 #endif
381 	WITNESS_SLEEP(0, &mtx->mtx_object);
382 	KASSERT(timo != 0 || mtx_owned(&Giant) || mtx != NULL,
383 	    ("sleeping without a mutex"));
384 	mtx_lock_spin(&sched_lock);
385 	if (cold || panicstr) {
386 		/*
387 		 * After a panic, or during autoconfiguration,
388 		 * just give interrupts a chance, then just return;
389 		 * don't run any other procs or panic below,
390 		 * in case this is the idle process and already asleep.
391 		 */
392 		if (mtx != NULL && priority & PDROP)
393 			mtx_unlock_flags(mtx, MTX_NOSWITCH);
394 		mtx_unlock_spin(&sched_lock);
395 		return (0);
396 	}
397 
398 	DROP_GIANT_NOSWITCH();
399 
400 	if (mtx != NULL) {
401 		mtx_assert(mtx, MA_OWNED | MA_NOTRECURSED);
402 		WITNESS_SAVE(&mtx->mtx_object, mtx);
403 		mtx_unlock_flags(mtx, MTX_NOSWITCH);
404 		if (priority & PDROP)
405 			mtx = NULL;
406 	}
407 
408 	KASSERT(p != NULL, ("msleep1"));
409 	KASSERT(ident != NULL && p->p_stat == SRUN, ("msleep"));
410 
411 	p->p_wchan = ident;
412 	p->p_wmesg = wmesg;
413 	p->p_slptime = 0;
414 	p->p_pri.pri_level = priority & PRIMASK;
415 	CTR5(KTR_PROC, "msleep: proc %p (pid %d, %s) on %s (%p)", p, p->p_pid,
416 	    p->p_comm, wmesg, ident);
417 	TAILQ_INSERT_TAIL(&slpque[LOOKUP(ident)], p, p_slpq);
418 	if (timo)
419 		callout_reset(&p->p_slpcallout, timo, endtsleep, p);
420 	/*
421 	 * We put ourselves on the sleep queue and start our timeout
422 	 * before calling CURSIG, as we could stop there, and a wakeup
423 	 * or a SIGCONT (or both) could occur while we were stopped.
424 	 * A SIGCONT would cause us to be marked as SSLEEP
425 	 * without resuming us, thus we must be ready for sleep
426 	 * when CURSIG is called.  If the wakeup happens while we're
427 	 * stopped, p->p_wchan will be 0 upon return from CURSIG.
428 	 */
429 	if (catch) {
430 		CTR3(KTR_PROC, "msleep caught: proc %p (pid %d, %s)", p,
431 		    p->p_pid, p->p_comm);
432 		p->p_sflag |= PS_SINTR;
433 		mtx_unlock_spin(&sched_lock);
434 		PROC_LOCK(p);
435 		sig = CURSIG(p);
436 		mtx_lock_spin(&sched_lock);
437 		PROC_UNLOCK_NOSWITCH(p);
438 		if (sig != 0) {
439 			if (p->p_wchan != NULL)
440 				unsleep(p);
441 		} else if (p->p_wchan == NULL)
442 			catch = 0;
443 	} else
444 		sig = 0;
445 	if (p->p_wchan != NULL) {
446 		p->p_stat = SSLEEP;
447 		p->p_stats->p_ru.ru_nvcsw++;
448 		mi_switch();
449 	}
450 	CTR3(KTR_PROC, "msleep resume: proc %p (pid %d, %s)", p, p->p_pid,
451 	    p->p_comm);
452 	KASSERT(p->p_stat == SRUN, ("running but not SRUN"));
453 	p->p_sflag &= ~PS_SINTR;
454 	if (p->p_sflag & PS_TIMEOUT) {
455 		p->p_sflag &= ~PS_TIMEOUT;
456 		if (sig == 0)
457 			rval = EWOULDBLOCK;
458 	} else if (p->p_sflag & PS_TIMOFAIL)
459 		p->p_sflag &= ~PS_TIMOFAIL;
460 	else if (timo && callout_stop(&p->p_slpcallout) == 0) {
461 		/*
462 		 * This isn't supposed to be pretty.  If we are here, then
463 		 * the endtsleep() callout is currently executing on another
464 		 * CPU and is either spinning on the sched_lock or will be
465 		 * soon.  If we don't synchronize here, there is a chance
466 		 * that this process may msleep() again before the callout
467 		 * has a chance to run and the callout may end up waking up
468 		 * the wrong msleep().  Yuck.
469 		 */
470 		p->p_sflag |= PS_TIMEOUT;
471 		p->p_stats->p_ru.ru_nivcsw++;
472 		mi_switch();
473 	}
474 	mtx_unlock_spin(&sched_lock);
475 
476 	if (rval == 0 && catch) {
477 		PROC_LOCK(p);
478 		/* XXX: shouldn't we always be calling CURSIG() */
479 		if (sig != 0 || (sig = CURSIG(p))) {
480 			if (SIGISMEMBER(p->p_sigacts->ps_sigintr, sig))
481 				rval = EINTR;
482 			else
483 				rval = ERESTART;
484 		}
485 		PROC_UNLOCK(p);
486 	}
487 	PICKUP_GIANT();
488 #ifdef KTRACE
489 	mtx_lock(&Giant);
490 	if (KTRPOINT(p, KTR_CSW))
491 		ktrcsw(p->p_tracep, 0, 0);
492 	mtx_unlock(&Giant);
493 #endif
494 	if (mtx != NULL) {
495 		mtx_lock(mtx);
496 		WITNESS_RESTORE(&mtx->mtx_object, mtx);
497 	}
498 	return (rval);
499 }
500 
501 /*
502  * Implement timeout for msleep()
503  *
504  * If process hasn't been awakened (wchan non-zero),
505  * set timeout flag and undo the sleep.  If proc
506  * is stopped, just unsleep so it will remain stopped.
507  * MP-safe, called without the Giant mutex.
508  */
509 static void
510 endtsleep(arg)
511 	void *arg;
512 {
513 	register struct proc *p;
514 
515 	p = (struct proc *)arg;
516 	CTR3(KTR_PROC, "endtsleep: proc %p (pid %d, %s)", p, p->p_pid,
517 	    p->p_comm);
518 	mtx_lock_spin(&sched_lock);
519 	/*
520 	 * This is the other half of the synchronization with msleep()
521 	 * described above.  If the PS_TIMEOUT flag is set, we lost the
522 	 * race and just need to put the process back on the runqueue.
523 	 */
524 	if ((p->p_sflag & PS_TIMEOUT) != 0) {
525 		p->p_sflag &= ~PS_TIMEOUT;
526 		setrunqueue(p);
527 	} else if (p->p_wchan != NULL) {
528 		if (p->p_stat == SSLEEP)
529 			setrunnable(p);
530 		else
531 			unsleep(p);
532 		p->p_sflag |= PS_TIMEOUT;
533 	} else
534 		p->p_sflag |= PS_TIMOFAIL;
535 	mtx_unlock_spin(&sched_lock);
536 }
537 
538 /*
539  * Remove a process from its wait queue
540  */
541 void
542 unsleep(p)
543 	register struct proc *p;
544 {
545 
546 	mtx_lock_spin(&sched_lock);
547 	if (p->p_wchan != NULL) {
548 		TAILQ_REMOVE(&slpque[LOOKUP(p->p_wchan)], p, p_slpq);
549 		p->p_wchan = NULL;
550 	}
551 	mtx_unlock_spin(&sched_lock);
552 }
553 
554 /*
555  * Make all processes sleeping on the specified identifier runnable.
556  */
557 void
558 wakeup(ident)
559 	register void *ident;
560 {
561 	register struct slpquehead *qp;
562 	register struct proc *p;
563 
564 	mtx_lock_spin(&sched_lock);
565 	qp = &slpque[LOOKUP(ident)];
566 restart:
567 	TAILQ_FOREACH(p, qp, p_slpq) {
568 		if (p->p_wchan == ident) {
569 			TAILQ_REMOVE(qp, p, p_slpq);
570 			p->p_wchan = NULL;
571 			if (p->p_stat == SSLEEP) {
572 				/* OPTIMIZED EXPANSION OF setrunnable(p); */
573 				CTR3(KTR_PROC, "wakeup: proc %p (pid %d, %s)",
574 				    p, p->p_pid, p->p_comm);
575 				if (p->p_slptime > 1)
576 					updatepri(p);
577 				p->p_slptime = 0;
578 				p->p_stat = SRUN;
579 				if (p->p_sflag & PS_INMEM) {
580 					setrunqueue(p);
581 					maybe_resched(p);
582 				} else {
583 					p->p_sflag |= PS_SWAPINREQ;
584 					wakeup((caddr_t)&proc0);
585 				}
586 				/* END INLINE EXPANSION */
587 				goto restart;
588 			}
589 		}
590 	}
591 	mtx_unlock_spin(&sched_lock);
592 }
593 
594 /*
595  * Make a process sleeping on the specified identifier runnable.
596  * May wake more than one process if a target process is currently
597  * swapped out.
598  */
599 void
600 wakeup_one(ident)
601 	register void *ident;
602 {
603 	register struct slpquehead *qp;
604 	register struct proc *p;
605 
606 	mtx_lock_spin(&sched_lock);
607 	qp = &slpque[LOOKUP(ident)];
608 
609 	TAILQ_FOREACH(p, qp, p_slpq) {
610 		if (p->p_wchan == ident) {
611 			TAILQ_REMOVE(qp, p, p_slpq);
612 			p->p_wchan = NULL;
613 			if (p->p_stat == SSLEEP) {
614 				/* OPTIMIZED EXPANSION OF setrunnable(p); */
615 				CTR3(KTR_PROC, "wakeup1: proc %p (pid %d, %s)",
616 				    p, p->p_pid, p->p_comm);
617 				if (p->p_slptime > 1)
618 					updatepri(p);
619 				p->p_slptime = 0;
620 				p->p_stat = SRUN;
621 				if (p->p_sflag & PS_INMEM) {
622 					setrunqueue(p);
623 					maybe_resched(p);
624 					break;
625 				} else {
626 					p->p_sflag |= PS_SWAPINREQ;
627 					wakeup((caddr_t)&proc0);
628 				}
629 				/* END INLINE EXPANSION */
630 			}
631 		}
632 	}
633 	mtx_unlock_spin(&sched_lock);
634 }
635 
636 /*
637  * The machine independent parts of mi_switch().
638  */
639 void
640 mi_switch()
641 {
642 	struct timeval new_switchtime;
643 	register struct proc *p = curproc;	/* XXX */
644 #if 0
645 	register struct rlimit *rlim;
646 #endif
647 	critical_t sched_crit;
648 	u_int sched_nest;
649 
650 	mtx_assert(&sched_lock, MA_OWNED | MA_NOTRECURSED);
651 
652 	/*
653 	 * Compute the amount of time during which the current
654 	 * process was running, and add that to its total so far.
655 	 */
656 	microuptime(&new_switchtime);
657 	if (timevalcmp(&new_switchtime, PCPU_PTR(switchtime), <)) {
658 #if 0
659 		/* XXX: This doesn't play well with sched_lock right now. */
660 		printf("microuptime() went backwards (%ld.%06ld -> %ld.%06ld)\n",
661 		    PCPU_GET(switchtime.tv_sec), PCPU_GET(switchtime.tv_usec),
662 		    new_switchtime.tv_sec, new_switchtime.tv_usec);
663 #endif
664 		new_switchtime = PCPU_GET(switchtime);
665 	} else {
666 		p->p_runtime += (new_switchtime.tv_usec - PCPU_GET(switchtime.tv_usec)) +
667 		    (new_switchtime.tv_sec - PCPU_GET(switchtime.tv_sec)) *
668 		    (int64_t)1000000;
669 	}
670 
671 #ifdef DDB
672 	/*
673 	 * Don't perform context switches from the debugger.
674 	 */
675 	if (db_active) {
676 		mtx_unlock_spin(&sched_lock);
677 		db_error("Context switches not allowed in the debugger.");
678 	}
679 #endif
680 
681 #if 0
682 	/*
683 	 * Check if the process exceeds its cpu resource allocation.
684 	 * If over max, kill it.
685 	 *
686 	 * XXX drop sched_lock, pickup Giant
687 	 */
688 	if (p->p_stat != SZOMB && p->p_limit->p_cpulimit != RLIM_INFINITY &&
689 	    p->p_runtime > p->p_limit->p_cpulimit) {
690 		rlim = &p->p_rlimit[RLIMIT_CPU];
691 		if (p->p_runtime / (rlim_t)1000000 >= rlim->rlim_max) {
692 			mtx_unlock_spin(&sched_lock);
693 			PROC_LOCK(p);
694 			killproc(p, "exceeded maximum CPU limit");
695 			mtx_lock_spin(&sched_lock);
696 			PROC_UNLOCK_NOSWITCH(p);
697 		} else {
698 			mtx_unlock_spin(&sched_lock);
699 			PROC_LOCK(p);
700 			psignal(p, SIGXCPU);
701 			mtx_lock_spin(&sched_lock);
702 			PROC_UNLOCK_NOSWITCH(p);
703 			if (rlim->rlim_cur < rlim->rlim_max) {
704 				/* XXX: we should make a private copy */
705 				rlim->rlim_cur += 5;
706 			}
707 		}
708 	}
709 #endif
710 
711 	/*
712 	 * Pick a new current process and record its start time.
713 	 */
714 	cnt.v_swtch++;
715 	PCPU_SET(switchtime, new_switchtime);
716 	CTR3(KTR_PROC, "mi_switch: old proc %p (pid %d, %s)", p, p->p_pid,
717 	    p->p_comm);
718 	sched_crit = sched_lock.mtx_savecrit;
719 	sched_nest = sched_lock.mtx_recurse;
720 	p->p_lastcpu = p->p_oncpu;
721 	p->p_oncpu = NOCPU;
722 	p->p_sflag &= ~PS_NEEDRESCHED;
723 	cpu_switch();
724 	p->p_oncpu = PCPU_GET(cpuid);
725 	sched_lock.mtx_savecrit = sched_crit;
726 	sched_lock.mtx_recurse = sched_nest;
727 	sched_lock.mtx_lock = (uintptr_t)p;
728 	CTR3(KTR_PROC, "mi_switch: new proc %p (pid %d, %s)", p, p->p_pid,
729 	    p->p_comm);
730 	if (PCPU_GET(switchtime.tv_sec) == 0)
731 		microuptime(PCPU_PTR(switchtime));
732 	PCPU_SET(switchticks, ticks);
733 }
734 
735 /*
736  * Change process state to be runnable,
737  * placing it on the run queue if it is in memory,
738  * and awakening the swapper if it isn't in memory.
739  */
740 void
741 setrunnable(p)
742 	register struct proc *p;
743 {
744 
745 	mtx_lock_spin(&sched_lock);
746 	switch (p->p_stat) {
747 	case 0:
748 	case SRUN:
749 	case SZOMB:
750 	case SWAIT:
751 	default:
752 		panic("setrunnable");
753 	case SSTOP:
754 	case SSLEEP:			/* e.g. when sending signals */
755 		if (p->p_sflag & PS_CVWAITQ)
756 			cv_waitq_remove(p);
757 		else
758 			unsleep(p);
759 		break;
760 
761 	case SIDL:
762 		break;
763 	}
764 	p->p_stat = SRUN;
765 	if (p->p_slptime > 1)
766 		updatepri(p);
767 	p->p_slptime = 0;
768 	if ((p->p_sflag & PS_INMEM) == 0) {
769 		p->p_sflag |= PS_SWAPINREQ;
770 		wakeup((caddr_t)&proc0);
771 	} else {
772 		setrunqueue(p);
773 		maybe_resched(p);
774 	}
775 	mtx_unlock_spin(&sched_lock);
776 }
777 
778 /*
779  * Compute the priority of a process when running in user mode.
780  * Arrange to reschedule if the resulting priority is better
781  * than that of the current process.
782  */
783 void
784 resetpriority(p)
785 	register struct proc *p;
786 {
787 	register unsigned int newpriority;
788 
789 	mtx_lock_spin(&sched_lock);
790 	if (p->p_pri.pri_class == PRI_TIMESHARE) {
791 		newpriority = PUSER + p->p_estcpu / INVERSE_ESTCPU_WEIGHT +
792 		    NICE_WEIGHT * (p->p_nice - PRIO_MIN);
793 		newpriority = min(max(newpriority, PRI_MIN_TIMESHARE),
794 		    PRI_MAX_TIMESHARE);
795 		p->p_pri.pri_user = newpriority;
796 	}
797 	maybe_resched(p);
798 	mtx_unlock_spin(&sched_lock);
799 }
800 
801 /* ARGSUSED */
802 static void
803 sched_setup(dummy)
804 	void *dummy;
805 {
806 
807 	callout_init(&schedcpu_callout, 1);
808 	callout_init(&roundrobin_callout, 0);
809 
810 	/* Kick off timeout driven events by calling first time. */
811 	roundrobin(NULL);
812 	schedcpu(NULL);
813 }
814 
815 /*
816  * We adjust the priority of the current process.  The priority of
817  * a process gets worse as it accumulates CPU time.  The cpu usage
818  * estimator (p_estcpu) is increased here.  resetpriority() will
819  * compute a different priority each time p_estcpu increases by
820  * INVERSE_ESTCPU_WEIGHT
821  * (until MAXPRI is reached).  The cpu usage estimator ramps up
822  * quite quickly when the process is running (linearly), and decays
823  * away exponentially, at a rate which is proportionally slower when
824  * the system is busy.  The basic principle is that the system will
825  * 90% forget that the process used a lot of CPU time in 5 * loadav
826  * seconds.  This causes the system to favor processes which haven't
827  * run much recently, and to round-robin among other processes.
828  */
829 void
830 schedclock(p)
831 	struct proc *p;
832 {
833 
834 	p->p_cpticks++;
835 	p->p_estcpu = ESTCPULIM(p->p_estcpu + 1);
836 	if ((p->p_estcpu % INVERSE_ESTCPU_WEIGHT) == 0) {
837 		resetpriority(p);
838 		if (p->p_pri.pri_level >= PUSER)
839 			p->p_pri.pri_level = p->p_pri.pri_user;
840 	}
841 }
842 
843 /*
844  * General purpose yield system call
845  */
846 int
847 yield(struct proc *p, struct yield_args *uap)
848 {
849 	p->p_retval[0] = 0;
850 
851 	mtx_lock_spin(&sched_lock);
852 	mtx_assert(&Giant, MA_NOTOWNED);
853 #if 0
854 	DROP_GIANT_NOSWITCH();
855 #endif
856 	p->p_pri.pri_level = PRI_MAX_TIMESHARE;
857 	setrunqueue(p);
858 	p->p_stats->p_ru.ru_nvcsw++;
859 	mi_switch();
860 	mtx_unlock_spin(&sched_lock);
861 #if 0
862 	PICKUP_GIANT();
863 #endif
864 
865 	return (0);
866 }
867 
868