xref: /freebsd/sys/kern/kern_synch.c (revision 0c43d89a0d8e976ca494d4837f4c1f3734d2c300)
1 /*-
2  * Copyright (c) 1982, 1986, 1990, 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  * (c) UNIX System Laboratories, Inc.
5  * All or some portions of this file are derived from material licensed
6  * to the University of California by American Telephone and Telegraph
7  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8  * the permission of UNIX System Laboratories, Inc.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. All advertising materials mentioning features or use of this software
19  *    must display the following acknowledgement:
20  *	This product includes software developed by the University of
21  *	California, Berkeley and its contributors.
22  * 4. Neither the name of the University nor the names of its contributors
23  *    may be used to endorse or promote products derived from this software
24  *    without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36  * SUCH DAMAGE.
37  *
38  *	@(#)kern_synch.c	8.6 (Berkeley) 1/21/94
39  * $Id$
40  */
41 
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/proc.h>
45 #include <sys/kernel.h>
46 #include <sys/buf.h>
47 #include <sys/signalvar.h>
48 #include <sys/resourcevar.h>
49 #include <sys/vmmeter.h>
50 #ifdef KTRACE
51 #include <sys/ktrace.h>
52 #endif
53 
54 #include <machine/cpu.h>
55 
56 u_char	curpriority;		/* usrpri of curproc */
57 int	lbolt;			/* once a second sleep address */
58 
59 /*
60  * Force switch among equal priority processes every 100ms.
61  */
62 /* ARGSUSED */
63 void
64 roundrobin(arg)
65 	void *arg;
66 {
67 
68 	need_resched();
69 	timeout(roundrobin, NULL, hz / 10);
70 }
71 
72 /*
73  * Constants for digital decay and forget:
74  *	90% of (p_estcpu) usage in 5 * loadav time
75  *	95% of (p_pctcpu) usage in 60 seconds (load insensitive)
76  *          Note that, as ps(1) mentions, this can let percentages
77  *          total over 100% (I've seen 137.9% for 3 processes).
78  *
79  * Note that hardclock updates p_estcpu and p_cpticks independently.
80  *
81  * We wish to decay away 90% of p_estcpu in (5 * loadavg) seconds.
82  * That is, the system wants to compute a value of decay such
83  * that the following for loop:
84  * 	for (i = 0; i < (5 * loadavg); i++)
85  * 		p_estcpu *= decay;
86  * will compute
87  * 	p_estcpu *= 0.1;
88  * for all values of loadavg:
89  *
90  * Mathematically this loop can be expressed by saying:
91  * 	decay ** (5 * loadavg) ~= .1
92  *
93  * The system computes decay as:
94  * 	decay = (2 * loadavg) / (2 * loadavg + 1)
95  *
96  * We wish to prove that the system's computation of decay
97  * will always fulfill the equation:
98  * 	decay ** (5 * loadavg) ~= .1
99  *
100  * If we compute b as:
101  * 	b = 2 * loadavg
102  * then
103  * 	decay = b / (b + 1)
104  *
105  * We now need to prove two things:
106  *	1) Given factor ** (5 * loadavg) ~= .1, prove factor == b/(b+1)
107  *	2) Given b/(b+1) ** power ~= .1, prove power == (5 * loadavg)
108  *
109  * Facts:
110  *         For x close to zero, exp(x) =~ 1 + x, since
111  *              exp(x) = 0! + x**1/1! + x**2/2! + ... .
112  *              therefore exp(-1/b) =~ 1 - (1/b) = (b-1)/b.
113  *         For x close to zero, ln(1+x) =~ x, since
114  *              ln(1+x) = x - x**2/2 + x**3/3 - ...     -1 < x < 1
115  *              therefore ln(b/(b+1)) = ln(1 - 1/(b+1)) =~ -1/(b+1).
116  *         ln(.1) =~ -2.30
117  *
118  * Proof of (1):
119  *    Solve (factor)**(power) =~ .1 given power (5*loadav):
120  *	solving for factor,
121  *      ln(factor) =~ (-2.30/5*loadav), or
122  *      factor =~ exp(-1/((5/2.30)*loadav)) =~ exp(-1/(2*loadav)) =
123  *          exp(-1/b) =~ (b-1)/b =~ b/(b+1).                    QED
124  *
125  * Proof of (2):
126  *    Solve (factor)**(power) =~ .1 given factor == (b/(b+1)):
127  *	solving for power,
128  *      power*ln(b/(b+1)) =~ -2.30, or
129  *      power =~ 2.3 * (b + 1) = 4.6*loadav + 2.3 =~ 5*loadav.  QED
130  *
131  * Actual power values for the implemented algorithm are as follows:
132  *      loadav: 1       2       3       4
133  *      power:  5.68    10.32   14.94   19.55
134  */
135 
136 /* calculations for digital decay to forget 90% of usage in 5*loadav sec */
137 #define	loadfactor(loadav)	(2 * (loadav))
138 #define	decay_cpu(loadfac, cpu)	(((loadfac) * (cpu)) / ((loadfac) + FSCALE))
139 
140 /* decay 95% of `p_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */
141 fixpt_t	ccpu = 0.95122942450071400909 * FSCALE;		/* exp(-1/20) */
142 
143 /*
144  * If `ccpu' is not equal to `exp(-1/20)' and you still want to use the
145  * faster/more-accurate formula, you'll have to estimate CCPU_SHIFT below
146  * and possibly adjust FSHIFT in "param.h" so that (FSHIFT >= CCPU_SHIFT).
147  *
148  * To estimate CCPU_SHIFT for exp(-1/20), the following formula was used:
149  *	1 - exp(-1/20) ~= 0.0487 ~= 0.0488 == 1 (fixed pt, *11* bits).
150  *
151  * If you dont want to bother with the faster/more-accurate formula, you
152  * can set CCPU_SHIFT to (FSHIFT + 1) which will use a slower/less-accurate
153  * (more general) method of calculating the %age of CPU used by a process.
154  */
155 #define	CCPU_SHIFT	11
156 
157 /*
158  * Recompute process priorities, every hz ticks.
159  */
160 /* ARGSUSED */
161 void
162 schedcpu(arg)
163 	void *arg;
164 {
165 	register fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
166 	register struct proc *p;
167 	register int s;
168 	register unsigned int newcpu;
169 
170 	wakeup((caddr_t)&lbolt);
171 	for (p = (struct proc *)allproc; p != NULL; p = p->p_next) {
172 		/*
173 		 * Increment time in/out of memory and sleep time
174 		 * (if sleeping).  We ignore overflow; with 16-bit int's
175 		 * (remember them?) overflow takes 45 days.
176 		 */
177 		p->p_swtime++;
178 		if (p->p_stat == SSLEEP || p->p_stat == SSTOP)
179 			p->p_slptime++;
180 		p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT;
181 		/*
182 		 * If the process has slept the entire second,
183 		 * stop recalculating its priority until it wakes up.
184 		 */
185 		if (p->p_slptime > 1)
186 			continue;
187 		s = splstatclock();	/* prevent state changes */
188 		/*
189 		 * p_pctcpu is only for ps.
190 		 */
191 #if	(FSHIFT >= CCPU_SHIFT)
192 		p->p_pctcpu += (hz == 100)?
193 			((fixpt_t) p->p_cpticks) << (FSHIFT - CCPU_SHIFT):
194                 	100 * (((fixpt_t) p->p_cpticks)
195 				<< (FSHIFT - CCPU_SHIFT)) / hz;
196 #else
197 		p->p_pctcpu += ((FSCALE - ccpu) *
198 			(p->p_cpticks * FSCALE / hz)) >> FSHIFT;
199 #endif
200 		p->p_cpticks = 0;
201 		newcpu = (u_int) decay_cpu(loadfac, p->p_estcpu) + p->p_nice;
202 		p->p_estcpu = min(newcpu, UCHAR_MAX);
203 		resetpriority(p);
204 		if (p->p_priority >= PUSER) {
205 #define	PPQ	(128 / NQS)		/* priorities per queue */
206 			if ((p != curproc) &&
207 			    p->p_stat == SRUN &&
208 			    (p->p_flag & P_INMEM) &&
209 			    (p->p_priority / PPQ) != (p->p_usrpri / PPQ)) {
210 				remrq(p);
211 				p->p_priority = p->p_usrpri;
212 				setrunqueue(p);
213 			} else
214 				p->p_priority = p->p_usrpri;
215 		}
216 		splx(s);
217 	}
218 	vmmeter();
219 	if (bclnlist != NULL)
220 		wakeup((caddr_t)pageproc);
221 	timeout(schedcpu, (void *)0, hz);
222 }
223 
224 /*
225  * Recalculate the priority of a process after it has slept for a while.
226  * For all load averages >= 1 and max p_estcpu of 255, sleeping for at
227  * least six times the loadfactor will decay p_estcpu to zero.
228  */
229 void
230 updatepri(p)
231 	register struct proc *p;
232 {
233 	register unsigned int newcpu = p->p_estcpu;
234 	register fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
235 
236 	if (p->p_slptime > 5 * loadfac)
237 		p->p_estcpu = 0;
238 	else {
239 		p->p_slptime--;	/* the first time was done in schedcpu */
240 		while (newcpu && --p->p_slptime)
241 			newcpu = (int) decay_cpu(loadfac, newcpu);
242 		p->p_estcpu = min(newcpu, UCHAR_MAX);
243 	}
244 	resetpriority(p);
245 }
246 
247 /*
248  * We're only looking at 7 bits of the address; everything is
249  * aligned to 4, lots of things are aligned to greater powers
250  * of 2.  Shift right by 8, i.e. drop the bottom 256 worth.
251  */
252 #define TABLESIZE	128
253 #define LOOKUP(x)	(((int)(x) >> 8) & (TABLESIZE - 1))
254 struct slpque {
255 	struct proc *sq_head;
256 	struct proc **sq_tailp;
257 } slpque[TABLESIZE];
258 
259 /*
260  * During autoconfiguration or after a panic, a sleep will simply
261  * lower the priority briefly to allow interrupts, then return.
262  * The priority to be used (safepri) is machine-dependent, thus this
263  * value is initialized and maintained in the machine-dependent layers.
264  * This priority will typically be 0, or the lowest priority
265  * that is safe for use on the interrupt stack; it can be made
266  * higher to block network software interrupts after panics.
267  */
268 int safepri;
269 
270 /*
271  * General sleep call.  Suspends the current process until a wakeup is
272  * performed on the specified identifier.  The process will then be made
273  * runnable with the specified priority.  Sleeps at most timo/hz seconds
274  * (0 means no timeout).  If pri includes PCATCH flag, signals are checked
275  * before and after sleeping, else signals are not checked.  Returns 0 if
276  * awakened, EWOULDBLOCK if the timeout expires.  If PCATCH is set and a
277  * signal needs to be delivered, ERESTART is returned if the current system
278  * call should be restarted if possible, and EINTR is returned if the system
279  * call should be interrupted by the signal (return EINTR).
280  */
281 int
282 tsleep(ident, priority, wmesg, timo)
283 	void *ident;
284 	int priority, timo;
285 	char *wmesg;
286 {
287 	register struct proc *p = curproc;
288 	register struct slpque *qp;
289 	register s;
290 	int sig, catch = priority & PCATCH;
291 	extern int cold;
292 	void endtsleep __P((void *));
293 
294 #ifdef KTRACE
295 	if (KTRPOINT(p, KTR_CSW))
296 		ktrcsw(p->p_tracep, 1, 0);
297 #endif
298 	s = splhigh();
299 	if (cold || panicstr) {
300 		/*
301 		 * After a panic, or during autoconfiguration,
302 		 * just give interrupts a chance, then just return;
303 		 * don't run any other procs or panic below,
304 		 * in case this is the idle process and already asleep.
305 		 */
306 		splx(safepri);
307 		splx(s);
308 		return (0);
309 	}
310 #ifdef DIAGNOSTIC
311 	if (ident == NULL || p->p_stat != SRUN || p->p_back)
312 		panic("tsleep");
313 #endif
314 	p->p_wchan = ident;
315 	p->p_wmesg = wmesg;
316 	p->p_slptime = 0;
317 	p->p_priority = priority & PRIMASK;
318 	qp = &slpque[LOOKUP(ident)];
319 	if (qp->sq_head == 0)
320 		qp->sq_head = p;
321 	else
322 		*qp->sq_tailp = p;
323 	*(qp->sq_tailp = &p->p_forw) = 0;
324 	if (timo)
325 		timeout(endtsleep, (void *)p, timo);
326 	/*
327 	 * We put ourselves on the sleep queue and start our timeout
328 	 * before calling CURSIG, as we could stop there, and a wakeup
329 	 * or a SIGCONT (or both) could occur while we were stopped.
330 	 * A SIGCONT would cause us to be marked as SSLEEP
331 	 * without resuming us, thus we must be ready for sleep
332 	 * when CURSIG is called.  If the wakeup happens while we're
333 	 * stopped, p->p_wchan will be 0 upon return from CURSIG.
334 	 */
335 	if (catch) {
336 		p->p_flag |= P_SINTR;
337 		if (sig = CURSIG(p)) {
338 			if (p->p_wchan)
339 				unsleep(p);
340 			p->p_stat = SRUN;
341 			goto resume;
342 		}
343 		if (p->p_wchan == 0) {
344 			catch = 0;
345 			goto resume;
346 		}
347 	} else
348 		sig = 0;
349 	p->p_stat = SSLEEP;
350 	p->p_stats->p_ru.ru_nvcsw++;
351 	mi_switch();
352 resume:
353 	curpriority = p->p_usrpri;
354 	splx(s);
355 	p->p_flag &= ~P_SINTR;
356 	if (p->p_flag & P_TIMEOUT) {
357 		p->p_flag &= ~P_TIMEOUT;
358 		if (sig == 0) {
359 #ifdef KTRACE
360 			if (KTRPOINT(p, KTR_CSW))
361 				ktrcsw(p->p_tracep, 0, 0);
362 #endif
363 			return (EWOULDBLOCK);
364 		}
365 	} else if (timo)
366 		untimeout(endtsleep, (void *)p);
367 	if (catch && (sig != 0 || (sig = CURSIG(p)))) {
368 #ifdef KTRACE
369 		if (KTRPOINT(p, KTR_CSW))
370 			ktrcsw(p->p_tracep, 0, 0);
371 #endif
372 		if (p->p_sigacts->ps_sigintr & sigmask(sig))
373 			return (EINTR);
374 		return (ERESTART);
375 	}
376 #ifdef KTRACE
377 	if (KTRPOINT(p, KTR_CSW))
378 		ktrcsw(p->p_tracep, 0, 0);
379 #endif
380 	return (0);
381 }
382 
383 /*
384  * Implement timeout for tsleep.
385  * If process hasn't been awakened (wchan non-zero),
386  * set timeout flag and undo the sleep.  If proc
387  * is stopped, just unsleep so it will remain stopped.
388  */
389 void
390 endtsleep(arg)
391 	void *arg;
392 {
393 	register struct proc *p;
394 	int s;
395 
396 	p = (struct proc *)arg;
397 	s = splhigh();
398 	if (p->p_wchan) {
399 		if (p->p_stat == SSLEEP)
400 			setrunnable(p);
401 		else
402 			unsleep(p);
403 		p->p_flag |= P_TIMEOUT;
404 	}
405 	splx(s);
406 }
407 
408 /*
409  * Short-term, non-interruptable sleep.
410  */
411 void
412 sleep(ident, priority)
413 	void *ident;
414 	int priority;
415 {
416 	register struct proc *p = curproc;
417 	register struct slpque *qp;
418 	register s;
419 	extern int cold;
420 
421 #ifdef DIAGNOSTIC
422 	if (priority > PZERO) {
423 		printf("sleep called with priority %d > PZERO, wchan: %x\n",
424 		    priority, ident);
425 		panic("old sleep");
426 	}
427 #endif
428 	s = splhigh();
429 	if (cold || panicstr) {
430 		/*
431 		 * After a panic, or during autoconfiguration,
432 		 * just give interrupts a chance, then just return;
433 		 * don't run any other procs or panic below,
434 		 * in case this is the idle process and already asleep.
435 		 */
436 		splx(safepri);
437 		splx(s);
438 		return;
439 	}
440 #ifdef DIAGNOSTIC
441 	if (ident == NULL || p->p_stat != SRUN || p->p_back)
442 		panic("sleep");
443 #endif
444 	p->p_wchan = ident;
445 	p->p_wmesg = NULL;
446 	p->p_slptime = 0;
447 	p->p_priority = priority;
448 	qp = &slpque[LOOKUP(ident)];
449 	if (qp->sq_head == 0)
450 		qp->sq_head = p;
451 	else
452 		*qp->sq_tailp = p;
453 	*(qp->sq_tailp = &p->p_forw) = 0;
454 	p->p_stat = SSLEEP;
455 	p->p_stats->p_ru.ru_nvcsw++;
456 #ifdef KTRACE
457 	if (KTRPOINT(p, KTR_CSW))
458 		ktrcsw(p->p_tracep, 1, 0);
459 #endif
460 	mi_switch();
461 #ifdef KTRACE
462 	if (KTRPOINT(p, KTR_CSW))
463 		ktrcsw(p->p_tracep, 0, 0);
464 #endif
465 	curpriority = p->p_usrpri;
466 	splx(s);
467 }
468 
469 /*
470  * Remove a process from its wait queue
471  */
472 void
473 unsleep(p)
474 	register struct proc *p;
475 {
476 	register struct slpque *qp;
477 	register struct proc **hp;
478 	int s;
479 
480 	s = splhigh();
481 	if (p->p_wchan) {
482 		hp = &(qp = &slpque[LOOKUP(p->p_wchan)])->sq_head;
483 		while (*hp != p)
484 			hp = &(*hp)->p_forw;
485 		*hp = p->p_forw;
486 		if (qp->sq_tailp == &p->p_forw)
487 			qp->sq_tailp = hp;
488 		p->p_wchan = 0;
489 	}
490 	splx(s);
491 }
492 
493 /*
494  * Make all processes sleeping on the specified identifier runnable.
495  */
496 void
497 wakeup(ident)
498 	register void *ident;
499 {
500 	register struct slpque *qp;
501 	register struct proc *p, **q;
502 	int s;
503 
504 	s = splhigh();
505 	qp = &slpque[LOOKUP(ident)];
506 restart:
507 	for (q = &qp->sq_head; p = *q; ) {
508 #ifdef DIAGNOSTIC
509 		if (p->p_back || p->p_stat != SSLEEP && p->p_stat != SSTOP)
510 			panic("wakeup");
511 #endif
512 		if (p->p_wchan == ident) {
513 			p->p_wchan = 0;
514 			*q = p->p_forw;
515 			if (qp->sq_tailp == &p->p_forw)
516 				qp->sq_tailp = q;
517 			if (p->p_stat == SSLEEP) {
518 				/* OPTIMIZED EXPANSION OF setrunnable(p); */
519 				if (p->p_slptime > 1)
520 					updatepri(p);
521 				p->p_slptime = 0;
522 				p->p_stat = SRUN;
523 				if (p->p_flag & P_INMEM)
524 					setrunqueue(p);
525 				/*
526 				 * Since curpriority is a user priority,
527 				 * p->p_priority is always better than
528 				 * curpriority.
529 				 */
530 				if ((p->p_flag & P_INMEM) == 0)
531 					wakeup((caddr_t)&proc0);
532 				else
533 					need_resched();
534 				/* END INLINE EXPANSION */
535 				goto restart;
536 			}
537 		} else
538 			q = &p->p_forw;
539 	}
540 	splx(s);
541 }
542 
543 /*
544  * The machine independent parts of mi_switch().
545  * Must be called at splstatclock() or higher.
546  */
547 void
548 mi_switch()
549 {
550 	register struct proc *p = curproc;	/* XXX */
551 	register struct rlimit *rlim;
552 	register long s, u;
553 	struct timeval tv;
554 
555 	/*
556 	 * Compute the amount of time during which the current
557 	 * process was running, and add that to its total so far.
558 	 */
559 	microtime(&tv);
560 	u = p->p_rtime.tv_usec + (tv.tv_usec - runtime.tv_usec);
561 	s = p->p_rtime.tv_sec + (tv.tv_sec - runtime.tv_sec);
562 	if (u < 0) {
563 		u += 1000000;
564 		s--;
565 	} else if (u >= 1000000) {
566 		u -= 1000000;
567 		s++;
568 	}
569 	p->p_rtime.tv_usec = u;
570 	p->p_rtime.tv_sec = s;
571 
572 	/*
573 	 * Check if the process exceeds its cpu resource allocation.
574 	 * If over max, kill it.  In any case, if it has run for more
575 	 * than 10 minutes, reduce priority to give others a chance.
576 	 */
577 	rlim = &p->p_rlimit[RLIMIT_CPU];
578 	if (s >= rlim->rlim_cur) {
579 		if (s >= rlim->rlim_max)
580 			psignal(p, SIGKILL);
581 		else {
582 			psignal(p, SIGXCPU);
583 			if (rlim->rlim_cur < rlim->rlim_max)
584 				rlim->rlim_cur += 5;
585 		}
586 	}
587 	if (s > 10 * 60 && p->p_ucred->cr_uid && p->p_nice == NZERO) {
588 		p->p_nice = NZERO + 4;
589 		resetpriority(p);
590 	}
591 
592 	/*
593 	 * Pick a new current process and record its start time.
594 	 */
595 	cnt.v_swtch++;
596 	cpu_switch(p);
597 	microtime(&runtime);
598 }
599 
600 /*
601  * Initialize the (doubly-linked) run queues
602  * to be empty.
603  */
604 void
605 rqinit()
606 {
607 	register int i;
608 
609 	for (i = 0; i < NQS; i++)
610 		qs[i].ph_link = qs[i].ph_rlink = (struct proc *)&qs[i];
611 }
612 
613 /*
614  * Change process state to be runnable,
615  * placing it on the run queue if it is in memory,
616  * and awakening the swapper if it isn't in memory.
617  */
618 void
619 setrunnable(p)
620 	register struct proc *p;
621 {
622 	register int s;
623 
624 	s = splhigh();
625 	switch (p->p_stat) {
626 	case 0:
627 	case SRUN:
628 	case SZOMB:
629 	default:
630 		panic("setrunnable");
631 	case SSTOP:
632 	case SSLEEP:
633 		unsleep(p);		/* e.g. when sending signals */
634 		break;
635 
636 	case SIDL:
637 		break;
638 	}
639 	p->p_stat = SRUN;
640 	if (p->p_flag & P_INMEM)
641 		setrunqueue(p);
642 	splx(s);
643 	if (p->p_slptime > 1)
644 		updatepri(p);
645 	p->p_slptime = 0;
646 	if ((p->p_flag & P_INMEM) == 0)
647 		wakeup((caddr_t)&proc0);
648 	else if (p->p_priority < curpriority)
649 		need_resched();
650 }
651 
652 /*
653  * Compute the priority of a process when running in user mode.
654  * Arrange to reschedule if the resulting priority is better
655  * than that of the current process.
656  */
657 void
658 resetpriority(p)
659 	register struct proc *p;
660 {
661 	register unsigned int newpriority;
662 
663 	newpriority = PUSER + p->p_estcpu / 4 + 2 * p->p_nice;
664 	newpriority = min(newpriority, MAXPRI);
665 	p->p_usrpri = newpriority;
666 	if (newpriority < curpriority)
667 		need_resched();
668 }
669