xref: /freebsd/sys/kern/kern_synch.c (revision 0b37c1590418417c894529d371800dfac71ef887)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1982, 1986, 1990, 1991, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  * (c) UNIX System Laboratories, Inc.
7  * All or some portions of this file are derived from material licensed
8  * to the University of California by American Telephone and Telegraph
9  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
10  * the permission of UNIX System Laboratories, Inc.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  * 3. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  *	@(#)kern_synch.c	8.9 (Berkeley) 5/19/95
37  */
38 
39 #include <sys/cdefs.h>
40 __FBSDID("$FreeBSD$");
41 
42 #include "opt_ktrace.h"
43 #include "opt_sched.h"
44 
45 #include <sys/param.h>
46 #include <sys/systm.h>
47 #include <sys/condvar.h>
48 #include <sys/kdb.h>
49 #include <sys/kernel.h>
50 #include <sys/ktr.h>
51 #include <sys/lock.h>
52 #include <sys/mutex.h>
53 #include <sys/proc.h>
54 #include <sys/resourcevar.h>
55 #include <sys/refcount.h>
56 #include <sys/sched.h>
57 #include <sys/sdt.h>
58 #include <sys/signalvar.h>
59 #include <sys/sleepqueue.h>
60 #include <sys/smp.h>
61 #include <sys/sx.h>
62 #include <sys/sysctl.h>
63 #include <sys/sysproto.h>
64 #include <sys/vmmeter.h>
65 #ifdef KTRACE
66 #include <sys/uio.h>
67 #include <sys/ktrace.h>
68 #endif
69 #ifdef EPOCH_TRACE
70 #include <sys/epoch.h>
71 #endif
72 
73 #include <machine/cpu.h>
74 
75 static void synch_setup(void *dummy);
76 SYSINIT(synch_setup, SI_SUB_KICK_SCHEDULER, SI_ORDER_FIRST, synch_setup,
77     NULL);
78 
79 int	hogticks;
80 static const char pause_wchan[MAXCPU];
81 
82 static struct callout loadav_callout;
83 
84 struct loadavg averunnable =
85 	{ {0, 0, 0}, FSCALE };	/* load average, of runnable procs */
86 /*
87  * Constants for averages over 1, 5, and 15 minutes
88  * when sampling at 5 second intervals.
89  */
90 static fixpt_t cexp[3] = {
91 	0.9200444146293232 * FSCALE,	/* exp(-1/12) */
92 	0.9834714538216174 * FSCALE,	/* exp(-1/60) */
93 	0.9944598480048967 * FSCALE,	/* exp(-1/180) */
94 };
95 
96 /* kernel uses `FSCALE', userland (SHOULD) use kern.fscale */
97 SYSCTL_INT(_kern, OID_AUTO, fscale, CTLFLAG_RD, SYSCTL_NULL_INT_PTR, FSCALE, "");
98 
99 static void	loadav(void *arg);
100 
101 SDT_PROVIDER_DECLARE(sched);
102 SDT_PROBE_DEFINE(sched, , , preempt);
103 
104 static void
105 sleepinit(void *unused)
106 {
107 
108 	hogticks = (hz / 10) * 2;	/* Default only. */
109 	init_sleepqueues();
110 }
111 
112 /*
113  * vmem tries to lock the sleepq mutexes when free'ing kva, so make sure
114  * it is available.
115  */
116 SYSINIT(sleepinit, SI_SUB_KMEM, SI_ORDER_ANY, sleepinit, NULL);
117 
118 /*
119  * General sleep call.  Suspends the current thread until a wakeup is
120  * performed on the specified identifier.  The thread will then be made
121  * runnable with the specified priority.  Sleeps at most sbt units of time
122  * (0 means no timeout).  If pri includes the PCATCH flag, let signals
123  * interrupt the sleep, otherwise ignore them while sleeping.  Returns 0 if
124  * awakened, EWOULDBLOCK if the timeout expires.  If PCATCH is set and a
125  * signal becomes pending, ERESTART is returned if the current system
126  * call should be restarted if possible, and EINTR is returned if the system
127  * call should be interrupted by the signal (return EINTR).
128  *
129  * The lock argument is unlocked before the caller is suspended, and
130  * re-locked before _sleep() returns.  If priority includes the PDROP
131  * flag the lock is not re-locked before returning.
132  */
133 int
134 _sleep(const void *ident, struct lock_object *lock, int priority,
135     const char *wmesg, sbintime_t sbt, sbintime_t pr, int flags)
136 {
137 	struct thread *td;
138 	struct lock_class *class;
139 	uintptr_t lock_state;
140 	int catch, pri, rval, sleepq_flags;
141 	WITNESS_SAVE_DECL(lock_witness);
142 
143 	td = curthread;
144 #ifdef KTRACE
145 	if (KTRPOINT(td, KTR_CSW))
146 		ktrcsw(1, 0, wmesg);
147 #endif
148 	WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, lock,
149 	    "Sleeping on \"%s\"", wmesg);
150 	KASSERT(sbt != 0 || mtx_owned(&Giant) || lock != NULL,
151 	    ("sleeping without a lock"));
152 	KASSERT(ident != NULL, ("_sleep: NULL ident"));
153 	KASSERT(TD_IS_RUNNING(td), ("_sleep: curthread not running"));
154 	if (priority & PDROP)
155 		KASSERT(lock != NULL && lock != &Giant.lock_object,
156 		    ("PDROP requires a non-Giant lock"));
157 	if (lock != NULL)
158 		class = LOCK_CLASS(lock);
159 	else
160 		class = NULL;
161 
162 	if (SCHEDULER_STOPPED_TD(td)) {
163 		if (lock != NULL && priority & PDROP)
164 			class->lc_unlock(lock);
165 		return (0);
166 	}
167 	catch = priority & PCATCH;
168 	pri = priority & PRIMASK;
169 
170 	KASSERT(!TD_ON_SLEEPQ(td), ("recursive sleep"));
171 
172 	if ((uintptr_t)ident >= (uintptr_t)&pause_wchan[0] &&
173 	    (uintptr_t)ident <= (uintptr_t)&pause_wchan[MAXCPU - 1])
174 		sleepq_flags = SLEEPQ_PAUSE;
175 	else
176 		sleepq_flags = SLEEPQ_SLEEP;
177 	if (catch)
178 		sleepq_flags |= SLEEPQ_INTERRUPTIBLE;
179 
180 	sleepq_lock(ident);
181 	CTR5(KTR_PROC, "sleep: thread %ld (pid %ld, %s) on %s (%p)",
182 	    td->td_tid, td->td_proc->p_pid, td->td_name, wmesg, ident);
183 
184 	if (lock == &Giant.lock_object)
185 		mtx_assert(&Giant, MA_OWNED);
186 	DROP_GIANT();
187 	if (lock != NULL && lock != &Giant.lock_object &&
188 	    !(class->lc_flags & LC_SLEEPABLE)) {
189 		WITNESS_SAVE(lock, lock_witness);
190 		lock_state = class->lc_unlock(lock);
191 	} else
192 		/* GCC needs to follow the Yellow Brick Road */
193 		lock_state = -1;
194 
195 	/*
196 	 * We put ourselves on the sleep queue and start our timeout
197 	 * before calling thread_suspend_check, as we could stop there,
198 	 * and a wakeup or a SIGCONT (or both) could occur while we were
199 	 * stopped without resuming us.  Thus, we must be ready for sleep
200 	 * when cursig() is called.  If the wakeup happens while we're
201 	 * stopped, then td will no longer be on a sleep queue upon
202 	 * return from cursig().
203 	 */
204 	sleepq_add(ident, lock, wmesg, sleepq_flags, 0);
205 	if (sbt != 0)
206 		sleepq_set_timeout_sbt(ident, sbt, pr, flags);
207 	if (lock != NULL && class->lc_flags & LC_SLEEPABLE) {
208 		sleepq_release(ident);
209 		WITNESS_SAVE(lock, lock_witness);
210 		lock_state = class->lc_unlock(lock);
211 		sleepq_lock(ident);
212 	}
213 	if (sbt != 0 && catch)
214 		rval = sleepq_timedwait_sig(ident, pri);
215 	else if (sbt != 0)
216 		rval = sleepq_timedwait(ident, pri);
217 	else if (catch)
218 		rval = sleepq_wait_sig(ident, pri);
219 	else {
220 		sleepq_wait(ident, pri);
221 		rval = 0;
222 	}
223 #ifdef KTRACE
224 	if (KTRPOINT(td, KTR_CSW))
225 		ktrcsw(0, 0, wmesg);
226 #endif
227 	PICKUP_GIANT();
228 	if (lock != NULL && lock != &Giant.lock_object && !(priority & PDROP)) {
229 		class->lc_lock(lock, lock_state);
230 		WITNESS_RESTORE(lock, lock_witness);
231 	}
232 	return (rval);
233 }
234 
235 int
236 msleep_spin_sbt(const void *ident, struct mtx *mtx, const char *wmesg,
237     sbintime_t sbt, sbintime_t pr, int flags)
238 {
239 	struct thread *td;
240 	int rval;
241 	WITNESS_SAVE_DECL(mtx);
242 
243 	td = curthread;
244 	KASSERT(mtx != NULL, ("sleeping without a mutex"));
245 	KASSERT(ident != NULL, ("msleep_spin_sbt: NULL ident"));
246 	KASSERT(TD_IS_RUNNING(td), ("msleep_spin_sbt: curthread not running"));
247 
248 	if (SCHEDULER_STOPPED_TD(td))
249 		return (0);
250 
251 	sleepq_lock(ident);
252 	CTR5(KTR_PROC, "msleep_spin: thread %ld (pid %ld, %s) on %s (%p)",
253 	    td->td_tid, td->td_proc->p_pid, td->td_name, wmesg, ident);
254 
255 	DROP_GIANT();
256 	mtx_assert(mtx, MA_OWNED | MA_NOTRECURSED);
257 	WITNESS_SAVE(&mtx->lock_object, mtx);
258 	mtx_unlock_spin(mtx);
259 
260 	/*
261 	 * We put ourselves on the sleep queue and start our timeout.
262 	 */
263 	sleepq_add(ident, &mtx->lock_object, wmesg, SLEEPQ_SLEEP, 0);
264 	if (sbt != 0)
265 		sleepq_set_timeout_sbt(ident, sbt, pr, flags);
266 
267 	/*
268 	 * Can't call ktrace with any spin locks held so it can lock the
269 	 * ktrace_mtx lock, and WITNESS_WARN considers it an error to hold
270 	 * any spin lock.  Thus, we have to drop the sleepq spin lock while
271 	 * we handle those requests.  This is safe since we have placed our
272 	 * thread on the sleep queue already.
273 	 */
274 #ifdef KTRACE
275 	if (KTRPOINT(td, KTR_CSW)) {
276 		sleepq_release(ident);
277 		ktrcsw(1, 0, wmesg);
278 		sleepq_lock(ident);
279 	}
280 #endif
281 #ifdef WITNESS
282 	sleepq_release(ident);
283 	WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, "Sleeping on \"%s\"",
284 	    wmesg);
285 	sleepq_lock(ident);
286 #endif
287 	if (sbt != 0)
288 		rval = sleepq_timedwait(ident, 0);
289 	else {
290 		sleepq_wait(ident, 0);
291 		rval = 0;
292 	}
293 #ifdef KTRACE
294 	if (KTRPOINT(td, KTR_CSW))
295 		ktrcsw(0, 0, wmesg);
296 #endif
297 	PICKUP_GIANT();
298 	mtx_lock_spin(mtx);
299 	WITNESS_RESTORE(&mtx->lock_object, mtx);
300 	return (rval);
301 }
302 
303 /*
304  * pause_sbt() delays the calling thread by the given signed binary
305  * time. During cold bootup, pause_sbt() uses the DELAY() function
306  * instead of the _sleep() function to do the waiting. The "sbt"
307  * argument must be greater than or equal to zero. A "sbt" value of
308  * zero is equivalent to a "sbt" value of one tick.
309  */
310 int
311 pause_sbt(const char *wmesg, sbintime_t sbt, sbintime_t pr, int flags)
312 {
313 	KASSERT(sbt >= 0, ("pause_sbt: timeout must be >= 0"));
314 
315 	/* silently convert invalid timeouts */
316 	if (sbt == 0)
317 		sbt = tick_sbt;
318 
319 	if ((cold && curthread == &thread0) || kdb_active ||
320 	    SCHEDULER_STOPPED()) {
321 		/*
322 		 * We delay one second at a time to avoid overflowing the
323 		 * system specific DELAY() function(s):
324 		 */
325 		while (sbt >= SBT_1S) {
326 			DELAY(1000000);
327 			sbt -= SBT_1S;
328 		}
329 		/* Do the delay remainder, if any */
330 		sbt = howmany(sbt, SBT_1US);
331 		if (sbt > 0)
332 			DELAY(sbt);
333 		return (EWOULDBLOCK);
334 	}
335 	return (_sleep(&pause_wchan[curcpu], NULL,
336 	    (flags & C_CATCH) ? PCATCH : 0, wmesg, sbt, pr, flags));
337 }
338 
339 /*
340  * Potentially release the last reference for refcount.  Check for
341  * unlikely conditions and signal the caller as to whether it was
342  * the final ref.
343  */
344 bool
345 refcount_release_last(volatile u_int *count, u_int n, u_int old)
346 {
347 	u_int waiter;
348 
349 	waiter = old & REFCOUNT_WAITER;
350 	old = REFCOUNT_COUNT(old);
351 	if (__predict_false(n > old || REFCOUNT_SATURATED(old))) {
352 		/*
353 		 * Avoid multiple destructor invocations if underflow occurred.
354 		 * This is not perfect since the memory backing the containing
355 		 * object may already have been reallocated.
356 		 */
357 		_refcount_update_saturated(count);
358 		return (false);
359 	}
360 
361 	/*
362 	 * Attempt to atomically clear the waiter bit.  Wakeup waiters
363 	 * if we are successful.
364 	 */
365 	if (waiter != 0 && atomic_cmpset_int(count, REFCOUNT_WAITER, 0))
366 		wakeup(__DEVOLATILE(u_int *, count));
367 
368 	/*
369 	 * Last reference.  Signal the user to call the destructor.
370 	 *
371 	 * Ensure that the destructor sees all updates.  The fence_rel
372 	 * at the start of refcount_releasen synchronizes with this fence.
373 	 */
374 	atomic_thread_fence_acq();
375 	return (true);
376 }
377 
378 /*
379  * Wait for a refcount wakeup.  This does not guarantee that the ref is still
380  * zero on return and may be subject to transient wakeups.  Callers wanting
381  * a precise answer should use refcount_wait().
382  */
383 void
384 _refcount_sleep(volatile u_int *count, struct lock_object *lock,
385     const char *wmesg, int pri)
386 {
387 	void *wchan;
388 	u_int old;
389 
390 	if (REFCOUNT_COUNT(*count) == 0) {
391 		if (lock != NULL)
392 			LOCK_CLASS(lock)->lc_unlock(lock);
393 		return;
394 	}
395 	wchan = __DEVOLATILE(void *, count);
396 	sleepq_lock(wchan);
397 	if (lock != NULL)
398 		LOCK_CLASS(lock)->lc_unlock(lock);
399 	old = *count;
400 	for (;;) {
401 		if (REFCOUNT_COUNT(old) == 0) {
402 			sleepq_release(wchan);
403 			return;
404 		}
405 		if (old & REFCOUNT_WAITER)
406 			break;
407 		if (atomic_fcmpset_int(count, &old, old | REFCOUNT_WAITER))
408 			break;
409 	}
410 	sleepq_add(wchan, NULL, wmesg, 0, 0);
411 	sleepq_wait(wchan, pri);
412 }
413 
414 /*
415  * Make all threads sleeping on the specified identifier runnable.
416  */
417 void
418 wakeup(const void *ident)
419 {
420 	int wakeup_swapper;
421 
422 	sleepq_lock(ident);
423 	wakeup_swapper = sleepq_broadcast(ident, SLEEPQ_SLEEP, 0, 0);
424 	sleepq_release(ident);
425 	if (wakeup_swapper) {
426 		KASSERT(ident != &proc0,
427 		    ("wakeup and wakeup_swapper and proc0"));
428 		kick_proc0();
429 	}
430 }
431 
432 /*
433  * Make a thread sleeping on the specified identifier runnable.
434  * May wake more than one thread if a target thread is currently
435  * swapped out.
436  */
437 void
438 wakeup_one(const void *ident)
439 {
440 	int wakeup_swapper;
441 
442 	sleepq_lock(ident);
443 	wakeup_swapper = sleepq_signal(ident, SLEEPQ_SLEEP, 0, 0);
444 	sleepq_release(ident);
445 	if (wakeup_swapper)
446 		kick_proc0();
447 }
448 
449 void
450 wakeup_any(const void *ident)
451 {
452 	int wakeup_swapper;
453 
454 	sleepq_lock(ident);
455 	wakeup_swapper = sleepq_signal(ident, SLEEPQ_SLEEP | SLEEPQ_UNFAIR,
456 	    0, 0);
457 	sleepq_release(ident);
458 	if (wakeup_swapper)
459 		kick_proc0();
460 }
461 
462 static void
463 kdb_switch(void)
464 {
465 	thread_unlock(curthread);
466 	kdb_backtrace();
467 	kdb_reenter();
468 	panic("%s: did not reenter debugger", __func__);
469 }
470 
471 /*
472  * The machine independent parts of context switching.
473  *
474  * The thread lock is required on entry and is no longer held on return.
475  */
476 void
477 mi_switch(int flags)
478 {
479 	uint64_t runtime, new_switchtime;
480 	struct thread *td;
481 
482 	td = curthread;			/* XXX */
483 	THREAD_LOCK_ASSERT(td, MA_OWNED | MA_NOTRECURSED);
484 	KASSERT(!TD_ON_RUNQ(td), ("mi_switch: called by old code"));
485 #ifdef INVARIANTS
486 	if (!TD_ON_LOCK(td) && !TD_IS_RUNNING(td))
487 		mtx_assert(&Giant, MA_NOTOWNED);
488 #endif
489 	KASSERT(td->td_critnest == 1 || KERNEL_PANICKED(),
490 		("mi_switch: switch in a critical section"));
491 	KASSERT((flags & (SW_INVOL | SW_VOL)) != 0,
492 	    ("mi_switch: switch must be voluntary or involuntary"));
493 
494 	/*
495 	 * Don't perform context switches from the debugger.
496 	 */
497 	if (kdb_active)
498 		kdb_switch();
499 	if (SCHEDULER_STOPPED_TD(td))
500 		return;
501 	if (flags & SW_VOL) {
502 		td->td_ru.ru_nvcsw++;
503 		td->td_swvoltick = ticks;
504 	} else {
505 		td->td_ru.ru_nivcsw++;
506 		td->td_swinvoltick = ticks;
507 	}
508 #ifdef SCHED_STATS
509 	SCHED_STAT_INC(sched_switch_stats[flags & SW_TYPE_MASK]);
510 #endif
511 	/*
512 	 * Compute the amount of time during which the current
513 	 * thread was running, and add that to its total so far.
514 	 */
515 	new_switchtime = cpu_ticks();
516 	runtime = new_switchtime - PCPU_GET(switchtime);
517 	td->td_runtime += runtime;
518 	td->td_incruntime += runtime;
519 	PCPU_SET(switchtime, new_switchtime);
520 	td->td_generation++;	/* bump preempt-detect counter */
521 	VM_CNT_INC(v_swtch);
522 	PCPU_SET(switchticks, ticks);
523 	CTR4(KTR_PROC, "mi_switch: old thread %ld (td_sched %p, pid %ld, %s)",
524 	    td->td_tid, td_get_sched(td), td->td_proc->p_pid, td->td_name);
525 #ifdef KDTRACE_HOOKS
526 	if (SDT_PROBES_ENABLED() &&
527 	    ((flags & SW_PREEMPT) != 0 || ((flags & SW_INVOL) != 0 &&
528 	    (flags & SW_TYPE_MASK) == SWT_NEEDRESCHED)))
529 		SDT_PROBE0(sched, , , preempt);
530 #endif
531 	sched_switch(td, flags);
532 	CTR4(KTR_PROC, "mi_switch: new thread %ld (td_sched %p, pid %ld, %s)",
533 	    td->td_tid, td_get_sched(td), td->td_proc->p_pid, td->td_name);
534 
535 	/*
536 	 * If the last thread was exiting, finish cleaning it up.
537 	 */
538 	if ((td = PCPU_GET(deadthread))) {
539 		PCPU_SET(deadthread, NULL);
540 		thread_stash(td);
541 	}
542 	spinlock_exit();
543 }
544 
545 /*
546  * Change thread state to be runnable, placing it on the run queue if
547  * it is in memory.  If it is swapped out, return true so our caller
548  * will know to awaken the swapper.
549  *
550  * Requires the thread lock on entry, drops on exit.
551  */
552 int
553 setrunnable(struct thread *td, int srqflags)
554 {
555 	int swapin;
556 
557 	THREAD_LOCK_ASSERT(td, MA_OWNED);
558 	KASSERT(td->td_proc->p_state != PRS_ZOMBIE,
559 	    ("setrunnable: pid %d is a zombie", td->td_proc->p_pid));
560 
561 	swapin = 0;
562 	switch (td->td_state) {
563 	case TDS_RUNNING:
564 	case TDS_RUNQ:
565 		break;
566 	case TDS_CAN_RUN:
567 		KASSERT((td->td_flags & TDF_INMEM) != 0,
568 		    ("setrunnable: td %p not in mem, flags 0x%X inhibit 0x%X",
569 		    td, td->td_flags, td->td_inhibitors));
570 		/* unlocks thread lock according to flags */
571 		sched_wakeup(td, srqflags);
572 		return (0);
573 	case TDS_INHIBITED:
574 		/*
575 		 * If we are only inhibited because we are swapped out
576 		 * arrange to swap in this process.
577 		 */
578 		if (td->td_inhibitors == TDI_SWAPPED &&
579 		    (td->td_flags & TDF_SWAPINREQ) == 0) {
580 			td->td_flags |= TDF_SWAPINREQ;
581 			swapin = 1;
582 		}
583 		break;
584 	default:
585 		panic("setrunnable: state 0x%x", td->td_state);
586 	}
587 	if ((srqflags & (SRQ_HOLD | SRQ_HOLDTD)) == 0)
588 		thread_unlock(td);
589 
590 	return (swapin);
591 }
592 
593 /*
594  * Compute a tenex style load average of a quantity on
595  * 1, 5 and 15 minute intervals.
596  */
597 static void
598 loadav(void *arg)
599 {
600 	int i, nrun;
601 	struct loadavg *avg;
602 
603 	nrun = sched_load();
604 	avg = &averunnable;
605 
606 	for (i = 0; i < 3; i++)
607 		avg->ldavg[i] = (cexp[i] * avg->ldavg[i] +
608 		    nrun * FSCALE * (FSCALE - cexp[i])) >> FSHIFT;
609 
610 	/*
611 	 * Schedule the next update to occur after 5 seconds, but add a
612 	 * random variation to avoid synchronisation with processes that
613 	 * run at regular intervals.
614 	 */
615 	callout_reset_sbt(&loadav_callout,
616 	    SBT_1US * (4000000 + (int)(random() % 2000001)), SBT_1US,
617 	    loadav, NULL, C_DIRECT_EXEC | C_PREL(32));
618 }
619 
620 /* ARGSUSED */
621 static void
622 synch_setup(void *dummy)
623 {
624 	callout_init(&loadav_callout, 1);
625 
626 	/* Kick off timeout driven events by calling first time. */
627 	loadav(NULL);
628 }
629 
630 int
631 should_yield(void)
632 {
633 
634 	return ((u_int)ticks - (u_int)curthread->td_swvoltick >= hogticks);
635 }
636 
637 void
638 maybe_yield(void)
639 {
640 
641 	if (should_yield())
642 		kern_yield(PRI_USER);
643 }
644 
645 void
646 kern_yield(int prio)
647 {
648 	struct thread *td;
649 
650 	td = curthread;
651 	DROP_GIANT();
652 	thread_lock(td);
653 	if (prio == PRI_USER)
654 		prio = td->td_user_pri;
655 	if (prio >= 0)
656 		sched_prio(td, prio);
657 	mi_switch(SW_VOL | SWT_RELINQUISH);
658 	PICKUP_GIANT();
659 }
660 
661 /*
662  * General purpose yield system call.
663  */
664 int
665 sys_yield(struct thread *td, struct yield_args *uap)
666 {
667 
668 	thread_lock(td);
669 	if (PRI_BASE(td->td_pri_class) == PRI_TIMESHARE)
670 		sched_prio(td, PRI_MAX_TIMESHARE);
671 	mi_switch(SW_VOL | SWT_RELINQUISH);
672 	td->td_retval[0] = 0;
673 	return (0);
674 }
675