1 /*- 2 * Copyright (c) 1982, 1986, 1990, 1991, 1993 3 * The Regents of the University of California. All rights reserved. 4 * (c) UNIX System Laboratories, Inc. 5 * All or some portions of this file are derived from material licensed 6 * to the University of California by American Telephone and Telegraph 7 * Co. or Unix System Laboratories, Inc. and are reproduced herein with 8 * the permission of UNIX System Laboratories, Inc. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 3. All advertising materials mentioning features or use of this software 19 * must display the following acknowledgement: 20 * This product includes software developed by the University of 21 * California, Berkeley and its contributors. 22 * 4. Neither the name of the University nor the names of its contributors 23 * may be used to endorse or promote products derived from this software 24 * without specific prior written permission. 25 * 26 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 28 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 29 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 30 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 36 * SUCH DAMAGE. 37 * 38 * @(#)kern_synch.c 8.9 (Berkeley) 5/19/95 39 * $Id: kern_synch.c,v 1.64 1998/10/25 19:57:23 bde Exp $ 40 */ 41 42 #include "opt_ktrace.h" 43 44 #include <sys/param.h> 45 #include <sys/systm.h> 46 #include <sys/proc.h> 47 #include <sys/kernel.h> 48 #include <sys/signalvar.h> 49 #include <sys/resourcevar.h> 50 #include <sys/vmmeter.h> 51 #include <sys/sysctl.h> 52 #include <vm/vm.h> 53 #include <vm/vm_extern.h> 54 #ifdef KTRACE 55 #include <sys/uio.h> 56 #include <sys/ktrace.h> 57 #endif 58 59 #include <machine/cpu.h> 60 #ifdef SMP 61 #include <machine/smp.h> 62 #endif 63 #include <machine/limits.h> /* for UCHAR_MAX = typeof(p_priority)_MAX */ 64 65 static void rqinit __P((void *)); 66 SYSINIT(runqueue, SI_SUB_RUN_QUEUE, SI_ORDER_FIRST, rqinit, NULL) 67 68 u_char curpriority; /* usrpri of curproc */ 69 int lbolt; /* once a second sleep address */ 70 71 static void endtsleep __P((void *)); 72 static void roundrobin __P((void *arg)); 73 static void schedcpu __P((void *arg)); 74 static void updatepri __P((struct proc *p)); 75 76 #define MAXIMUM_SCHEDULE_QUANTUM (1000000) /* arbitrary limit */ 77 #ifndef DEFAULT_SCHEDULE_QUANTUM 78 #define DEFAULT_SCHEDULE_QUANTUM 10 79 #endif 80 static int quantum = DEFAULT_SCHEDULE_QUANTUM; /* default value */ 81 82 static int 83 sysctl_kern_quantum SYSCTL_HANDLER_ARGS 84 { 85 int error; 86 int new_val = quantum; 87 88 new_val = quantum; 89 error = sysctl_handle_int(oidp, &new_val, 0, req); 90 if (error == 0) { 91 if ((new_val > 0) && (new_val < MAXIMUM_SCHEDULE_QUANTUM)) { 92 quantum = new_val; 93 } else { 94 error = EINVAL; 95 } 96 } 97 return (error); 98 } 99 100 SYSCTL_PROC(_kern, OID_AUTO, quantum, CTLTYPE_INT|CTLFLAG_RW, 101 0, sizeof quantum, sysctl_kern_quantum, "I", ""); 102 103 /* maybe_resched: Decide if you need to reschedule or not 104 * taking the priorities and schedulers into account. 105 */ 106 static void maybe_resched(struct proc *chk) 107 { 108 struct proc *p = curproc; /* XXX */ 109 110 /* 111 * Compare priorities if the new process is on the same scheduler, 112 * otherwise the one on the more realtimeish scheduler wins. 113 * 114 * XXX idle scheduler still broken because proccess stays on idle 115 * scheduler during waits (such as when getting FS locks). If a 116 * standard process becomes runaway cpu-bound, the system can lockup 117 * due to idle-scheduler processes in wakeup never getting any cpu. 118 */ 119 if (p == 0 || 120 (chk->p_priority < curpriority && RTP_PRIO_BASE(p->p_rtprio.type) == RTP_PRIO_BASE(chk->p_rtprio.type)) || 121 RTP_PRIO_BASE(chk->p_rtprio.type) < RTP_PRIO_BASE(p->p_rtprio.type) 122 ) { 123 need_resched(); 124 } 125 } 126 127 #define ROUNDROBIN_INTERVAL (hz / quantum) 128 int roundrobin_interval(void) 129 { 130 return ROUNDROBIN_INTERVAL; 131 } 132 133 /* 134 * Force switch among equal priority processes every 100ms. 135 */ 136 /* ARGSUSED */ 137 static void 138 roundrobin(arg) 139 void *arg; 140 { 141 #ifndef SMP 142 struct proc *p = curproc; /* XXX */ 143 #endif 144 145 #ifdef SMP 146 need_resched(); 147 forward_roundrobin(); 148 #else 149 if (p == 0 || RTP_PRIO_NEED_RR(p->p_rtprio.type)) 150 need_resched(); 151 #endif 152 153 timeout(roundrobin, NULL, ROUNDROBIN_INTERVAL); 154 } 155 156 /* 157 * Constants for digital decay and forget: 158 * 90% of (p_estcpu) usage in 5 * loadav time 159 * 95% of (p_pctcpu) usage in 60 seconds (load insensitive) 160 * Note that, as ps(1) mentions, this can let percentages 161 * total over 100% (I've seen 137.9% for 3 processes). 162 * 163 * Note that statclock() updates p_estcpu and p_cpticks asynchronously. 164 * 165 * We wish to decay away 90% of p_estcpu in (5 * loadavg) seconds. 166 * That is, the system wants to compute a value of decay such 167 * that the following for loop: 168 * for (i = 0; i < (5 * loadavg); i++) 169 * p_estcpu *= decay; 170 * will compute 171 * p_estcpu *= 0.1; 172 * for all values of loadavg: 173 * 174 * Mathematically this loop can be expressed by saying: 175 * decay ** (5 * loadavg) ~= .1 176 * 177 * The system computes decay as: 178 * decay = (2 * loadavg) / (2 * loadavg + 1) 179 * 180 * We wish to prove that the system's computation of decay 181 * will always fulfill the equation: 182 * decay ** (5 * loadavg) ~= .1 183 * 184 * If we compute b as: 185 * b = 2 * loadavg 186 * then 187 * decay = b / (b + 1) 188 * 189 * We now need to prove two things: 190 * 1) Given factor ** (5 * loadavg) ~= .1, prove factor == b/(b+1) 191 * 2) Given b/(b+1) ** power ~= .1, prove power == (5 * loadavg) 192 * 193 * Facts: 194 * For x close to zero, exp(x) =~ 1 + x, since 195 * exp(x) = 0! + x**1/1! + x**2/2! + ... . 196 * therefore exp(-1/b) =~ 1 - (1/b) = (b-1)/b. 197 * For x close to zero, ln(1+x) =~ x, since 198 * ln(1+x) = x - x**2/2 + x**3/3 - ... -1 < x < 1 199 * therefore ln(b/(b+1)) = ln(1 - 1/(b+1)) =~ -1/(b+1). 200 * ln(.1) =~ -2.30 201 * 202 * Proof of (1): 203 * Solve (factor)**(power) =~ .1 given power (5*loadav): 204 * solving for factor, 205 * ln(factor) =~ (-2.30/5*loadav), or 206 * factor =~ exp(-1/((5/2.30)*loadav)) =~ exp(-1/(2*loadav)) = 207 * exp(-1/b) =~ (b-1)/b =~ b/(b+1). QED 208 * 209 * Proof of (2): 210 * Solve (factor)**(power) =~ .1 given factor == (b/(b+1)): 211 * solving for power, 212 * power*ln(b/(b+1)) =~ -2.30, or 213 * power =~ 2.3 * (b + 1) = 4.6*loadav + 2.3 =~ 5*loadav. QED 214 * 215 * Actual power values for the implemented algorithm are as follows: 216 * loadav: 1 2 3 4 217 * power: 5.68 10.32 14.94 19.55 218 */ 219 220 /* calculations for digital decay to forget 90% of usage in 5*loadav sec */ 221 #define loadfactor(loadav) (2 * (loadav)) 222 #define decay_cpu(loadfac, cpu) (((loadfac) * (cpu)) / ((loadfac) + FSCALE)) 223 224 /* decay 95% of `p_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */ 225 static fixpt_t ccpu = 0.95122942450071400909 * FSCALE; /* exp(-1/20) */ 226 SYSCTL_INT(_kern, OID_AUTO, ccpu, CTLFLAG_RD, &ccpu, 0, ""); 227 228 /* kernel uses `FSCALE', userland (SHOULD) use kern.fscale */ 229 static int fscale __unused = FSCALE; 230 SYSCTL_INT(_kern, OID_AUTO, fscale, CTLFLAG_RD, 0, FSCALE, ""); 231 232 /* 233 * If `ccpu' is not equal to `exp(-1/20)' and you still want to use the 234 * faster/more-accurate formula, you'll have to estimate CCPU_SHIFT below 235 * and possibly adjust FSHIFT in "param.h" so that (FSHIFT >= CCPU_SHIFT). 236 * 237 * To estimate CCPU_SHIFT for exp(-1/20), the following formula was used: 238 * 1 - exp(-1/20) ~= 0.0487 ~= 0.0488 == 1 (fixed pt, *11* bits). 239 * 240 * If you don't want to bother with the faster/more-accurate formula, you 241 * can set CCPU_SHIFT to (FSHIFT + 1) which will use a slower/less-accurate 242 * (more general) method of calculating the %age of CPU used by a process. 243 */ 244 #define CCPU_SHIFT 11 245 246 /* 247 * Recompute process priorities, every hz ticks. 248 */ 249 /* ARGSUSED */ 250 static void 251 schedcpu(arg) 252 void *arg; 253 { 254 register fixpt_t loadfac = loadfactor(averunnable.ldavg[0]); 255 register struct proc *p; 256 register int s; 257 register unsigned int newcpu; 258 259 for (p = allproc.lh_first; p != 0; p = p->p_list.le_next) { 260 /* 261 * Increment time in/out of memory and sleep time 262 * (if sleeping). We ignore overflow; with 16-bit int's 263 * (remember them?) overflow takes 45 days. 264 */ 265 p->p_swtime++; 266 if (p->p_stat == SSLEEP || p->p_stat == SSTOP) 267 p->p_slptime++; 268 p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT; 269 /* 270 * If the process has slept the entire second, 271 * stop recalculating its priority until it wakes up. 272 */ 273 if (p->p_slptime > 1) 274 continue; 275 s = splhigh(); /* prevent state changes and protect run queue */ 276 /* 277 * p_pctcpu is only for ps. 278 */ 279 #if (FSHIFT >= CCPU_SHIFT) 280 p->p_pctcpu += (hz == 100)? 281 ((fixpt_t) p->p_cpticks) << (FSHIFT - CCPU_SHIFT): 282 100 * (((fixpt_t) p->p_cpticks) 283 << (FSHIFT - CCPU_SHIFT)) / hz; 284 #else 285 p->p_pctcpu += ((FSCALE - ccpu) * 286 (p->p_cpticks * FSCALE / hz)) >> FSHIFT; 287 #endif 288 p->p_cpticks = 0; 289 newcpu = (u_int) decay_cpu(loadfac, p->p_estcpu) + p->p_nice; 290 p->p_estcpu = min(newcpu, UCHAR_MAX); 291 resetpriority(p); 292 if (p->p_priority >= PUSER) { 293 #define PPQ (128 / NQS) /* priorities per queue */ 294 if ((p != curproc) && 295 #ifdef SMP 296 (u_char)p->p_oncpu == 0xff && /* idle */ 297 #endif 298 p->p_stat == SRUN && 299 (p->p_flag & P_INMEM) && 300 (p->p_priority / PPQ) != (p->p_usrpri / PPQ)) { 301 remrq(p); 302 p->p_priority = p->p_usrpri; 303 setrunqueue(p); 304 } else 305 p->p_priority = p->p_usrpri; 306 } 307 splx(s); 308 } 309 vmmeter(); 310 wakeup((caddr_t)&lbolt); 311 timeout(schedcpu, (void *)0, hz); 312 } 313 314 /* 315 * Recalculate the priority of a process after it has slept for a while. 316 * For all load averages >= 1 and max p_estcpu of 255, sleeping for at 317 * least six times the loadfactor will decay p_estcpu to zero. 318 */ 319 static void 320 updatepri(p) 321 register struct proc *p; 322 { 323 register unsigned int newcpu = p->p_estcpu; 324 register fixpt_t loadfac = loadfactor(averunnable.ldavg[0]); 325 326 if (p->p_slptime > 5 * loadfac) 327 p->p_estcpu = 0; 328 else { 329 p->p_slptime--; /* the first time was done in schedcpu */ 330 while (newcpu && --p->p_slptime) 331 newcpu = (int) decay_cpu(loadfac, newcpu); 332 p->p_estcpu = min(newcpu, UCHAR_MAX); 333 } 334 resetpriority(p); 335 } 336 337 /* 338 * We're only looking at 7 bits of the address; everything is 339 * aligned to 4, lots of things are aligned to greater powers 340 * of 2. Shift right by 8, i.e. drop the bottom 256 worth. 341 */ 342 #define TABLESIZE 128 343 static TAILQ_HEAD(slpquehead, proc) slpque[TABLESIZE]; 344 #define LOOKUP(x) (((intptr_t)(x) >> 8) & (TABLESIZE - 1)) 345 346 /* 347 * During autoconfiguration or after a panic, a sleep will simply 348 * lower the priority briefly to allow interrupts, then return. 349 * The priority to be used (safepri) is machine-dependent, thus this 350 * value is initialized and maintained in the machine-dependent layers. 351 * This priority will typically be 0, or the lowest priority 352 * that is safe for use on the interrupt stack; it can be made 353 * higher to block network software interrupts after panics. 354 */ 355 int safepri; 356 357 void 358 sleepinit() 359 { 360 int i; 361 362 for (i = 0; i < TABLESIZE; i++) 363 TAILQ_INIT(&slpque[i]); 364 } 365 366 /* 367 * General sleep call. Suspends the current process until a wakeup is 368 * performed on the specified identifier. The process will then be made 369 * runnable with the specified priority. Sleeps at most timo/hz seconds 370 * (0 means no timeout). If pri includes PCATCH flag, signals are checked 371 * before and after sleeping, else signals are not checked. Returns 0 if 372 * awakened, EWOULDBLOCK if the timeout expires. If PCATCH is set and a 373 * signal needs to be delivered, ERESTART is returned if the current system 374 * call should be restarted if possible, and EINTR is returned if the system 375 * call should be interrupted by the signal (return EINTR). 376 */ 377 int 378 tsleep(ident, priority, wmesg, timo) 379 void *ident; 380 int priority, timo; 381 const char *wmesg; 382 { 383 struct proc *p = curproc; 384 int s, sig, catch = priority & PCATCH; 385 struct callout_handle thandle; 386 387 #ifdef KTRACE 388 if (KTRPOINT(p, KTR_CSW)) 389 ktrcsw(p->p_tracep, 1, 0); 390 #endif 391 s = splhigh(); 392 if (cold || panicstr) { 393 /* 394 * After a panic, or during autoconfiguration, 395 * just give interrupts a chance, then just return; 396 * don't run any other procs or panic below, 397 * in case this is the idle process and already asleep. 398 */ 399 splx(safepri); 400 splx(s); 401 return (0); 402 } 403 #ifdef DIAGNOSTIC 404 if(p == NULL) 405 panic("tsleep1"); 406 if (ident == NULL || p->p_stat != SRUN) 407 panic("tsleep"); 408 /* XXX This is not exhaustive, just the most common case */ 409 if ((p->p_procq.tqe_prev != NULL) && (*p->p_procq.tqe_prev == p)) 410 panic("sleeping process already on another queue"); 411 #endif 412 p->p_wchan = ident; 413 p->p_wmesg = wmesg; 414 p->p_slptime = 0; 415 p->p_priority = priority & PRIMASK; 416 TAILQ_INSERT_TAIL(&slpque[LOOKUP(ident)], p, p_procq); 417 if (timo) 418 thandle = timeout(endtsleep, (void *)p, timo); 419 /* 420 * We put ourselves on the sleep queue and start our timeout 421 * before calling CURSIG, as we could stop there, and a wakeup 422 * or a SIGCONT (or both) could occur while we were stopped. 423 * A SIGCONT would cause us to be marked as SSLEEP 424 * without resuming us, thus we must be ready for sleep 425 * when CURSIG is called. If the wakeup happens while we're 426 * stopped, p->p_wchan will be 0 upon return from CURSIG. 427 */ 428 if (catch) { 429 p->p_flag |= P_SINTR; 430 if ((sig = CURSIG(p))) { 431 if (p->p_wchan) 432 unsleep(p); 433 p->p_stat = SRUN; 434 goto resume; 435 } 436 if (p->p_wchan == 0) { 437 catch = 0; 438 goto resume; 439 } 440 } else 441 sig = 0; 442 p->p_stat = SSLEEP; 443 p->p_stats->p_ru.ru_nvcsw++; 444 mi_switch(); 445 resume: 446 curpriority = p->p_usrpri; 447 splx(s); 448 p->p_flag &= ~P_SINTR; 449 if (p->p_flag & P_TIMEOUT) { 450 p->p_flag &= ~P_TIMEOUT; 451 if (sig == 0) { 452 #ifdef KTRACE 453 if (KTRPOINT(p, KTR_CSW)) 454 ktrcsw(p->p_tracep, 0, 0); 455 #endif 456 return (EWOULDBLOCK); 457 } 458 } else if (timo) 459 untimeout(endtsleep, (void *)p, thandle); 460 if (catch && (sig != 0 || (sig = CURSIG(p)))) { 461 #ifdef KTRACE 462 if (KTRPOINT(p, KTR_CSW)) 463 ktrcsw(p->p_tracep, 0, 0); 464 #endif 465 if (p->p_sigacts->ps_sigintr & sigmask(sig)) 466 return (EINTR); 467 return (ERESTART); 468 } 469 #ifdef KTRACE 470 if (KTRPOINT(p, KTR_CSW)) 471 ktrcsw(p->p_tracep, 0, 0); 472 #endif 473 return (0); 474 } 475 476 /* 477 * Implement timeout for tsleep. 478 * If process hasn't been awakened (wchan non-zero), 479 * set timeout flag and undo the sleep. If proc 480 * is stopped, just unsleep so it will remain stopped. 481 */ 482 static void 483 endtsleep(arg) 484 void *arg; 485 { 486 register struct proc *p; 487 int s; 488 489 p = (struct proc *)arg; 490 s = splhigh(); 491 if (p->p_wchan) { 492 if (p->p_stat == SSLEEP) 493 setrunnable(p); 494 else 495 unsleep(p); 496 p->p_flag |= P_TIMEOUT; 497 } 498 splx(s); 499 } 500 501 /* 502 * Remove a process from its wait queue 503 */ 504 void 505 unsleep(p) 506 register struct proc *p; 507 { 508 int s; 509 510 s = splhigh(); 511 if (p->p_wchan) { 512 TAILQ_REMOVE(&slpque[LOOKUP(p->p_wchan)], p, p_procq); 513 p->p_wchan = 0; 514 } 515 splx(s); 516 } 517 518 /* 519 * Make all processes sleeping on the specified identifier runnable. 520 */ 521 void 522 wakeup(ident) 523 register void *ident; 524 { 525 register struct slpquehead *qp; 526 register struct proc *p; 527 int s; 528 529 s = splhigh(); 530 qp = &slpque[LOOKUP(ident)]; 531 restart: 532 for (p = qp->tqh_first; p != NULL; p = p->p_procq.tqe_next) { 533 #ifdef DIAGNOSTIC 534 if (p->p_stat != SSLEEP && p->p_stat != SSTOP) 535 panic("wakeup"); 536 #endif 537 if (p->p_wchan == ident) { 538 TAILQ_REMOVE(qp, p, p_procq); 539 p->p_wchan = 0; 540 if (p->p_stat == SSLEEP) { 541 /* OPTIMIZED EXPANSION OF setrunnable(p); */ 542 if (p->p_slptime > 1) 543 updatepri(p); 544 p->p_slptime = 0; 545 p->p_stat = SRUN; 546 if (p->p_flag & P_INMEM) { 547 setrunqueue(p); 548 maybe_resched(p); 549 } else { 550 p->p_flag |= P_SWAPINREQ; 551 wakeup((caddr_t)&proc0); 552 } 553 /* END INLINE EXPANSION */ 554 goto restart; 555 } 556 } 557 } 558 splx(s); 559 } 560 561 /* 562 * Make a process sleeping on the specified identifier runnable. 563 * May wake more than one process if a target prcoess is currently 564 * swapped out. 565 */ 566 void 567 wakeup_one(ident) 568 register void *ident; 569 { 570 register struct slpquehead *qp; 571 register struct proc *p; 572 int s; 573 574 s = splhigh(); 575 qp = &slpque[LOOKUP(ident)]; 576 577 for (p = qp->tqh_first; p != NULL; p = p->p_procq.tqe_next) { 578 #ifdef DIAGNOSTIC 579 if (p->p_stat != SSLEEP && p->p_stat != SSTOP) 580 panic("wakeup_one"); 581 #endif 582 if (p->p_wchan == ident) { 583 TAILQ_REMOVE(qp, p, p_procq); 584 p->p_wchan = 0; 585 if (p->p_stat == SSLEEP) { 586 /* OPTIMIZED EXPANSION OF setrunnable(p); */ 587 if (p->p_slptime > 1) 588 updatepri(p); 589 p->p_slptime = 0; 590 p->p_stat = SRUN; 591 if (p->p_flag & P_INMEM) { 592 setrunqueue(p); 593 maybe_resched(p); 594 break; 595 } else { 596 p->p_flag |= P_SWAPINREQ; 597 wakeup((caddr_t)&proc0); 598 } 599 /* END INLINE EXPANSION */ 600 } 601 } 602 } 603 splx(s); 604 } 605 606 /* 607 * The machine independent parts of mi_switch(). 608 * Must be called at splstatclock() or higher. 609 */ 610 void 611 mi_switch() 612 { 613 register struct proc *p = curproc; /* XXX */ 614 register struct rlimit *rlim; 615 int x; 616 617 /* 618 * XXX this spl is almost unnecessary. It is partly to allow for 619 * sloppy callers that don't do it (issignal() via CURSIG() is the 620 * main offender). It is partly to work around a bug in the i386 621 * cpu_switch() (the ipl is not preserved). We ran for years 622 * without it. I think there was only a interrupt latency problem. 623 * The main caller, tsleep(), does an splx() a couple of instructions 624 * after calling here. The buggy caller, issignal(), usually calls 625 * here at spl0() and sometimes returns at splhigh(). The process 626 * then runs for a little too long at splhigh(). The ipl gets fixed 627 * when the process returns to user mode (or earlier). 628 * 629 * It would probably be better to always call here at spl0(). Callers 630 * are prepared to give up control to another process, so they must 631 * be prepared to be interrupted. The clock stuff here may not 632 * actually need splstatclock(). 633 */ 634 x = splstatclock(); 635 636 #ifdef SIMPLELOCK_DEBUG 637 if (p->p_simple_locks) 638 printf("sleep: holding simple lock\n"); 639 #endif 640 /* 641 * Compute the amount of time during which the current 642 * process was running, and add that to its total so far. 643 */ 644 microuptime(&switchtime); 645 p->p_runtime += (switchtime.tv_usec - p->p_switchtime.tv_usec) + 646 (switchtime.tv_sec - p->p_switchtime.tv_sec) * (int64_t)1000000; 647 648 /* 649 * Check if the process exceeds its cpu resource allocation. 650 * If over max, kill it. 651 */ 652 if (p->p_stat != SZOMB && p->p_runtime > p->p_limit->p_cpulimit) { 653 rlim = &p->p_rlimit[RLIMIT_CPU]; 654 if (p->p_runtime / (rlim_t)1000000 >= rlim->rlim_max) { 655 killproc(p, "exceeded maximum CPU limit"); 656 } else { 657 psignal(p, SIGXCPU); 658 if (rlim->rlim_cur < rlim->rlim_max) { 659 /* XXX: we should make a private copy */ 660 rlim->rlim_cur += 5; 661 } 662 } 663 } 664 665 /* 666 * Pick a new current process and record its start time. 667 */ 668 cnt.v_swtch++; 669 cpu_switch(p); 670 if (switchtime.tv_sec) 671 p->p_switchtime = switchtime; 672 else 673 microuptime(&p->p_switchtime); 674 splx(x); 675 } 676 677 /* 678 * Initialize the (doubly-linked) run queues 679 * to be empty. 680 */ 681 /* ARGSUSED*/ 682 static void 683 rqinit(dummy) 684 void *dummy; 685 { 686 register int i; 687 688 for (i = 0; i < NQS; i++) { 689 qs[i].ph_link = qs[i].ph_rlink = (struct proc *)&qs[i]; 690 rtqs[i].ph_link = rtqs[i].ph_rlink = (struct proc *)&rtqs[i]; 691 idqs[i].ph_link = idqs[i].ph_rlink = (struct proc *)&idqs[i]; 692 } 693 } 694 695 /* 696 * Change process state to be runnable, 697 * placing it on the run queue if it is in memory, 698 * and awakening the swapper if it isn't in memory. 699 */ 700 void 701 setrunnable(p) 702 register struct proc *p; 703 { 704 register int s; 705 706 s = splhigh(); 707 switch (p->p_stat) { 708 case 0: 709 case SRUN: 710 case SZOMB: 711 default: 712 panic("setrunnable"); 713 case SSTOP: 714 case SSLEEP: 715 unsleep(p); /* e.g. when sending signals */ 716 break; 717 718 case SIDL: 719 break; 720 } 721 p->p_stat = SRUN; 722 if (p->p_flag & P_INMEM) 723 setrunqueue(p); 724 splx(s); 725 if (p->p_slptime > 1) 726 updatepri(p); 727 p->p_slptime = 0; 728 if ((p->p_flag & P_INMEM) == 0) { 729 p->p_flag |= P_SWAPINREQ; 730 wakeup((caddr_t)&proc0); 731 } 732 else 733 maybe_resched(p); 734 } 735 736 /* 737 * Compute the priority of a process when running in user mode. 738 * Arrange to reschedule if the resulting priority is better 739 * than that of the current process. 740 */ 741 void 742 resetpriority(p) 743 register struct proc *p; 744 { 745 register unsigned int newpriority; 746 747 if (p->p_rtprio.type == RTP_PRIO_NORMAL) { 748 newpriority = PUSER + p->p_estcpu / 4 + 2 * p->p_nice; 749 newpriority = min(newpriority, MAXPRI); 750 p->p_usrpri = newpriority; 751 } 752 maybe_resched(p); 753 } 754 755 /* ARGSUSED */ 756 static void sched_setup __P((void *dummy)); 757 static void 758 sched_setup(dummy) 759 void *dummy; 760 { 761 /* Kick off timeout driven events by calling first time. */ 762 roundrobin(NULL); 763 schedcpu(NULL); 764 } 765 SYSINIT(sched_setup, SI_SUB_KICK_SCHEDULER, SI_ORDER_FIRST, sched_setup, NULL) 766 767