1 /*- 2 * Copyright (c) 2007 Attilio Rao <attilio@freebsd.org> 3 * Copyright (c) 2001 Jason Evans <jasone@freebsd.org> 4 * All rights reserved. 5 * 6 * Redistribution and use in source and binary forms, with or without 7 * modification, are permitted provided that the following conditions 8 * are met: 9 * 1. Redistributions of source code must retain the above copyright 10 * notice(s), this list of conditions and the following disclaimer as 11 * the first lines of this file unmodified other than the possible 12 * addition of one or more copyright notices. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice(s), this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER(S) ``AS IS'' AND ANY 18 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED 19 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE 20 * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) BE LIABLE FOR ANY 21 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES 22 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR 23 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER 24 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH 27 * DAMAGE. 28 */ 29 30 /* 31 * Shared/exclusive locks. This implementation attempts to ensure 32 * deterministic lock granting behavior, so that slocks and xlocks are 33 * interleaved. 34 * 35 * Priority propagation will not generally raise the priority of lock holders, 36 * so should not be relied upon in combination with sx locks. 37 */ 38 39 #include "opt_adaptive_sx.h" 40 #include "opt_ddb.h" 41 42 #include <sys/cdefs.h> 43 __FBSDID("$FreeBSD$"); 44 45 #include <sys/param.h> 46 #include <sys/ktr.h> 47 #include <sys/lock.h> 48 #include <sys/mutex.h> 49 #include <sys/proc.h> 50 #include <sys/sleepqueue.h> 51 #include <sys/sx.h> 52 #include <sys/systm.h> 53 54 #ifdef ADAPTIVE_SX 55 #include <machine/cpu.h> 56 #endif 57 58 #ifdef DDB 59 #include <ddb/ddb.h> 60 #endif 61 62 #if !defined(SMP) && defined(ADAPTIVE_SX) 63 #error "You must have SMP to enable the ADAPTIVE_SX option" 64 #endif 65 66 CTASSERT(((SX_ADAPTIVESPIN | SX_RECURSE) & LO_CLASSFLAGS) == 67 (SX_ADAPTIVESPIN | SX_RECURSE)); 68 69 /* Handy macros for sleep queues. */ 70 #define SQ_EXCLUSIVE_QUEUE 0 71 #define SQ_SHARED_QUEUE 1 72 73 /* 74 * Variations on DROP_GIANT()/PICKUP_GIANT() for use in this file. We 75 * drop Giant anytime we have to sleep or if we adaptively spin. 76 */ 77 #define GIANT_DECLARE \ 78 int _giantcnt = 0; \ 79 WITNESS_SAVE_DECL(Giant) \ 80 81 #define GIANT_SAVE() do { \ 82 if (mtx_owned(&Giant)) { \ 83 WITNESS_SAVE(&Giant.lock_object, Giant); \ 84 while (mtx_owned(&Giant)) { \ 85 _giantcnt++; \ 86 mtx_unlock(&Giant); \ 87 } \ 88 } \ 89 } while (0) 90 91 #define GIANT_RESTORE() do { \ 92 if (_giantcnt > 0) { \ 93 mtx_assert(&Giant, MA_NOTOWNED); \ 94 while (_giantcnt--) \ 95 mtx_lock(&Giant); \ 96 WITNESS_RESTORE(&Giant.lock_object, Giant); \ 97 } \ 98 } while (0) 99 100 /* 101 * Returns true if an exclusive lock is recursed. It assumes 102 * curthread currently has an exclusive lock. 103 */ 104 #define sx_recurse lock_object.lo_data 105 #define sx_recursed(sx) ((sx)->sx_recurse != 0) 106 107 static void assert_sx(struct lock_object *lock, int what); 108 #ifdef DDB 109 static void db_show_sx(struct lock_object *lock); 110 #endif 111 static void lock_sx(struct lock_object *lock, int how); 112 static int unlock_sx(struct lock_object *lock); 113 114 struct lock_class lock_class_sx = { 115 .lc_name = "sx", 116 .lc_flags = LC_SLEEPLOCK | LC_SLEEPABLE | LC_RECURSABLE | LC_UPGRADABLE, 117 .lc_assert = assert_sx, 118 #ifdef DDB 119 .lc_ddb_show = db_show_sx, 120 #endif 121 .lc_lock = lock_sx, 122 .lc_unlock = unlock_sx, 123 }; 124 125 #ifndef INVARIANTS 126 #define _sx_assert(sx, what, file, line) 127 #endif 128 129 void 130 assert_sx(struct lock_object *lock, int what) 131 { 132 133 sx_assert((struct sx *)lock, what); 134 } 135 136 void 137 lock_sx(struct lock_object *lock, int how) 138 { 139 struct sx *sx; 140 141 sx = (struct sx *)lock; 142 if (how) 143 sx_xlock(sx); 144 else 145 sx_slock(sx); 146 } 147 148 int 149 unlock_sx(struct lock_object *lock) 150 { 151 struct sx *sx; 152 153 sx = (struct sx *)lock; 154 sx_assert(sx, SA_LOCKED | SA_NOTRECURSED); 155 if (sx_xlocked(sx)) { 156 sx_xunlock(sx); 157 return (1); 158 } else { 159 sx_sunlock(sx); 160 return (0); 161 } 162 } 163 164 void 165 sx_sysinit(void *arg) 166 { 167 struct sx_args *sargs = arg; 168 169 sx_init(sargs->sa_sx, sargs->sa_desc); 170 } 171 172 void 173 sx_init_flags(struct sx *sx, const char *description, int opts) 174 { 175 int flags; 176 177 MPASS((opts & ~(SX_QUIET | SX_RECURSE | SX_NOWITNESS | SX_DUPOK | 178 SX_NOPROFILE | SX_ADAPTIVESPIN)) == 0); 179 180 flags = LO_RECURSABLE | LO_SLEEPABLE | LO_UPGRADABLE; 181 if (opts & SX_DUPOK) 182 flags |= LO_DUPOK; 183 if (opts & SX_NOPROFILE) 184 flags |= LO_NOPROFILE; 185 if (!(opts & SX_NOWITNESS)) 186 flags |= LO_WITNESS; 187 if (opts & SX_QUIET) 188 flags |= LO_QUIET; 189 190 flags |= opts & (SX_ADAPTIVESPIN | SX_RECURSE); 191 sx->sx_lock = SX_LOCK_UNLOCKED; 192 sx->sx_recurse = 0; 193 lock_init(&sx->lock_object, &lock_class_sx, description, NULL, flags); 194 } 195 196 void 197 sx_destroy(struct sx *sx) 198 { 199 200 KASSERT(sx->sx_lock == SX_LOCK_UNLOCKED, ("sx lock still held")); 201 KASSERT(sx->sx_recurse == 0, ("sx lock still recursed")); 202 sx->sx_lock = SX_LOCK_DESTROYED; 203 lock_destroy(&sx->lock_object); 204 } 205 206 int 207 _sx_slock(struct sx *sx, int opts, const char *file, int line) 208 { 209 int error = 0; 210 211 MPASS(curthread != NULL); 212 KASSERT(sx->sx_lock != SX_LOCK_DESTROYED, 213 ("sx_slock() of destroyed sx @ %s:%d", file, line)); 214 WITNESS_CHECKORDER(&sx->lock_object, LOP_NEWORDER, file, line); 215 error = __sx_slock(sx, opts, file, line); 216 if (!error) { 217 LOCK_LOG_LOCK("SLOCK", &sx->lock_object, 0, 0, file, line); 218 WITNESS_LOCK(&sx->lock_object, 0, file, line); 219 curthread->td_locks++; 220 } 221 222 return (error); 223 } 224 225 int 226 _sx_try_slock(struct sx *sx, const char *file, int line) 227 { 228 uintptr_t x; 229 230 for (;;) { 231 x = sx->sx_lock; 232 KASSERT(x != SX_LOCK_DESTROYED, 233 ("sx_try_slock() of destroyed sx @ %s:%d", file, line)); 234 if (!(x & SX_LOCK_SHARED)) 235 break; 236 if (atomic_cmpset_acq_ptr(&sx->sx_lock, x, x + SX_ONE_SHARER)) { 237 LOCK_LOG_TRY("SLOCK", &sx->lock_object, 0, 1, file, line); 238 WITNESS_LOCK(&sx->lock_object, LOP_TRYLOCK, file, line); 239 curthread->td_locks++; 240 return (1); 241 } 242 } 243 244 LOCK_LOG_TRY("SLOCK", &sx->lock_object, 0, 0, file, line); 245 return (0); 246 } 247 248 int 249 _sx_xlock(struct sx *sx, int opts, const char *file, int line) 250 { 251 int error = 0; 252 253 MPASS(curthread != NULL); 254 KASSERT(sx->sx_lock != SX_LOCK_DESTROYED, 255 ("sx_xlock() of destroyed sx @ %s:%d", file, line)); 256 WITNESS_CHECKORDER(&sx->lock_object, LOP_NEWORDER | LOP_EXCLUSIVE, file, 257 line); 258 error = __sx_xlock(sx, curthread, opts, file, line); 259 if (!error) { 260 LOCK_LOG_LOCK("XLOCK", &sx->lock_object, 0, sx->sx_recurse, 261 file, line); 262 WITNESS_LOCK(&sx->lock_object, LOP_EXCLUSIVE, file, line); 263 curthread->td_locks++; 264 } 265 266 return (error); 267 } 268 269 int 270 _sx_try_xlock(struct sx *sx, const char *file, int line) 271 { 272 int rval; 273 274 MPASS(curthread != NULL); 275 KASSERT(sx->sx_lock != SX_LOCK_DESTROYED, 276 ("sx_try_xlock() of destroyed sx @ %s:%d", file, line)); 277 278 if (sx_xlocked(sx) && (sx->lock_object.lo_flags & SX_RECURSE) != 0) { 279 sx->sx_recurse++; 280 atomic_set_ptr(&sx->sx_lock, SX_LOCK_RECURSED); 281 rval = 1; 282 } else 283 rval = atomic_cmpset_acq_ptr(&sx->sx_lock, SX_LOCK_UNLOCKED, 284 (uintptr_t)curthread); 285 LOCK_LOG_TRY("XLOCK", &sx->lock_object, 0, rval, file, line); 286 if (rval) { 287 WITNESS_LOCK(&sx->lock_object, LOP_EXCLUSIVE | LOP_TRYLOCK, 288 file, line); 289 curthread->td_locks++; 290 } 291 292 return (rval); 293 } 294 295 void 296 _sx_sunlock(struct sx *sx, const char *file, int line) 297 { 298 299 MPASS(curthread != NULL); 300 KASSERT(sx->sx_lock != SX_LOCK_DESTROYED, 301 ("sx_sunlock() of destroyed sx @ %s:%d", file, line)); 302 _sx_assert(sx, SA_SLOCKED, file, line); 303 curthread->td_locks--; 304 WITNESS_UNLOCK(&sx->lock_object, 0, file, line); 305 LOCK_LOG_LOCK("SUNLOCK", &sx->lock_object, 0, 0, file, line); 306 __sx_sunlock(sx, file, line); 307 lock_profile_release_lock(&sx->lock_object); 308 } 309 310 void 311 _sx_xunlock(struct sx *sx, const char *file, int line) 312 { 313 314 MPASS(curthread != NULL); 315 KASSERT(sx->sx_lock != SX_LOCK_DESTROYED, 316 ("sx_xunlock() of destroyed sx @ %s:%d", file, line)); 317 _sx_assert(sx, SA_XLOCKED, file, line); 318 curthread->td_locks--; 319 WITNESS_UNLOCK(&sx->lock_object, LOP_EXCLUSIVE, file, line); 320 LOCK_LOG_LOCK("XUNLOCK", &sx->lock_object, 0, sx->sx_recurse, file, 321 line); 322 if (!sx_recursed(sx)) 323 lock_profile_release_lock(&sx->lock_object); 324 __sx_xunlock(sx, curthread, file, line); 325 } 326 327 /* 328 * Try to do a non-blocking upgrade from a shared lock to an exclusive lock. 329 * This will only succeed if this thread holds a single shared lock. 330 * Return 1 if if the upgrade succeed, 0 otherwise. 331 */ 332 int 333 _sx_try_upgrade(struct sx *sx, const char *file, int line) 334 { 335 uintptr_t x; 336 int success; 337 338 KASSERT(sx->sx_lock != SX_LOCK_DESTROYED, 339 ("sx_try_upgrade() of destroyed sx @ %s:%d", file, line)); 340 _sx_assert(sx, SA_SLOCKED, file, line); 341 342 /* 343 * Try to switch from one shared lock to an exclusive lock. We need 344 * to maintain the SX_LOCK_EXCLUSIVE_WAITERS flag if set so that 345 * we will wake up the exclusive waiters when we drop the lock. 346 */ 347 x = sx->sx_lock & SX_LOCK_EXCLUSIVE_WAITERS; 348 success = atomic_cmpset_ptr(&sx->sx_lock, SX_SHARERS_LOCK(1) | x, 349 (uintptr_t)curthread | x); 350 LOCK_LOG_TRY("XUPGRADE", &sx->lock_object, 0, success, file, line); 351 if (success) 352 WITNESS_UPGRADE(&sx->lock_object, LOP_EXCLUSIVE | LOP_TRYLOCK, 353 file, line); 354 return (success); 355 } 356 357 /* 358 * Downgrade an unrecursed exclusive lock into a single shared lock. 359 */ 360 void 361 _sx_downgrade(struct sx *sx, const char *file, int line) 362 { 363 uintptr_t x; 364 365 KASSERT(sx->sx_lock != SX_LOCK_DESTROYED, 366 ("sx_downgrade() of destroyed sx @ %s:%d", file, line)); 367 _sx_assert(sx, SA_XLOCKED | SA_NOTRECURSED, file, line); 368 #ifndef INVARIANTS 369 if (sx_recursed(sx)) 370 panic("downgrade of a recursed lock"); 371 #endif 372 373 WITNESS_DOWNGRADE(&sx->lock_object, 0, file, line); 374 375 /* 376 * Try to switch from an exclusive lock with no shared waiters 377 * to one sharer with no shared waiters. If there are 378 * exclusive waiters, we don't need to lock the sleep queue so 379 * long as we preserve the flag. We do one quick try and if 380 * that fails we grab the sleepq lock to keep the flags from 381 * changing and do it the slow way. 382 * 383 * We have to lock the sleep queue if there are shared waiters 384 * so we can wake them up. 385 */ 386 x = sx->sx_lock; 387 if (!(x & SX_LOCK_SHARED_WAITERS) && 388 atomic_cmpset_rel_ptr(&sx->sx_lock, x, SX_SHARERS_LOCK(1) | 389 (x & SX_LOCK_EXCLUSIVE_WAITERS))) { 390 LOCK_LOG_LOCK("XDOWNGRADE", &sx->lock_object, 0, 0, file, line); 391 return; 392 } 393 394 /* 395 * Lock the sleep queue so we can read the waiters bits 396 * without any races and wakeup any shared waiters. 397 */ 398 sleepq_lock(&sx->lock_object); 399 400 /* 401 * Preserve SX_LOCK_EXCLUSIVE_WAITERS while downgraded to a single 402 * shared lock. If there are any shared waiters, wake them up. 403 */ 404 x = sx->sx_lock; 405 atomic_store_rel_ptr(&sx->sx_lock, SX_SHARERS_LOCK(1) | 406 (x & SX_LOCK_EXCLUSIVE_WAITERS)); 407 if (x & SX_LOCK_SHARED_WAITERS) 408 sleepq_broadcast(&sx->lock_object, SLEEPQ_SX, 0, 409 SQ_SHARED_QUEUE); 410 sleepq_release(&sx->lock_object); 411 412 LOCK_LOG_LOCK("XDOWNGRADE", &sx->lock_object, 0, 0, file, line); 413 } 414 415 /* 416 * This function represents the so-called 'hard case' for sx_xlock 417 * operation. All 'easy case' failures are redirected to this. Note 418 * that ideally this would be a static function, but it needs to be 419 * accessible from at least sx.h. 420 */ 421 int 422 _sx_xlock_hard(struct sx *sx, uintptr_t tid, int opts, const char *file, 423 int line) 424 { 425 GIANT_DECLARE; 426 #ifdef ADAPTIVE_SX 427 volatile struct thread *owner; 428 #endif 429 uint64_t waittime = 0; 430 uintptr_t x; 431 int contested = 0, error = 0; 432 433 /* If we already hold an exclusive lock, then recurse. */ 434 if (sx_xlocked(sx)) { 435 KASSERT((sx->lock_object.lo_flags & SX_RECURSE) != 0, 436 ("_sx_xlock_hard: recursed on non-recursive sx %s @ %s:%d\n", 437 sx->lock_object.lo_name, file, line)); 438 sx->sx_recurse++; 439 atomic_set_ptr(&sx->sx_lock, SX_LOCK_RECURSED); 440 if (LOCK_LOG_TEST(&sx->lock_object, 0)) 441 CTR2(KTR_LOCK, "%s: %p recursing", __func__, sx); 442 return (0); 443 } 444 445 if (LOCK_LOG_TEST(&sx->lock_object, 0)) 446 CTR5(KTR_LOCK, "%s: %s contested (lock=%p) at %s:%d", __func__, 447 sx->lock_object.lo_name, (void *)sx->sx_lock, file, line); 448 449 while (!atomic_cmpset_acq_ptr(&sx->sx_lock, SX_LOCK_UNLOCKED, tid)) { 450 lock_profile_obtain_lock_failed(&sx->lock_object, &contested, 451 &waittime); 452 #ifdef ADAPTIVE_SX 453 /* 454 * If the lock is write locked and the owner is 455 * running on another CPU, spin until the owner stops 456 * running or the state of the lock changes. 457 */ 458 x = sx->sx_lock; 459 if (!(x & SX_LOCK_SHARED) && 460 (sx->lock_object.lo_flags & SX_ADAPTIVESPIN)) { 461 x = SX_OWNER(x); 462 owner = (struct thread *)x; 463 if (TD_IS_RUNNING(owner)) { 464 if (LOCK_LOG_TEST(&sx->lock_object, 0)) 465 CTR3(KTR_LOCK, 466 "%s: spinning on %p held by %p", 467 __func__, sx, owner); 468 GIANT_SAVE(); 469 while (SX_OWNER(sx->sx_lock) == x && 470 TD_IS_RUNNING(owner)) 471 cpu_spinwait(); 472 continue; 473 } 474 } 475 #endif 476 477 sleepq_lock(&sx->lock_object); 478 x = sx->sx_lock; 479 480 /* 481 * If the lock was released while spinning on the 482 * sleep queue chain lock, try again. 483 */ 484 if (x == SX_LOCK_UNLOCKED) { 485 sleepq_release(&sx->lock_object); 486 continue; 487 } 488 489 #ifdef ADAPTIVE_SX 490 /* 491 * The current lock owner might have started executing 492 * on another CPU (or the lock could have changed 493 * owners) while we were waiting on the sleep queue 494 * chain lock. If so, drop the sleep queue lock and try 495 * again. 496 */ 497 if (!(x & SX_LOCK_SHARED) && 498 (sx->lock_object.lo_flags & SX_ADAPTIVESPIN)) { 499 owner = (struct thread *)SX_OWNER(x); 500 if (TD_IS_RUNNING(owner)) { 501 sleepq_release(&sx->lock_object); 502 continue; 503 } 504 } 505 #endif 506 507 /* 508 * If an exclusive lock was released with both shared 509 * and exclusive waiters and a shared waiter hasn't 510 * woken up and acquired the lock yet, sx_lock will be 511 * set to SX_LOCK_UNLOCKED | SX_LOCK_EXCLUSIVE_WAITERS. 512 * If we see that value, try to acquire it once. Note 513 * that we have to preserve SX_LOCK_EXCLUSIVE_WAITERS 514 * as there are other exclusive waiters still. If we 515 * fail, restart the loop. 516 */ 517 if (x == (SX_LOCK_UNLOCKED | SX_LOCK_EXCLUSIVE_WAITERS)) { 518 if (atomic_cmpset_acq_ptr(&sx->sx_lock, 519 SX_LOCK_UNLOCKED | SX_LOCK_EXCLUSIVE_WAITERS, 520 tid | SX_LOCK_EXCLUSIVE_WAITERS)) { 521 sleepq_release(&sx->lock_object); 522 CTR2(KTR_LOCK, "%s: %p claimed by new writer", 523 __func__, sx); 524 break; 525 } 526 sleepq_release(&sx->lock_object); 527 continue; 528 } 529 530 /* 531 * Try to set the SX_LOCK_EXCLUSIVE_WAITERS. If we fail, 532 * than loop back and retry. 533 */ 534 if (!(x & SX_LOCK_EXCLUSIVE_WAITERS)) { 535 if (!atomic_cmpset_ptr(&sx->sx_lock, x, 536 x | SX_LOCK_EXCLUSIVE_WAITERS)) { 537 sleepq_release(&sx->lock_object); 538 continue; 539 } 540 if (LOCK_LOG_TEST(&sx->lock_object, 0)) 541 CTR2(KTR_LOCK, "%s: %p set excl waiters flag", 542 __func__, sx); 543 } 544 545 /* 546 * Since we have been unable to acquire the exclusive 547 * lock and the exclusive waiters flag is set, we have 548 * to sleep. 549 */ 550 if (LOCK_LOG_TEST(&sx->lock_object, 0)) 551 CTR2(KTR_LOCK, "%s: %p blocking on sleep queue", 552 __func__, sx); 553 554 GIANT_SAVE(); 555 sleepq_add(&sx->lock_object, NULL, sx->lock_object.lo_name, 556 SLEEPQ_SX | ((opts & SX_INTERRUPTIBLE) ? 557 SLEEPQ_INTERRUPTIBLE : 0), SQ_EXCLUSIVE_QUEUE); 558 if (!(opts & SX_INTERRUPTIBLE)) 559 sleepq_wait(&sx->lock_object, 0); 560 else 561 error = sleepq_wait_sig(&sx->lock_object, 0); 562 563 if (error) { 564 if (LOCK_LOG_TEST(&sx->lock_object, 0)) 565 CTR2(KTR_LOCK, 566 "%s: interruptible sleep by %p suspended by signal", 567 __func__, sx); 568 break; 569 } 570 if (LOCK_LOG_TEST(&sx->lock_object, 0)) 571 CTR2(KTR_LOCK, "%s: %p resuming from sleep queue", 572 __func__, sx); 573 } 574 575 GIANT_RESTORE(); 576 if (!error) 577 lock_profile_obtain_lock_success(&sx->lock_object, contested, 578 waittime, file, line); 579 return (error); 580 } 581 582 /* 583 * This function represents the so-called 'hard case' for sx_xunlock 584 * operation. All 'easy case' failures are redirected to this. Note 585 * that ideally this would be a static function, but it needs to be 586 * accessible from at least sx.h. 587 */ 588 void 589 _sx_xunlock_hard(struct sx *sx, uintptr_t tid, const char *file, int line) 590 { 591 uintptr_t x; 592 int queue; 593 594 MPASS(!(sx->sx_lock & SX_LOCK_SHARED)); 595 596 /* If the lock is recursed, then unrecurse one level. */ 597 if (sx_xlocked(sx) && sx_recursed(sx)) { 598 if ((--sx->sx_recurse) == 0) 599 atomic_clear_ptr(&sx->sx_lock, SX_LOCK_RECURSED); 600 if (LOCK_LOG_TEST(&sx->lock_object, 0)) 601 CTR2(KTR_LOCK, "%s: %p unrecursing", __func__, sx); 602 return; 603 } 604 MPASS(sx->sx_lock & (SX_LOCK_SHARED_WAITERS | 605 SX_LOCK_EXCLUSIVE_WAITERS)); 606 if (LOCK_LOG_TEST(&sx->lock_object, 0)) 607 CTR2(KTR_LOCK, "%s: %p contested", __func__, sx); 608 609 sleepq_lock(&sx->lock_object); 610 x = SX_LOCK_UNLOCKED; 611 612 /* 613 * The wake up algorithm here is quite simple and probably not 614 * ideal. It gives precedence to shared waiters if they are 615 * present. For this condition, we have to preserve the 616 * state of the exclusive waiters flag. 617 */ 618 if (sx->sx_lock & SX_LOCK_SHARED_WAITERS) { 619 queue = SQ_SHARED_QUEUE; 620 x |= (sx->sx_lock & SX_LOCK_EXCLUSIVE_WAITERS); 621 } else 622 queue = SQ_EXCLUSIVE_QUEUE; 623 624 /* Wake up all the waiters for the specific queue. */ 625 if (LOCK_LOG_TEST(&sx->lock_object, 0)) 626 CTR3(KTR_LOCK, "%s: %p waking up all threads on %s queue", 627 __func__, sx, queue == SQ_SHARED_QUEUE ? "shared" : 628 "exclusive"); 629 atomic_store_rel_ptr(&sx->sx_lock, x); 630 sleepq_broadcast(&sx->lock_object, SLEEPQ_SX, 0, queue); 631 sleepq_release(&sx->lock_object); 632 } 633 634 /* 635 * This function represents the so-called 'hard case' for sx_slock 636 * operation. All 'easy case' failures are redirected to this. Note 637 * that ideally this would be a static function, but it needs to be 638 * accessible from at least sx.h. 639 */ 640 int 641 _sx_slock_hard(struct sx *sx, int opts, const char *file, int line) 642 { 643 GIANT_DECLARE; 644 #ifdef ADAPTIVE_SX 645 volatile struct thread *owner; 646 #endif 647 uint64_t waittime = 0; 648 int contested = 0; 649 uintptr_t x; 650 int error = 0; 651 652 /* 653 * As with rwlocks, we don't make any attempt to try to block 654 * shared locks once there is an exclusive waiter. 655 */ 656 for (;;) { 657 x = sx->sx_lock; 658 659 /* 660 * If no other thread has an exclusive lock then try to bump up 661 * the count of sharers. Since we have to preserve the state 662 * of SX_LOCK_EXCLUSIVE_WAITERS, if we fail to acquire the 663 * shared lock loop back and retry. 664 */ 665 if (x & SX_LOCK_SHARED) { 666 MPASS(!(x & SX_LOCK_SHARED_WAITERS)); 667 if (atomic_cmpset_acq_ptr(&sx->sx_lock, x, 668 x + SX_ONE_SHARER)) { 669 if (LOCK_LOG_TEST(&sx->lock_object, 0)) 670 CTR4(KTR_LOCK, 671 "%s: %p succeed %p -> %p", __func__, 672 sx, (void *)x, 673 (void *)(x + SX_ONE_SHARER)); 674 break; 675 } 676 continue; 677 } 678 lock_profile_obtain_lock_failed(&sx->lock_object, &contested, 679 &waittime); 680 681 #ifdef ADAPTIVE_SX 682 /* 683 * If the owner is running on another CPU, spin until 684 * the owner stops running or the state of the lock 685 * changes. 686 */ 687 if (sx->lock_object.lo_flags & SX_ADAPTIVESPIN) { 688 x = SX_OWNER(x); 689 owner = (struct thread *)x; 690 if (TD_IS_RUNNING(owner)) { 691 if (LOCK_LOG_TEST(&sx->lock_object, 0)) 692 CTR3(KTR_LOCK, 693 "%s: spinning on %p held by %p", 694 __func__, sx, owner); 695 GIANT_SAVE(); 696 while (SX_OWNER(sx->sx_lock) == x && 697 TD_IS_RUNNING(owner)) 698 cpu_spinwait(); 699 continue; 700 } 701 } 702 #endif 703 704 /* 705 * Some other thread already has an exclusive lock, so 706 * start the process of blocking. 707 */ 708 sleepq_lock(&sx->lock_object); 709 x = sx->sx_lock; 710 711 /* 712 * The lock could have been released while we spun. 713 * In this case loop back and retry. 714 */ 715 if (x & SX_LOCK_SHARED) { 716 sleepq_release(&sx->lock_object); 717 continue; 718 } 719 720 #ifdef ADAPTIVE_SX 721 /* 722 * If the owner is running on another CPU, spin until 723 * the owner stops running or the state of the lock 724 * changes. 725 */ 726 if (!(x & SX_LOCK_SHARED) && 727 (sx->lock_object.lo_flags & SX_ADAPTIVESPIN)) { 728 owner = (struct thread *)SX_OWNER(x); 729 if (TD_IS_RUNNING(owner)) { 730 sleepq_release(&sx->lock_object); 731 continue; 732 } 733 } 734 #endif 735 736 /* 737 * Try to set the SX_LOCK_SHARED_WAITERS flag. If we 738 * fail to set it drop the sleep queue lock and loop 739 * back. 740 */ 741 if (!(x & SX_LOCK_SHARED_WAITERS)) { 742 if (!atomic_cmpset_ptr(&sx->sx_lock, x, 743 x | SX_LOCK_SHARED_WAITERS)) { 744 sleepq_release(&sx->lock_object); 745 continue; 746 } 747 if (LOCK_LOG_TEST(&sx->lock_object, 0)) 748 CTR2(KTR_LOCK, "%s: %p set shared waiters flag", 749 __func__, sx); 750 } 751 752 /* 753 * Since we have been unable to acquire the shared lock, 754 * we have to sleep. 755 */ 756 if (LOCK_LOG_TEST(&sx->lock_object, 0)) 757 CTR2(KTR_LOCK, "%s: %p blocking on sleep queue", 758 __func__, sx); 759 760 GIANT_SAVE(); 761 sleepq_add(&sx->lock_object, NULL, sx->lock_object.lo_name, 762 SLEEPQ_SX | ((opts & SX_INTERRUPTIBLE) ? 763 SLEEPQ_INTERRUPTIBLE : 0), SQ_SHARED_QUEUE); 764 if (!(opts & SX_INTERRUPTIBLE)) 765 sleepq_wait(&sx->lock_object, 0); 766 else 767 error = sleepq_wait_sig(&sx->lock_object, 0); 768 769 if (error) { 770 if (LOCK_LOG_TEST(&sx->lock_object, 0)) 771 CTR2(KTR_LOCK, 772 "%s: interruptible sleep by %p suspended by signal", 773 __func__, sx); 774 break; 775 } 776 if (LOCK_LOG_TEST(&sx->lock_object, 0)) 777 CTR2(KTR_LOCK, "%s: %p resuming from sleep queue", 778 __func__, sx); 779 } 780 if (error == 0) 781 lock_profile_obtain_lock_success(&sx->lock_object, contested, 782 waittime, file, line); 783 784 GIANT_RESTORE(); 785 return (error); 786 } 787 788 /* 789 * This function represents the so-called 'hard case' for sx_sunlock 790 * operation. All 'easy case' failures are redirected to this. Note 791 * that ideally this would be a static function, but it needs to be 792 * accessible from at least sx.h. 793 */ 794 void 795 _sx_sunlock_hard(struct sx *sx, const char *file, int line) 796 { 797 uintptr_t x; 798 799 for (;;) { 800 x = sx->sx_lock; 801 802 /* 803 * We should never have sharers while at least one thread 804 * holds a shared lock. 805 */ 806 KASSERT(!(x & SX_LOCK_SHARED_WAITERS), 807 ("%s: waiting sharers", __func__)); 808 809 /* 810 * See if there is more than one shared lock held. If 811 * so, just drop one and return. 812 */ 813 if (SX_SHARERS(x) > 1) { 814 if (atomic_cmpset_ptr(&sx->sx_lock, x, 815 x - SX_ONE_SHARER)) { 816 if (LOCK_LOG_TEST(&sx->lock_object, 0)) 817 CTR4(KTR_LOCK, 818 "%s: %p succeeded %p -> %p", 819 __func__, sx, (void *)x, 820 (void *)(x - SX_ONE_SHARER)); 821 break; 822 } 823 continue; 824 } 825 826 /* 827 * If there aren't any waiters for an exclusive lock, 828 * then try to drop it quickly. 829 */ 830 if (!(x & SX_LOCK_EXCLUSIVE_WAITERS)) { 831 MPASS(x == SX_SHARERS_LOCK(1)); 832 if (atomic_cmpset_ptr(&sx->sx_lock, SX_SHARERS_LOCK(1), 833 SX_LOCK_UNLOCKED)) { 834 if (LOCK_LOG_TEST(&sx->lock_object, 0)) 835 CTR2(KTR_LOCK, "%s: %p last succeeded", 836 __func__, sx); 837 break; 838 } 839 continue; 840 } 841 842 /* 843 * At this point, there should just be one sharer with 844 * exclusive waiters. 845 */ 846 MPASS(x == (SX_SHARERS_LOCK(1) | SX_LOCK_EXCLUSIVE_WAITERS)); 847 848 sleepq_lock(&sx->lock_object); 849 850 /* 851 * Wake up semantic here is quite simple: 852 * Just wake up all the exclusive waiters. 853 * Note that the state of the lock could have changed, 854 * so if it fails loop back and retry. 855 */ 856 if (!atomic_cmpset_ptr(&sx->sx_lock, 857 SX_SHARERS_LOCK(1) | SX_LOCK_EXCLUSIVE_WAITERS, 858 SX_LOCK_UNLOCKED)) { 859 sleepq_release(&sx->lock_object); 860 continue; 861 } 862 if (LOCK_LOG_TEST(&sx->lock_object, 0)) 863 CTR2(KTR_LOCK, "%s: %p waking up all thread on" 864 "exclusive queue", __func__, sx); 865 sleepq_broadcast(&sx->lock_object, SLEEPQ_SX, 0, 866 SQ_EXCLUSIVE_QUEUE); 867 sleepq_release(&sx->lock_object); 868 break; 869 } 870 } 871 872 #ifdef INVARIANT_SUPPORT 873 #ifndef INVARIANTS 874 #undef _sx_assert 875 #endif 876 877 /* 878 * In the non-WITNESS case, sx_assert() can only detect that at least 879 * *some* thread owns an slock, but it cannot guarantee that *this* 880 * thread owns an slock. 881 */ 882 void 883 _sx_assert(struct sx *sx, int what, const char *file, int line) 884 { 885 #ifndef WITNESS 886 int slocked = 0; 887 #endif 888 889 if (panicstr != NULL) 890 return; 891 switch (what) { 892 case SA_SLOCKED: 893 case SA_SLOCKED | SA_NOTRECURSED: 894 case SA_SLOCKED | SA_RECURSED: 895 #ifndef WITNESS 896 slocked = 1; 897 /* FALLTHROUGH */ 898 #endif 899 case SA_LOCKED: 900 case SA_LOCKED | SA_NOTRECURSED: 901 case SA_LOCKED | SA_RECURSED: 902 #ifdef WITNESS 903 witness_assert(&sx->lock_object, what, file, line); 904 #else 905 /* 906 * If some other thread has an exclusive lock or we 907 * have one and are asserting a shared lock, fail. 908 * Also, if no one has a lock at all, fail. 909 */ 910 if (sx->sx_lock == SX_LOCK_UNLOCKED || 911 (!(sx->sx_lock & SX_LOCK_SHARED) && (slocked || 912 sx_xholder(sx) != curthread))) 913 panic("Lock %s not %slocked @ %s:%d\n", 914 sx->lock_object.lo_name, slocked ? "share " : "", 915 file, line); 916 917 if (!(sx->sx_lock & SX_LOCK_SHARED)) { 918 if (sx_recursed(sx)) { 919 if (what & SA_NOTRECURSED) 920 panic("Lock %s recursed @ %s:%d\n", 921 sx->lock_object.lo_name, file, 922 line); 923 } else if (what & SA_RECURSED) 924 panic("Lock %s not recursed @ %s:%d\n", 925 sx->lock_object.lo_name, file, line); 926 } 927 #endif 928 break; 929 case SA_XLOCKED: 930 case SA_XLOCKED | SA_NOTRECURSED: 931 case SA_XLOCKED | SA_RECURSED: 932 if (sx_xholder(sx) != curthread) 933 panic("Lock %s not exclusively locked @ %s:%d\n", 934 sx->lock_object.lo_name, file, line); 935 if (sx_recursed(sx)) { 936 if (what & SA_NOTRECURSED) 937 panic("Lock %s recursed @ %s:%d\n", 938 sx->lock_object.lo_name, file, line); 939 } else if (what & SA_RECURSED) 940 panic("Lock %s not recursed @ %s:%d\n", 941 sx->lock_object.lo_name, file, line); 942 break; 943 case SA_UNLOCKED: 944 #ifdef WITNESS 945 witness_assert(&sx->lock_object, what, file, line); 946 #else 947 /* 948 * If we hold an exclusve lock fail. We can't 949 * reliably check to see if we hold a shared lock or 950 * not. 951 */ 952 if (sx_xholder(sx) == curthread) 953 panic("Lock %s exclusively locked @ %s:%d\n", 954 sx->lock_object.lo_name, file, line); 955 #endif 956 break; 957 default: 958 panic("Unknown sx lock assertion: %d @ %s:%d", what, file, 959 line); 960 } 961 } 962 #endif /* INVARIANT_SUPPORT */ 963 964 #ifdef DDB 965 static void 966 db_show_sx(struct lock_object *lock) 967 { 968 struct thread *td; 969 struct sx *sx; 970 971 sx = (struct sx *)lock; 972 973 db_printf(" state: "); 974 if (sx->sx_lock == SX_LOCK_UNLOCKED) 975 db_printf("UNLOCKED\n"); 976 else if (sx->sx_lock == SX_LOCK_DESTROYED) { 977 db_printf("DESTROYED\n"); 978 return; 979 } else if (sx->sx_lock & SX_LOCK_SHARED) 980 db_printf("SLOCK: %ju\n", (uintmax_t)SX_SHARERS(sx->sx_lock)); 981 else { 982 td = sx_xholder(sx); 983 db_printf("XLOCK: %p (tid %d, pid %d, \"%s\")\n", td, 984 td->td_tid, td->td_proc->p_pid, td->td_name); 985 if (sx_recursed(sx)) 986 db_printf(" recursed: %d\n", sx->sx_recurse); 987 } 988 989 db_printf(" waiters: "); 990 switch(sx->sx_lock & 991 (SX_LOCK_SHARED_WAITERS | SX_LOCK_EXCLUSIVE_WAITERS)) { 992 case SX_LOCK_SHARED_WAITERS: 993 db_printf("shared\n"); 994 break; 995 case SX_LOCK_EXCLUSIVE_WAITERS: 996 db_printf("exclusive\n"); 997 break; 998 case SX_LOCK_SHARED_WAITERS | SX_LOCK_EXCLUSIVE_WAITERS: 999 db_printf("exclusive and shared\n"); 1000 break; 1001 default: 1002 db_printf("none\n"); 1003 } 1004 } 1005 1006 /* 1007 * Check to see if a thread that is blocked on a sleep queue is actually 1008 * blocked on an sx lock. If so, output some details and return true. 1009 * If the lock has an exclusive owner, return that in *ownerp. 1010 */ 1011 int 1012 sx_chain(struct thread *td, struct thread **ownerp) 1013 { 1014 struct sx *sx; 1015 1016 /* 1017 * Check to see if this thread is blocked on an sx lock. 1018 * First, we check the lock class. If that is ok, then we 1019 * compare the lock name against the wait message. 1020 */ 1021 sx = td->td_wchan; 1022 if (LOCK_CLASS(&sx->lock_object) != &lock_class_sx || 1023 sx->lock_object.lo_name != td->td_wmesg) 1024 return (0); 1025 1026 /* We think we have an sx lock, so output some details. */ 1027 db_printf("blocked on sx \"%s\" ", td->td_wmesg); 1028 *ownerp = sx_xholder(sx); 1029 if (sx->sx_lock & SX_LOCK_SHARED) 1030 db_printf("SLOCK (count %ju)\n", 1031 (uintmax_t)SX_SHARERS(sx->sx_lock)); 1032 else 1033 db_printf("XLOCK\n"); 1034 return (1); 1035 } 1036 #endif 1037