1 /*- 2 * Copyright (c) 2007 Attilio Rao <attilio@freebsd.org> 3 * Copyright (c) 2001 Jason Evans <jasone@freebsd.org> 4 * All rights reserved. 5 * 6 * Redistribution and use in source and binary forms, with or without 7 * modification, are permitted provided that the following conditions 8 * are met: 9 * 1. Redistributions of source code must retain the above copyright 10 * notice(s), this list of conditions and the following disclaimer as 11 * the first lines of this file unmodified other than the possible 12 * addition of one or more copyright notices. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice(s), this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER(S) ``AS IS'' AND ANY 18 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED 19 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE 20 * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) BE LIABLE FOR ANY 21 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES 22 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR 23 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER 24 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH 27 * DAMAGE. 28 */ 29 30 /* 31 * Shared/exclusive locks. This implementation attempts to ensure 32 * deterministic lock granting behavior, so that slocks and xlocks are 33 * interleaved. 34 * 35 * Priority propagation will not generally raise the priority of lock holders, 36 * so should not be relied upon in combination with sx locks. 37 */ 38 39 #include "opt_ddb.h" 40 #include "opt_hwpmc_hooks.h" 41 #include "opt_no_adaptive_sx.h" 42 43 #include <sys/cdefs.h> 44 __FBSDID("$FreeBSD$"); 45 46 #include <sys/param.h> 47 #include <sys/systm.h> 48 #include <sys/kdb.h> 49 #include <sys/ktr.h> 50 #include <sys/lock.h> 51 #include <sys/mutex.h> 52 #include <sys/proc.h> 53 #include <sys/sched.h> 54 #include <sys/sleepqueue.h> 55 #include <sys/sx.h> 56 #include <sys/sysctl.h> 57 58 #if defined(SMP) && !defined(NO_ADAPTIVE_SX) 59 #include <machine/cpu.h> 60 #endif 61 62 #ifdef DDB 63 #include <ddb/ddb.h> 64 #endif 65 66 #if defined(SMP) && !defined(NO_ADAPTIVE_SX) 67 #define ADAPTIVE_SX 68 #endif 69 70 CTASSERT((SX_NOADAPTIVE & LO_CLASSFLAGS) == SX_NOADAPTIVE); 71 72 #ifdef HWPMC_HOOKS 73 #include <sys/pmckern.h> 74 PMC_SOFT_DECLARE( , , lock, failed); 75 #endif 76 77 /* Handy macros for sleep queues. */ 78 #define SQ_EXCLUSIVE_QUEUE 0 79 #define SQ_SHARED_QUEUE 1 80 81 /* 82 * Variations on DROP_GIANT()/PICKUP_GIANT() for use in this file. We 83 * drop Giant anytime we have to sleep or if we adaptively spin. 84 */ 85 #define GIANT_DECLARE \ 86 int _giantcnt = 0; \ 87 WITNESS_SAVE_DECL(Giant) \ 88 89 #define GIANT_SAVE() do { \ 90 if (mtx_owned(&Giant)) { \ 91 WITNESS_SAVE(&Giant.lock_object, Giant); \ 92 while (mtx_owned(&Giant)) { \ 93 _giantcnt++; \ 94 mtx_unlock(&Giant); \ 95 } \ 96 } \ 97 } while (0) 98 99 #define GIANT_RESTORE() do { \ 100 if (_giantcnt > 0) { \ 101 mtx_assert(&Giant, MA_NOTOWNED); \ 102 while (_giantcnt--) \ 103 mtx_lock(&Giant); \ 104 WITNESS_RESTORE(&Giant.lock_object, Giant); \ 105 } \ 106 } while (0) 107 108 /* 109 * Returns true if an exclusive lock is recursed. It assumes 110 * curthread currently has an exclusive lock. 111 */ 112 #define sx_recursed(sx) ((sx)->sx_recurse != 0) 113 114 static void assert_sx(const struct lock_object *lock, int what); 115 #ifdef DDB 116 static void db_show_sx(const struct lock_object *lock); 117 #endif 118 static void lock_sx(struct lock_object *lock, uintptr_t how); 119 #ifdef KDTRACE_HOOKS 120 static int owner_sx(const struct lock_object *lock, struct thread **owner); 121 #endif 122 static uintptr_t unlock_sx(struct lock_object *lock); 123 124 struct lock_class lock_class_sx = { 125 .lc_name = "sx", 126 .lc_flags = LC_SLEEPLOCK | LC_SLEEPABLE | LC_RECURSABLE | LC_UPGRADABLE, 127 .lc_assert = assert_sx, 128 #ifdef DDB 129 .lc_ddb_show = db_show_sx, 130 #endif 131 .lc_lock = lock_sx, 132 .lc_unlock = unlock_sx, 133 #ifdef KDTRACE_HOOKS 134 .lc_owner = owner_sx, 135 #endif 136 }; 137 138 #ifndef INVARIANTS 139 #define _sx_assert(sx, what, file, line) 140 #endif 141 142 #ifdef ADAPTIVE_SX 143 static u_int asx_retries = 10; 144 static u_int asx_loops = 10000; 145 static SYSCTL_NODE(_debug, OID_AUTO, sx, CTLFLAG_RD, NULL, "sxlock debugging"); 146 SYSCTL_UINT(_debug_sx, OID_AUTO, retries, CTLFLAG_RW, &asx_retries, 0, ""); 147 SYSCTL_UINT(_debug_sx, OID_AUTO, loops, CTLFLAG_RW, &asx_loops, 0, ""); 148 #endif 149 150 void 151 assert_sx(const struct lock_object *lock, int what) 152 { 153 154 sx_assert((const struct sx *)lock, what); 155 } 156 157 void 158 lock_sx(struct lock_object *lock, uintptr_t how) 159 { 160 struct sx *sx; 161 162 sx = (struct sx *)lock; 163 if (how) 164 sx_slock(sx); 165 else 166 sx_xlock(sx); 167 } 168 169 uintptr_t 170 unlock_sx(struct lock_object *lock) 171 { 172 struct sx *sx; 173 174 sx = (struct sx *)lock; 175 sx_assert(sx, SA_LOCKED | SA_NOTRECURSED); 176 if (sx_xlocked(sx)) { 177 sx_xunlock(sx); 178 return (0); 179 } else { 180 sx_sunlock(sx); 181 return (1); 182 } 183 } 184 185 #ifdef KDTRACE_HOOKS 186 int 187 owner_sx(const struct lock_object *lock, struct thread **owner) 188 { 189 const struct sx *sx = (const struct sx *)lock; 190 uintptr_t x = sx->sx_lock; 191 192 *owner = (struct thread *)SX_OWNER(x); 193 return ((x & SX_LOCK_SHARED) != 0 ? (SX_SHARERS(x) != 0) : 194 (*owner != NULL)); 195 } 196 #endif 197 198 void 199 sx_sysinit(void *arg) 200 { 201 struct sx_args *sargs = arg; 202 203 sx_init_flags(sargs->sa_sx, sargs->sa_desc, sargs->sa_flags); 204 } 205 206 void 207 sx_init_flags(struct sx *sx, const char *description, int opts) 208 { 209 int flags; 210 211 MPASS((opts & ~(SX_QUIET | SX_RECURSE | SX_NOWITNESS | SX_DUPOK | 212 SX_NOPROFILE | SX_NOADAPTIVE)) == 0); 213 ASSERT_ATOMIC_LOAD_PTR(sx->sx_lock, 214 ("%s: sx_lock not aligned for %s: %p", __func__, description, 215 &sx->sx_lock)); 216 217 flags = LO_SLEEPABLE | LO_UPGRADABLE; 218 if (opts & SX_DUPOK) 219 flags |= LO_DUPOK; 220 if (opts & SX_NOPROFILE) 221 flags |= LO_NOPROFILE; 222 if (!(opts & SX_NOWITNESS)) 223 flags |= LO_WITNESS; 224 if (opts & SX_RECURSE) 225 flags |= LO_RECURSABLE; 226 if (opts & SX_QUIET) 227 flags |= LO_QUIET; 228 229 flags |= opts & SX_NOADAPTIVE; 230 lock_init(&sx->lock_object, &lock_class_sx, description, NULL, flags); 231 sx->sx_lock = SX_LOCK_UNLOCKED; 232 sx->sx_recurse = 0; 233 } 234 235 void 236 sx_destroy(struct sx *sx) 237 { 238 239 KASSERT(sx->sx_lock == SX_LOCK_UNLOCKED, ("sx lock still held")); 240 KASSERT(sx->sx_recurse == 0, ("sx lock still recursed")); 241 sx->sx_lock = SX_LOCK_DESTROYED; 242 lock_destroy(&sx->lock_object); 243 } 244 245 int 246 _sx_slock(struct sx *sx, int opts, const char *file, int line) 247 { 248 int error = 0; 249 250 if (SCHEDULER_STOPPED()) 251 return (0); 252 KASSERT(kdb_active != 0 || !TD_IS_IDLETHREAD(curthread), 253 ("sx_slock() by idle thread %p on sx %s @ %s:%d", 254 curthread, sx->lock_object.lo_name, file, line)); 255 KASSERT(sx->sx_lock != SX_LOCK_DESTROYED, 256 ("sx_slock() of destroyed sx @ %s:%d", file, line)); 257 WITNESS_CHECKORDER(&sx->lock_object, LOP_NEWORDER, file, line, NULL); 258 error = __sx_slock(sx, opts, file, line); 259 if (!error) { 260 LOCK_LOG_LOCK("SLOCK", &sx->lock_object, 0, 0, file, line); 261 WITNESS_LOCK(&sx->lock_object, 0, file, line); 262 curthread->td_locks++; 263 } 264 265 return (error); 266 } 267 268 int 269 sx_try_slock_(struct sx *sx, const char *file, int line) 270 { 271 uintptr_t x; 272 273 if (SCHEDULER_STOPPED()) 274 return (1); 275 276 KASSERT(kdb_active != 0 || !TD_IS_IDLETHREAD(curthread), 277 ("sx_try_slock() by idle thread %p on sx %s @ %s:%d", 278 curthread, sx->lock_object.lo_name, file, line)); 279 280 for (;;) { 281 x = sx->sx_lock; 282 KASSERT(x != SX_LOCK_DESTROYED, 283 ("sx_try_slock() of destroyed sx @ %s:%d", file, line)); 284 if (!(x & SX_LOCK_SHARED)) 285 break; 286 if (atomic_cmpset_acq_ptr(&sx->sx_lock, x, x + SX_ONE_SHARER)) { 287 LOCK_LOG_TRY("SLOCK", &sx->lock_object, 0, 1, file, line); 288 WITNESS_LOCK(&sx->lock_object, LOP_TRYLOCK, file, line); 289 curthread->td_locks++; 290 return (1); 291 } 292 } 293 294 LOCK_LOG_TRY("SLOCK", &sx->lock_object, 0, 0, file, line); 295 return (0); 296 } 297 298 int 299 _sx_xlock(struct sx *sx, int opts, const char *file, int line) 300 { 301 int error = 0; 302 303 if (SCHEDULER_STOPPED()) 304 return (0); 305 KASSERT(kdb_active != 0 || !TD_IS_IDLETHREAD(curthread), 306 ("sx_xlock() by idle thread %p on sx %s @ %s:%d", 307 curthread, sx->lock_object.lo_name, file, line)); 308 KASSERT(sx->sx_lock != SX_LOCK_DESTROYED, 309 ("sx_xlock() of destroyed sx @ %s:%d", file, line)); 310 WITNESS_CHECKORDER(&sx->lock_object, LOP_NEWORDER | LOP_EXCLUSIVE, file, 311 line, NULL); 312 error = __sx_xlock(sx, curthread, opts, file, line); 313 if (!error) { 314 LOCK_LOG_LOCK("XLOCK", &sx->lock_object, 0, sx->sx_recurse, 315 file, line); 316 WITNESS_LOCK(&sx->lock_object, LOP_EXCLUSIVE, file, line); 317 curthread->td_locks++; 318 } 319 320 return (error); 321 } 322 323 int 324 sx_try_xlock_(struct sx *sx, const char *file, int line) 325 { 326 int rval; 327 328 if (SCHEDULER_STOPPED()) 329 return (1); 330 331 KASSERT(kdb_active != 0 || !TD_IS_IDLETHREAD(curthread), 332 ("sx_try_xlock() by idle thread %p on sx %s @ %s:%d", 333 curthread, sx->lock_object.lo_name, file, line)); 334 KASSERT(sx->sx_lock != SX_LOCK_DESTROYED, 335 ("sx_try_xlock() of destroyed sx @ %s:%d", file, line)); 336 337 if (sx_xlocked(sx) && 338 (sx->lock_object.lo_flags & LO_RECURSABLE) != 0) { 339 sx->sx_recurse++; 340 atomic_set_ptr(&sx->sx_lock, SX_LOCK_RECURSED); 341 rval = 1; 342 } else 343 rval = atomic_cmpset_acq_ptr(&sx->sx_lock, SX_LOCK_UNLOCKED, 344 (uintptr_t)curthread); 345 LOCK_LOG_TRY("XLOCK", &sx->lock_object, 0, rval, file, line); 346 if (rval) { 347 WITNESS_LOCK(&sx->lock_object, LOP_EXCLUSIVE | LOP_TRYLOCK, 348 file, line); 349 curthread->td_locks++; 350 } 351 352 return (rval); 353 } 354 355 void 356 _sx_sunlock(struct sx *sx, const char *file, int line) 357 { 358 359 if (SCHEDULER_STOPPED()) 360 return; 361 KASSERT(sx->sx_lock != SX_LOCK_DESTROYED, 362 ("sx_sunlock() of destroyed sx @ %s:%d", file, line)); 363 _sx_assert(sx, SA_SLOCKED, file, line); 364 WITNESS_UNLOCK(&sx->lock_object, 0, file, line); 365 LOCK_LOG_LOCK("SUNLOCK", &sx->lock_object, 0, 0, file, line); 366 __sx_sunlock(sx, file, line); 367 curthread->td_locks--; 368 } 369 370 void 371 _sx_xunlock(struct sx *sx, const char *file, int line) 372 { 373 374 if (SCHEDULER_STOPPED()) 375 return; 376 KASSERT(sx->sx_lock != SX_LOCK_DESTROYED, 377 ("sx_xunlock() of destroyed sx @ %s:%d", file, line)); 378 _sx_assert(sx, SA_XLOCKED, file, line); 379 WITNESS_UNLOCK(&sx->lock_object, LOP_EXCLUSIVE, file, line); 380 LOCK_LOG_LOCK("XUNLOCK", &sx->lock_object, 0, sx->sx_recurse, file, 381 line); 382 __sx_xunlock(sx, curthread, file, line); 383 curthread->td_locks--; 384 } 385 386 /* 387 * Try to do a non-blocking upgrade from a shared lock to an exclusive lock. 388 * This will only succeed if this thread holds a single shared lock. 389 * Return 1 if if the upgrade succeed, 0 otherwise. 390 */ 391 int 392 sx_try_upgrade_(struct sx *sx, const char *file, int line) 393 { 394 uintptr_t x; 395 int success; 396 397 if (SCHEDULER_STOPPED()) 398 return (1); 399 400 KASSERT(sx->sx_lock != SX_LOCK_DESTROYED, 401 ("sx_try_upgrade() of destroyed sx @ %s:%d", file, line)); 402 _sx_assert(sx, SA_SLOCKED, file, line); 403 404 /* 405 * Try to switch from one shared lock to an exclusive lock. We need 406 * to maintain the SX_LOCK_EXCLUSIVE_WAITERS flag if set so that 407 * we will wake up the exclusive waiters when we drop the lock. 408 */ 409 x = sx->sx_lock & SX_LOCK_EXCLUSIVE_WAITERS; 410 success = atomic_cmpset_ptr(&sx->sx_lock, SX_SHARERS_LOCK(1) | x, 411 (uintptr_t)curthread | x); 412 LOCK_LOG_TRY("XUPGRADE", &sx->lock_object, 0, success, file, line); 413 if (success) { 414 WITNESS_UPGRADE(&sx->lock_object, LOP_EXCLUSIVE | LOP_TRYLOCK, 415 file, line); 416 LOCKSTAT_RECORD0(LS_SX_TRYUPGRADE_UPGRADE, sx); 417 } 418 return (success); 419 } 420 421 /* 422 * Downgrade an unrecursed exclusive lock into a single shared lock. 423 */ 424 void 425 sx_downgrade_(struct sx *sx, const char *file, int line) 426 { 427 uintptr_t x; 428 int wakeup_swapper; 429 430 if (SCHEDULER_STOPPED()) 431 return; 432 433 KASSERT(sx->sx_lock != SX_LOCK_DESTROYED, 434 ("sx_downgrade() of destroyed sx @ %s:%d", file, line)); 435 _sx_assert(sx, SA_XLOCKED | SA_NOTRECURSED, file, line); 436 #ifndef INVARIANTS 437 if (sx_recursed(sx)) 438 panic("downgrade of a recursed lock"); 439 #endif 440 441 WITNESS_DOWNGRADE(&sx->lock_object, 0, file, line); 442 443 /* 444 * Try to switch from an exclusive lock with no shared waiters 445 * to one sharer with no shared waiters. If there are 446 * exclusive waiters, we don't need to lock the sleep queue so 447 * long as we preserve the flag. We do one quick try and if 448 * that fails we grab the sleepq lock to keep the flags from 449 * changing and do it the slow way. 450 * 451 * We have to lock the sleep queue if there are shared waiters 452 * so we can wake them up. 453 */ 454 x = sx->sx_lock; 455 if (!(x & SX_LOCK_SHARED_WAITERS) && 456 atomic_cmpset_rel_ptr(&sx->sx_lock, x, SX_SHARERS_LOCK(1) | 457 (x & SX_LOCK_EXCLUSIVE_WAITERS))) { 458 LOCK_LOG_LOCK("XDOWNGRADE", &sx->lock_object, 0, 0, file, line); 459 return; 460 } 461 462 /* 463 * Lock the sleep queue so we can read the waiters bits 464 * without any races and wakeup any shared waiters. 465 */ 466 sleepq_lock(&sx->lock_object); 467 468 /* 469 * Preserve SX_LOCK_EXCLUSIVE_WAITERS while downgraded to a single 470 * shared lock. If there are any shared waiters, wake them up. 471 */ 472 wakeup_swapper = 0; 473 x = sx->sx_lock; 474 atomic_store_rel_ptr(&sx->sx_lock, SX_SHARERS_LOCK(1) | 475 (x & SX_LOCK_EXCLUSIVE_WAITERS)); 476 if (x & SX_LOCK_SHARED_WAITERS) 477 wakeup_swapper = sleepq_broadcast(&sx->lock_object, SLEEPQ_SX, 478 0, SQ_SHARED_QUEUE); 479 sleepq_release(&sx->lock_object); 480 481 LOCK_LOG_LOCK("XDOWNGRADE", &sx->lock_object, 0, 0, file, line); 482 LOCKSTAT_RECORD0(LS_SX_DOWNGRADE_DOWNGRADE, sx); 483 484 if (wakeup_swapper) 485 kick_proc0(); 486 } 487 488 /* 489 * This function represents the so-called 'hard case' for sx_xlock 490 * operation. All 'easy case' failures are redirected to this. Note 491 * that ideally this would be a static function, but it needs to be 492 * accessible from at least sx.h. 493 */ 494 int 495 _sx_xlock_hard(struct sx *sx, uintptr_t tid, int opts, const char *file, 496 int line) 497 { 498 GIANT_DECLARE; 499 #ifdef ADAPTIVE_SX 500 volatile struct thread *owner; 501 u_int i, spintries = 0; 502 #endif 503 uintptr_t x; 504 #ifdef LOCK_PROFILING 505 uint64_t waittime = 0; 506 int contested = 0; 507 #endif 508 int error = 0; 509 #ifdef KDTRACE_HOOKS 510 uint64_t spin_cnt = 0; 511 uint64_t sleep_cnt = 0; 512 int64_t sleep_time = 0; 513 #endif 514 515 if (SCHEDULER_STOPPED()) 516 return (0); 517 518 /* If we already hold an exclusive lock, then recurse. */ 519 if (sx_xlocked(sx)) { 520 KASSERT((sx->lock_object.lo_flags & LO_RECURSABLE) != 0, 521 ("_sx_xlock_hard: recursed on non-recursive sx %s @ %s:%d\n", 522 sx->lock_object.lo_name, file, line)); 523 sx->sx_recurse++; 524 atomic_set_ptr(&sx->sx_lock, SX_LOCK_RECURSED); 525 if (LOCK_LOG_TEST(&sx->lock_object, 0)) 526 CTR2(KTR_LOCK, "%s: %p recursing", __func__, sx); 527 return (0); 528 } 529 530 if (LOCK_LOG_TEST(&sx->lock_object, 0)) 531 CTR5(KTR_LOCK, "%s: %s contested (lock=%p) at %s:%d", __func__, 532 sx->lock_object.lo_name, (void *)sx->sx_lock, file, line); 533 534 while (!atomic_cmpset_acq_ptr(&sx->sx_lock, SX_LOCK_UNLOCKED, tid)) { 535 #ifdef KDTRACE_HOOKS 536 spin_cnt++; 537 #endif 538 #ifdef HWPMC_HOOKS 539 PMC_SOFT_CALL( , , lock, failed); 540 #endif 541 lock_profile_obtain_lock_failed(&sx->lock_object, &contested, 542 &waittime); 543 #ifdef ADAPTIVE_SX 544 /* 545 * If the lock is write locked and the owner is 546 * running on another CPU, spin until the owner stops 547 * running or the state of the lock changes. 548 */ 549 x = sx->sx_lock; 550 if ((sx->lock_object.lo_flags & SX_NOADAPTIVE) == 0) { 551 if ((x & SX_LOCK_SHARED) == 0) { 552 x = SX_OWNER(x); 553 owner = (struct thread *)x; 554 if (TD_IS_RUNNING(owner)) { 555 if (LOCK_LOG_TEST(&sx->lock_object, 0)) 556 CTR3(KTR_LOCK, 557 "%s: spinning on %p held by %p", 558 __func__, sx, owner); 559 KTR_STATE1(KTR_SCHED, "thread", 560 sched_tdname(curthread), "spinning", 561 "lockname:\"%s\"", 562 sx->lock_object.lo_name); 563 GIANT_SAVE(); 564 while (SX_OWNER(sx->sx_lock) == x && 565 TD_IS_RUNNING(owner)) { 566 cpu_spinwait(); 567 #ifdef KDTRACE_HOOKS 568 spin_cnt++; 569 #endif 570 } 571 KTR_STATE0(KTR_SCHED, "thread", 572 sched_tdname(curthread), "running"); 573 continue; 574 } 575 } else if (SX_SHARERS(x) && spintries < asx_retries) { 576 KTR_STATE1(KTR_SCHED, "thread", 577 sched_tdname(curthread), "spinning", 578 "lockname:\"%s\"", sx->lock_object.lo_name); 579 GIANT_SAVE(); 580 spintries++; 581 for (i = 0; i < asx_loops; i++) { 582 if (LOCK_LOG_TEST(&sx->lock_object, 0)) 583 CTR4(KTR_LOCK, 584 "%s: shared spinning on %p with %u and %u", 585 __func__, sx, spintries, i); 586 x = sx->sx_lock; 587 if ((x & SX_LOCK_SHARED) == 0 || 588 SX_SHARERS(x) == 0) 589 break; 590 cpu_spinwait(); 591 #ifdef KDTRACE_HOOKS 592 spin_cnt++; 593 #endif 594 } 595 KTR_STATE0(KTR_SCHED, "thread", 596 sched_tdname(curthread), "running"); 597 if (i != asx_loops) 598 continue; 599 } 600 } 601 #endif 602 603 sleepq_lock(&sx->lock_object); 604 x = sx->sx_lock; 605 606 /* 607 * If the lock was released while spinning on the 608 * sleep queue chain lock, try again. 609 */ 610 if (x == SX_LOCK_UNLOCKED) { 611 sleepq_release(&sx->lock_object); 612 continue; 613 } 614 615 #ifdef ADAPTIVE_SX 616 /* 617 * The current lock owner might have started executing 618 * on another CPU (or the lock could have changed 619 * owners) while we were waiting on the sleep queue 620 * chain lock. If so, drop the sleep queue lock and try 621 * again. 622 */ 623 if (!(x & SX_LOCK_SHARED) && 624 (sx->lock_object.lo_flags & SX_NOADAPTIVE) == 0) { 625 owner = (struct thread *)SX_OWNER(x); 626 if (TD_IS_RUNNING(owner)) { 627 sleepq_release(&sx->lock_object); 628 continue; 629 } 630 } 631 #endif 632 633 /* 634 * If an exclusive lock was released with both shared 635 * and exclusive waiters and a shared waiter hasn't 636 * woken up and acquired the lock yet, sx_lock will be 637 * set to SX_LOCK_UNLOCKED | SX_LOCK_EXCLUSIVE_WAITERS. 638 * If we see that value, try to acquire it once. Note 639 * that we have to preserve SX_LOCK_EXCLUSIVE_WAITERS 640 * as there are other exclusive waiters still. If we 641 * fail, restart the loop. 642 */ 643 if (x == (SX_LOCK_UNLOCKED | SX_LOCK_EXCLUSIVE_WAITERS)) { 644 if (atomic_cmpset_acq_ptr(&sx->sx_lock, 645 SX_LOCK_UNLOCKED | SX_LOCK_EXCLUSIVE_WAITERS, 646 tid | SX_LOCK_EXCLUSIVE_WAITERS)) { 647 sleepq_release(&sx->lock_object); 648 CTR2(KTR_LOCK, "%s: %p claimed by new writer", 649 __func__, sx); 650 break; 651 } 652 sleepq_release(&sx->lock_object); 653 continue; 654 } 655 656 /* 657 * Try to set the SX_LOCK_EXCLUSIVE_WAITERS. If we fail, 658 * than loop back and retry. 659 */ 660 if (!(x & SX_LOCK_EXCLUSIVE_WAITERS)) { 661 if (!atomic_cmpset_ptr(&sx->sx_lock, x, 662 x | SX_LOCK_EXCLUSIVE_WAITERS)) { 663 sleepq_release(&sx->lock_object); 664 continue; 665 } 666 if (LOCK_LOG_TEST(&sx->lock_object, 0)) 667 CTR2(KTR_LOCK, "%s: %p set excl waiters flag", 668 __func__, sx); 669 } 670 671 /* 672 * Since we have been unable to acquire the exclusive 673 * lock and the exclusive waiters flag is set, we have 674 * to sleep. 675 */ 676 if (LOCK_LOG_TEST(&sx->lock_object, 0)) 677 CTR2(KTR_LOCK, "%s: %p blocking on sleep queue", 678 __func__, sx); 679 680 #ifdef KDTRACE_HOOKS 681 sleep_time -= lockstat_nsecs(); 682 #endif 683 GIANT_SAVE(); 684 sleepq_add(&sx->lock_object, NULL, sx->lock_object.lo_name, 685 SLEEPQ_SX | ((opts & SX_INTERRUPTIBLE) ? 686 SLEEPQ_INTERRUPTIBLE : 0), SQ_EXCLUSIVE_QUEUE); 687 if (!(opts & SX_INTERRUPTIBLE)) 688 sleepq_wait(&sx->lock_object, 0); 689 else 690 error = sleepq_wait_sig(&sx->lock_object, 0); 691 #ifdef KDTRACE_HOOKS 692 sleep_time += lockstat_nsecs(); 693 sleep_cnt++; 694 #endif 695 if (error) { 696 if (LOCK_LOG_TEST(&sx->lock_object, 0)) 697 CTR2(KTR_LOCK, 698 "%s: interruptible sleep by %p suspended by signal", 699 __func__, sx); 700 break; 701 } 702 if (LOCK_LOG_TEST(&sx->lock_object, 0)) 703 CTR2(KTR_LOCK, "%s: %p resuming from sleep queue", 704 __func__, sx); 705 } 706 707 GIANT_RESTORE(); 708 if (!error) 709 LOCKSTAT_PROFILE_OBTAIN_LOCK_SUCCESS(LS_SX_XLOCK_ACQUIRE, sx, 710 contested, waittime, file, line); 711 #ifdef KDTRACE_HOOKS 712 if (sleep_time) 713 LOCKSTAT_RECORD1(LS_SX_XLOCK_BLOCK, sx, sleep_time); 714 if (spin_cnt > sleep_cnt) 715 LOCKSTAT_RECORD1(LS_SX_XLOCK_SPIN, sx, (spin_cnt - sleep_cnt)); 716 #endif 717 return (error); 718 } 719 720 /* 721 * This function represents the so-called 'hard case' for sx_xunlock 722 * operation. All 'easy case' failures are redirected to this. Note 723 * that ideally this would be a static function, but it needs to be 724 * accessible from at least sx.h. 725 */ 726 void 727 _sx_xunlock_hard(struct sx *sx, uintptr_t tid, const char *file, int line) 728 { 729 uintptr_t x; 730 int queue, wakeup_swapper; 731 732 if (SCHEDULER_STOPPED()) 733 return; 734 735 MPASS(!(sx->sx_lock & SX_LOCK_SHARED)); 736 737 /* If the lock is recursed, then unrecurse one level. */ 738 if (sx_xlocked(sx) && sx_recursed(sx)) { 739 if ((--sx->sx_recurse) == 0) 740 atomic_clear_ptr(&sx->sx_lock, SX_LOCK_RECURSED); 741 if (LOCK_LOG_TEST(&sx->lock_object, 0)) 742 CTR2(KTR_LOCK, "%s: %p unrecursing", __func__, sx); 743 return; 744 } 745 MPASS(sx->sx_lock & (SX_LOCK_SHARED_WAITERS | 746 SX_LOCK_EXCLUSIVE_WAITERS)); 747 if (LOCK_LOG_TEST(&sx->lock_object, 0)) 748 CTR2(KTR_LOCK, "%s: %p contested", __func__, sx); 749 750 sleepq_lock(&sx->lock_object); 751 x = SX_LOCK_UNLOCKED; 752 753 /* 754 * The wake up algorithm here is quite simple and probably not 755 * ideal. It gives precedence to shared waiters if they are 756 * present. For this condition, we have to preserve the 757 * state of the exclusive waiters flag. 758 * If interruptible sleeps left the shared queue empty avoid a 759 * starvation for the threads sleeping on the exclusive queue by giving 760 * them precedence and cleaning up the shared waiters bit anyway. 761 */ 762 if ((sx->sx_lock & SX_LOCK_SHARED_WAITERS) != 0 && 763 sleepq_sleepcnt(&sx->lock_object, SQ_SHARED_QUEUE) != 0) { 764 queue = SQ_SHARED_QUEUE; 765 x |= (sx->sx_lock & SX_LOCK_EXCLUSIVE_WAITERS); 766 } else 767 queue = SQ_EXCLUSIVE_QUEUE; 768 769 /* Wake up all the waiters for the specific queue. */ 770 if (LOCK_LOG_TEST(&sx->lock_object, 0)) 771 CTR3(KTR_LOCK, "%s: %p waking up all threads on %s queue", 772 __func__, sx, queue == SQ_SHARED_QUEUE ? "shared" : 773 "exclusive"); 774 atomic_store_rel_ptr(&sx->sx_lock, x); 775 wakeup_swapper = sleepq_broadcast(&sx->lock_object, SLEEPQ_SX, 0, 776 queue); 777 sleepq_release(&sx->lock_object); 778 if (wakeup_swapper) 779 kick_proc0(); 780 } 781 782 /* 783 * This function represents the so-called 'hard case' for sx_slock 784 * operation. All 'easy case' failures are redirected to this. Note 785 * that ideally this would be a static function, but it needs to be 786 * accessible from at least sx.h. 787 */ 788 int 789 _sx_slock_hard(struct sx *sx, int opts, const char *file, int line) 790 { 791 GIANT_DECLARE; 792 #ifdef ADAPTIVE_SX 793 volatile struct thread *owner; 794 #endif 795 #ifdef LOCK_PROFILING 796 uint64_t waittime = 0; 797 int contested = 0; 798 #endif 799 uintptr_t x; 800 int error = 0; 801 #ifdef KDTRACE_HOOKS 802 uint64_t spin_cnt = 0; 803 uint64_t sleep_cnt = 0; 804 int64_t sleep_time = 0; 805 #endif 806 807 if (SCHEDULER_STOPPED()) 808 return (0); 809 810 /* 811 * As with rwlocks, we don't make any attempt to try to block 812 * shared locks once there is an exclusive waiter. 813 */ 814 for (;;) { 815 #ifdef KDTRACE_HOOKS 816 spin_cnt++; 817 #endif 818 x = sx->sx_lock; 819 820 /* 821 * If no other thread has an exclusive lock then try to bump up 822 * the count of sharers. Since we have to preserve the state 823 * of SX_LOCK_EXCLUSIVE_WAITERS, if we fail to acquire the 824 * shared lock loop back and retry. 825 */ 826 if (x & SX_LOCK_SHARED) { 827 MPASS(!(x & SX_LOCK_SHARED_WAITERS)); 828 if (atomic_cmpset_acq_ptr(&sx->sx_lock, x, 829 x + SX_ONE_SHARER)) { 830 if (LOCK_LOG_TEST(&sx->lock_object, 0)) 831 CTR4(KTR_LOCK, 832 "%s: %p succeed %p -> %p", __func__, 833 sx, (void *)x, 834 (void *)(x + SX_ONE_SHARER)); 835 break; 836 } 837 continue; 838 } 839 #ifdef HWPMC_HOOKS 840 PMC_SOFT_CALL( , , lock, failed); 841 #endif 842 lock_profile_obtain_lock_failed(&sx->lock_object, &contested, 843 &waittime); 844 845 #ifdef ADAPTIVE_SX 846 /* 847 * If the owner is running on another CPU, spin until 848 * the owner stops running or the state of the lock 849 * changes. 850 */ 851 if ((sx->lock_object.lo_flags & SX_NOADAPTIVE) == 0) { 852 x = SX_OWNER(x); 853 owner = (struct thread *)x; 854 if (TD_IS_RUNNING(owner)) { 855 if (LOCK_LOG_TEST(&sx->lock_object, 0)) 856 CTR3(KTR_LOCK, 857 "%s: spinning on %p held by %p", 858 __func__, sx, owner); 859 KTR_STATE1(KTR_SCHED, "thread", 860 sched_tdname(curthread), "spinning", 861 "lockname:\"%s\"", sx->lock_object.lo_name); 862 GIANT_SAVE(); 863 while (SX_OWNER(sx->sx_lock) == x && 864 TD_IS_RUNNING(owner)) { 865 #ifdef KDTRACE_HOOKS 866 spin_cnt++; 867 #endif 868 cpu_spinwait(); 869 } 870 KTR_STATE0(KTR_SCHED, "thread", 871 sched_tdname(curthread), "running"); 872 continue; 873 } 874 } 875 #endif 876 877 /* 878 * Some other thread already has an exclusive lock, so 879 * start the process of blocking. 880 */ 881 sleepq_lock(&sx->lock_object); 882 x = sx->sx_lock; 883 884 /* 885 * The lock could have been released while we spun. 886 * In this case loop back and retry. 887 */ 888 if (x & SX_LOCK_SHARED) { 889 sleepq_release(&sx->lock_object); 890 continue; 891 } 892 893 #ifdef ADAPTIVE_SX 894 /* 895 * If the owner is running on another CPU, spin until 896 * the owner stops running or the state of the lock 897 * changes. 898 */ 899 if (!(x & SX_LOCK_SHARED) && 900 (sx->lock_object.lo_flags & SX_NOADAPTIVE) == 0) { 901 owner = (struct thread *)SX_OWNER(x); 902 if (TD_IS_RUNNING(owner)) { 903 sleepq_release(&sx->lock_object); 904 continue; 905 } 906 } 907 #endif 908 909 /* 910 * Try to set the SX_LOCK_SHARED_WAITERS flag. If we 911 * fail to set it drop the sleep queue lock and loop 912 * back. 913 */ 914 if (!(x & SX_LOCK_SHARED_WAITERS)) { 915 if (!atomic_cmpset_ptr(&sx->sx_lock, x, 916 x | SX_LOCK_SHARED_WAITERS)) { 917 sleepq_release(&sx->lock_object); 918 continue; 919 } 920 if (LOCK_LOG_TEST(&sx->lock_object, 0)) 921 CTR2(KTR_LOCK, "%s: %p set shared waiters flag", 922 __func__, sx); 923 } 924 925 /* 926 * Since we have been unable to acquire the shared lock, 927 * we have to sleep. 928 */ 929 if (LOCK_LOG_TEST(&sx->lock_object, 0)) 930 CTR2(KTR_LOCK, "%s: %p blocking on sleep queue", 931 __func__, sx); 932 933 #ifdef KDTRACE_HOOKS 934 sleep_time -= lockstat_nsecs(); 935 #endif 936 GIANT_SAVE(); 937 sleepq_add(&sx->lock_object, NULL, sx->lock_object.lo_name, 938 SLEEPQ_SX | ((opts & SX_INTERRUPTIBLE) ? 939 SLEEPQ_INTERRUPTIBLE : 0), SQ_SHARED_QUEUE); 940 if (!(opts & SX_INTERRUPTIBLE)) 941 sleepq_wait(&sx->lock_object, 0); 942 else 943 error = sleepq_wait_sig(&sx->lock_object, 0); 944 #ifdef KDTRACE_HOOKS 945 sleep_time += lockstat_nsecs(); 946 sleep_cnt++; 947 #endif 948 if (error) { 949 if (LOCK_LOG_TEST(&sx->lock_object, 0)) 950 CTR2(KTR_LOCK, 951 "%s: interruptible sleep by %p suspended by signal", 952 __func__, sx); 953 break; 954 } 955 if (LOCK_LOG_TEST(&sx->lock_object, 0)) 956 CTR2(KTR_LOCK, "%s: %p resuming from sleep queue", 957 __func__, sx); 958 } 959 if (error == 0) 960 LOCKSTAT_PROFILE_OBTAIN_LOCK_SUCCESS(LS_SX_SLOCK_ACQUIRE, sx, 961 contested, waittime, file, line); 962 #ifdef KDTRACE_HOOKS 963 if (sleep_time) 964 LOCKSTAT_RECORD1(LS_SX_XLOCK_BLOCK, sx, sleep_time); 965 if (spin_cnt > sleep_cnt) 966 LOCKSTAT_RECORD1(LS_SX_XLOCK_SPIN, sx, (spin_cnt - sleep_cnt)); 967 #endif 968 GIANT_RESTORE(); 969 return (error); 970 } 971 972 /* 973 * This function represents the so-called 'hard case' for sx_sunlock 974 * operation. All 'easy case' failures are redirected to this. Note 975 * that ideally this would be a static function, but it needs to be 976 * accessible from at least sx.h. 977 */ 978 void 979 _sx_sunlock_hard(struct sx *sx, const char *file, int line) 980 { 981 uintptr_t x; 982 int wakeup_swapper; 983 984 if (SCHEDULER_STOPPED()) 985 return; 986 987 for (;;) { 988 x = sx->sx_lock; 989 990 /* 991 * We should never have sharers while at least one thread 992 * holds a shared lock. 993 */ 994 KASSERT(!(x & SX_LOCK_SHARED_WAITERS), 995 ("%s: waiting sharers", __func__)); 996 997 /* 998 * See if there is more than one shared lock held. If 999 * so, just drop one and return. 1000 */ 1001 if (SX_SHARERS(x) > 1) { 1002 if (atomic_cmpset_rel_ptr(&sx->sx_lock, x, 1003 x - SX_ONE_SHARER)) { 1004 if (LOCK_LOG_TEST(&sx->lock_object, 0)) 1005 CTR4(KTR_LOCK, 1006 "%s: %p succeeded %p -> %p", 1007 __func__, sx, (void *)x, 1008 (void *)(x - SX_ONE_SHARER)); 1009 break; 1010 } 1011 continue; 1012 } 1013 1014 /* 1015 * If there aren't any waiters for an exclusive lock, 1016 * then try to drop it quickly. 1017 */ 1018 if (!(x & SX_LOCK_EXCLUSIVE_WAITERS)) { 1019 MPASS(x == SX_SHARERS_LOCK(1)); 1020 if (atomic_cmpset_rel_ptr(&sx->sx_lock, 1021 SX_SHARERS_LOCK(1), SX_LOCK_UNLOCKED)) { 1022 if (LOCK_LOG_TEST(&sx->lock_object, 0)) 1023 CTR2(KTR_LOCK, "%s: %p last succeeded", 1024 __func__, sx); 1025 break; 1026 } 1027 continue; 1028 } 1029 1030 /* 1031 * At this point, there should just be one sharer with 1032 * exclusive waiters. 1033 */ 1034 MPASS(x == (SX_SHARERS_LOCK(1) | SX_LOCK_EXCLUSIVE_WAITERS)); 1035 1036 sleepq_lock(&sx->lock_object); 1037 1038 /* 1039 * Wake up semantic here is quite simple: 1040 * Just wake up all the exclusive waiters. 1041 * Note that the state of the lock could have changed, 1042 * so if it fails loop back and retry. 1043 */ 1044 if (!atomic_cmpset_rel_ptr(&sx->sx_lock, 1045 SX_SHARERS_LOCK(1) | SX_LOCK_EXCLUSIVE_WAITERS, 1046 SX_LOCK_UNLOCKED)) { 1047 sleepq_release(&sx->lock_object); 1048 continue; 1049 } 1050 if (LOCK_LOG_TEST(&sx->lock_object, 0)) 1051 CTR2(KTR_LOCK, "%s: %p waking up all thread on" 1052 "exclusive queue", __func__, sx); 1053 wakeup_swapper = sleepq_broadcast(&sx->lock_object, SLEEPQ_SX, 1054 0, SQ_EXCLUSIVE_QUEUE); 1055 sleepq_release(&sx->lock_object); 1056 if (wakeup_swapper) 1057 kick_proc0(); 1058 break; 1059 } 1060 } 1061 1062 #ifdef INVARIANT_SUPPORT 1063 #ifndef INVARIANTS 1064 #undef _sx_assert 1065 #endif 1066 1067 /* 1068 * In the non-WITNESS case, sx_assert() can only detect that at least 1069 * *some* thread owns an slock, but it cannot guarantee that *this* 1070 * thread owns an slock. 1071 */ 1072 void 1073 _sx_assert(const struct sx *sx, int what, const char *file, int line) 1074 { 1075 #ifndef WITNESS 1076 int slocked = 0; 1077 #endif 1078 1079 if (panicstr != NULL) 1080 return; 1081 switch (what) { 1082 case SA_SLOCKED: 1083 case SA_SLOCKED | SA_NOTRECURSED: 1084 case SA_SLOCKED | SA_RECURSED: 1085 #ifndef WITNESS 1086 slocked = 1; 1087 /* FALLTHROUGH */ 1088 #endif 1089 case SA_LOCKED: 1090 case SA_LOCKED | SA_NOTRECURSED: 1091 case SA_LOCKED | SA_RECURSED: 1092 #ifdef WITNESS 1093 witness_assert(&sx->lock_object, what, file, line); 1094 #else 1095 /* 1096 * If some other thread has an exclusive lock or we 1097 * have one and are asserting a shared lock, fail. 1098 * Also, if no one has a lock at all, fail. 1099 */ 1100 if (sx->sx_lock == SX_LOCK_UNLOCKED || 1101 (!(sx->sx_lock & SX_LOCK_SHARED) && (slocked || 1102 sx_xholder(sx) != curthread))) 1103 panic("Lock %s not %slocked @ %s:%d\n", 1104 sx->lock_object.lo_name, slocked ? "share " : "", 1105 file, line); 1106 1107 if (!(sx->sx_lock & SX_LOCK_SHARED)) { 1108 if (sx_recursed(sx)) { 1109 if (what & SA_NOTRECURSED) 1110 panic("Lock %s recursed @ %s:%d\n", 1111 sx->lock_object.lo_name, file, 1112 line); 1113 } else if (what & SA_RECURSED) 1114 panic("Lock %s not recursed @ %s:%d\n", 1115 sx->lock_object.lo_name, file, line); 1116 } 1117 #endif 1118 break; 1119 case SA_XLOCKED: 1120 case SA_XLOCKED | SA_NOTRECURSED: 1121 case SA_XLOCKED | SA_RECURSED: 1122 if (sx_xholder(sx) != curthread) 1123 panic("Lock %s not exclusively locked @ %s:%d\n", 1124 sx->lock_object.lo_name, file, line); 1125 if (sx_recursed(sx)) { 1126 if (what & SA_NOTRECURSED) 1127 panic("Lock %s recursed @ %s:%d\n", 1128 sx->lock_object.lo_name, file, line); 1129 } else if (what & SA_RECURSED) 1130 panic("Lock %s not recursed @ %s:%d\n", 1131 sx->lock_object.lo_name, file, line); 1132 break; 1133 case SA_UNLOCKED: 1134 #ifdef WITNESS 1135 witness_assert(&sx->lock_object, what, file, line); 1136 #else 1137 /* 1138 * If we hold an exclusve lock fail. We can't 1139 * reliably check to see if we hold a shared lock or 1140 * not. 1141 */ 1142 if (sx_xholder(sx) == curthread) 1143 panic("Lock %s exclusively locked @ %s:%d\n", 1144 sx->lock_object.lo_name, file, line); 1145 #endif 1146 break; 1147 default: 1148 panic("Unknown sx lock assertion: %d @ %s:%d", what, file, 1149 line); 1150 } 1151 } 1152 #endif /* INVARIANT_SUPPORT */ 1153 1154 #ifdef DDB 1155 static void 1156 db_show_sx(const struct lock_object *lock) 1157 { 1158 struct thread *td; 1159 const struct sx *sx; 1160 1161 sx = (const struct sx *)lock; 1162 1163 db_printf(" state: "); 1164 if (sx->sx_lock == SX_LOCK_UNLOCKED) 1165 db_printf("UNLOCKED\n"); 1166 else if (sx->sx_lock == SX_LOCK_DESTROYED) { 1167 db_printf("DESTROYED\n"); 1168 return; 1169 } else if (sx->sx_lock & SX_LOCK_SHARED) 1170 db_printf("SLOCK: %ju\n", (uintmax_t)SX_SHARERS(sx->sx_lock)); 1171 else { 1172 td = sx_xholder(sx); 1173 db_printf("XLOCK: %p (tid %d, pid %d, \"%s\")\n", td, 1174 td->td_tid, td->td_proc->p_pid, td->td_name); 1175 if (sx_recursed(sx)) 1176 db_printf(" recursed: %d\n", sx->sx_recurse); 1177 } 1178 1179 db_printf(" waiters: "); 1180 switch(sx->sx_lock & 1181 (SX_LOCK_SHARED_WAITERS | SX_LOCK_EXCLUSIVE_WAITERS)) { 1182 case SX_LOCK_SHARED_WAITERS: 1183 db_printf("shared\n"); 1184 break; 1185 case SX_LOCK_EXCLUSIVE_WAITERS: 1186 db_printf("exclusive\n"); 1187 break; 1188 case SX_LOCK_SHARED_WAITERS | SX_LOCK_EXCLUSIVE_WAITERS: 1189 db_printf("exclusive and shared\n"); 1190 break; 1191 default: 1192 db_printf("none\n"); 1193 } 1194 } 1195 1196 /* 1197 * Check to see if a thread that is blocked on a sleep queue is actually 1198 * blocked on an sx lock. If so, output some details and return true. 1199 * If the lock has an exclusive owner, return that in *ownerp. 1200 */ 1201 int 1202 sx_chain(struct thread *td, struct thread **ownerp) 1203 { 1204 struct sx *sx; 1205 1206 /* 1207 * Check to see if this thread is blocked on an sx lock. 1208 * First, we check the lock class. If that is ok, then we 1209 * compare the lock name against the wait message. 1210 */ 1211 sx = td->td_wchan; 1212 if (LOCK_CLASS(&sx->lock_object) != &lock_class_sx || 1213 sx->lock_object.lo_name != td->td_wmesg) 1214 return (0); 1215 1216 /* We think we have an sx lock, so output some details. */ 1217 db_printf("blocked on sx \"%s\" ", td->td_wmesg); 1218 *ownerp = sx_xholder(sx); 1219 if (sx->sx_lock & SX_LOCK_SHARED) 1220 db_printf("SLOCK (count %ju)\n", 1221 (uintmax_t)SX_SHARERS(sx->sx_lock)); 1222 else 1223 db_printf("XLOCK\n"); 1224 return (1); 1225 } 1226 #endif 1227