1 /*- 2 * Copyright (c) 2007 Attilio Rao <attilio@freebsd.org> 3 * Copyright (c) 2001 Jason Evans <jasone@freebsd.org> 4 * All rights reserved. 5 * 6 * Redistribution and use in source and binary forms, with or without 7 * modification, are permitted provided that the following conditions 8 * are met: 9 * 1. Redistributions of source code must retain the above copyright 10 * notice(s), this list of conditions and the following disclaimer as 11 * the first lines of this file unmodified other than the possible 12 * addition of one or more copyright notices. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice(s), this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER(S) ``AS IS'' AND ANY 18 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED 19 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE 20 * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) BE LIABLE FOR ANY 21 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES 22 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR 23 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER 24 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH 27 * DAMAGE. 28 */ 29 30 /* 31 * Shared/exclusive locks. This implementation attempts to ensure 32 * deterministic lock granting behavior, so that slocks and xlocks are 33 * interleaved. 34 * 35 * Priority propagation will not generally raise the priority of lock holders, 36 * so should not be relied upon in combination with sx locks. 37 */ 38 39 #include "opt_adaptive_sx.h" 40 #include "opt_ddb.h" 41 42 #include <sys/cdefs.h> 43 __FBSDID("$FreeBSD$"); 44 45 #include <sys/param.h> 46 #include <sys/ktr.h> 47 #include <sys/lock.h> 48 #include <sys/mutex.h> 49 #include <sys/proc.h> 50 #include <sys/sleepqueue.h> 51 #include <sys/sx.h> 52 #include <sys/systm.h> 53 54 #ifdef ADAPTIVE_SX 55 #include <machine/cpu.h> 56 #endif 57 58 #ifdef DDB 59 #include <ddb/ddb.h> 60 #endif 61 62 #if !defined(SMP) && defined(ADAPTIVE_SX) 63 #error "You must have SMP to enable the ADAPTIVE_SX option" 64 #endif 65 66 CTASSERT(((SX_ADAPTIVESPIN | SX_RECURSE) & LO_CLASSFLAGS) == 67 (SX_ADAPTIVESPIN | SX_RECURSE)); 68 69 /* Handy macros for sleep queues. */ 70 #define SQ_EXCLUSIVE_QUEUE 0 71 #define SQ_SHARED_QUEUE 1 72 73 /* 74 * Variations on DROP_GIANT()/PICKUP_GIANT() for use in this file. We 75 * drop Giant anytime we have to sleep or if we adaptively spin. 76 */ 77 #define GIANT_DECLARE \ 78 int _giantcnt = 0; \ 79 WITNESS_SAVE_DECL(Giant) \ 80 81 #define GIANT_SAVE() do { \ 82 if (mtx_owned(&Giant)) { \ 83 WITNESS_SAVE(&Giant.lock_object, Giant); \ 84 while (mtx_owned(&Giant)) { \ 85 _giantcnt++; \ 86 mtx_unlock(&Giant); \ 87 } \ 88 } \ 89 } while (0) 90 91 #define GIANT_RESTORE() do { \ 92 if (_giantcnt > 0) { \ 93 mtx_assert(&Giant, MA_NOTOWNED); \ 94 while (_giantcnt--) \ 95 mtx_lock(&Giant); \ 96 WITNESS_RESTORE(&Giant.lock_object, Giant); \ 97 } \ 98 } while (0) 99 100 /* 101 * Returns true if an exclusive lock is recursed. It assumes 102 * curthread currently has an exclusive lock. 103 */ 104 #define sx_recursed(sx) ((sx)->sx_recurse != 0) 105 106 #ifdef DDB 107 static void db_show_sx(struct lock_object *lock); 108 #endif 109 static void lock_sx(struct lock_object *lock, int how); 110 static int unlock_sx(struct lock_object *lock); 111 112 struct lock_class lock_class_sx = { 113 .lc_name = "sx", 114 .lc_flags = LC_SLEEPLOCK | LC_SLEEPABLE | LC_RECURSABLE | LC_UPGRADABLE, 115 #ifdef DDB 116 .lc_ddb_show = db_show_sx, 117 #endif 118 .lc_lock = lock_sx, 119 .lc_unlock = unlock_sx, 120 }; 121 122 #ifndef INVARIANTS 123 #define _sx_assert(sx, what, file, line) 124 #endif 125 126 void 127 lock_sx(struct lock_object *lock, int how) 128 { 129 struct sx *sx; 130 131 sx = (struct sx *)lock; 132 if (how) 133 sx_xlock(sx); 134 else 135 sx_slock(sx); 136 } 137 138 int 139 unlock_sx(struct lock_object *lock) 140 { 141 struct sx *sx; 142 143 sx = (struct sx *)lock; 144 sx_assert(sx, SA_LOCKED | SA_NOTRECURSED); 145 if (sx_xlocked(sx)) { 146 sx_xunlock(sx); 147 return (1); 148 } else { 149 sx_sunlock(sx); 150 return (0); 151 } 152 } 153 154 void 155 sx_sysinit(void *arg) 156 { 157 struct sx_args *sargs = arg; 158 159 sx_init(sargs->sa_sx, sargs->sa_desc); 160 } 161 162 void 163 sx_init_flags(struct sx *sx, const char *description, int opts) 164 { 165 int flags; 166 167 MPASS((opts & ~(SX_QUIET | SX_RECURSE | SX_NOWITNESS | SX_DUPOK | 168 SX_NOPROFILE | SX_ADAPTIVESPIN)) == 0); 169 170 flags = LO_RECURSABLE | LO_SLEEPABLE | LO_UPGRADABLE; 171 if (opts & SX_DUPOK) 172 flags |= LO_DUPOK; 173 if (opts & SX_NOPROFILE) 174 flags |= LO_NOPROFILE; 175 if (!(opts & SX_NOWITNESS)) 176 flags |= LO_WITNESS; 177 if (opts & SX_QUIET) 178 flags |= LO_QUIET; 179 180 flags |= opts & (SX_ADAPTIVESPIN | SX_RECURSE); 181 sx->sx_lock = SX_LOCK_UNLOCKED; 182 sx->sx_recurse = 0; 183 lock_init(&sx->lock_object, &lock_class_sx, description, NULL, flags); 184 } 185 186 void 187 sx_destroy(struct sx *sx) 188 { 189 190 KASSERT(sx->sx_lock == SX_LOCK_UNLOCKED, ("sx lock still held")); 191 KASSERT(sx->sx_recurse == 0, ("sx lock still recursed")); 192 sx->sx_lock = SX_LOCK_DESTROYED; 193 lock_destroy(&sx->lock_object); 194 } 195 196 int 197 _sx_slock(struct sx *sx, int opts, const char *file, int line) 198 { 199 int error = 0; 200 201 MPASS(curthread != NULL); 202 KASSERT(sx->sx_lock != SX_LOCK_DESTROYED, 203 ("sx_slock() of destroyed sx @ %s:%d", file, line)); 204 WITNESS_CHECKORDER(&sx->lock_object, LOP_NEWORDER, file, line); 205 error = __sx_slock(sx, opts, file, line); 206 if (!error) { 207 LOCK_LOG_LOCK("SLOCK", &sx->lock_object, 0, 0, file, line); 208 WITNESS_LOCK(&sx->lock_object, 0, file, line); 209 curthread->td_locks++; 210 } 211 212 return (error); 213 } 214 215 int 216 _sx_try_slock(struct sx *sx, const char *file, int line) 217 { 218 uintptr_t x; 219 220 x = sx->sx_lock; 221 KASSERT(x != SX_LOCK_DESTROYED, 222 ("sx_try_slock() of destroyed sx @ %s:%d", file, line)); 223 if ((x & SX_LOCK_SHARED) && atomic_cmpset_acq_ptr(&sx->sx_lock, x, 224 x + SX_ONE_SHARER)) { 225 LOCK_LOG_TRY("SLOCK", &sx->lock_object, 0, 1, file, line); 226 WITNESS_LOCK(&sx->lock_object, LOP_TRYLOCK, file, line); 227 curthread->td_locks++; 228 return (1); 229 } 230 231 LOCK_LOG_TRY("SLOCK", &sx->lock_object, 0, 0, file, line); 232 return (0); 233 } 234 235 int 236 _sx_xlock(struct sx *sx, int opts, const char *file, int line) 237 { 238 int error = 0; 239 240 MPASS(curthread != NULL); 241 KASSERT(sx->sx_lock != SX_LOCK_DESTROYED, 242 ("sx_xlock() of destroyed sx @ %s:%d", file, line)); 243 WITNESS_CHECKORDER(&sx->lock_object, LOP_NEWORDER | LOP_EXCLUSIVE, file, 244 line); 245 error = __sx_xlock(sx, curthread, opts, file, line); 246 if (!error) { 247 LOCK_LOG_LOCK("XLOCK", &sx->lock_object, 0, sx->sx_recurse, 248 file, line); 249 WITNESS_LOCK(&sx->lock_object, LOP_EXCLUSIVE, file, line); 250 curthread->td_locks++; 251 } 252 253 return (error); 254 } 255 256 int 257 _sx_try_xlock(struct sx *sx, const char *file, int line) 258 { 259 int rval; 260 261 MPASS(curthread != NULL); 262 KASSERT(sx->sx_lock != SX_LOCK_DESTROYED, 263 ("sx_try_xlock() of destroyed sx @ %s:%d", file, line)); 264 265 if (sx_xlocked(sx) && (sx->lock_object.lo_flags & SX_RECURSE) != 0) { 266 sx->sx_recurse++; 267 atomic_set_ptr(&sx->sx_lock, SX_LOCK_RECURSED); 268 rval = 1; 269 } else 270 rval = atomic_cmpset_acq_ptr(&sx->sx_lock, SX_LOCK_UNLOCKED, 271 (uintptr_t)curthread); 272 LOCK_LOG_TRY("XLOCK", &sx->lock_object, 0, rval, file, line); 273 if (rval) { 274 WITNESS_LOCK(&sx->lock_object, LOP_EXCLUSIVE | LOP_TRYLOCK, 275 file, line); 276 curthread->td_locks++; 277 } 278 279 return (rval); 280 } 281 282 void 283 _sx_sunlock(struct sx *sx, const char *file, int line) 284 { 285 286 MPASS(curthread != NULL); 287 KASSERT(sx->sx_lock != SX_LOCK_DESTROYED, 288 ("sx_sunlock() of destroyed sx @ %s:%d", file, line)); 289 _sx_assert(sx, SA_SLOCKED, file, line); 290 curthread->td_locks--; 291 WITNESS_UNLOCK(&sx->lock_object, 0, file, line); 292 LOCK_LOG_LOCK("SUNLOCK", &sx->lock_object, 0, 0, file, line); 293 #ifdef LOCK_PROFILING_SHARED 294 if (SX_SHARERS(sx->sx_lock) == 1) 295 lock_profile_release_lock(&sx->lock_object); 296 #endif 297 __sx_sunlock(sx, file, line); 298 } 299 300 void 301 _sx_xunlock(struct sx *sx, const char *file, int line) 302 { 303 304 MPASS(curthread != NULL); 305 KASSERT(sx->sx_lock != SX_LOCK_DESTROYED, 306 ("sx_xunlock() of destroyed sx @ %s:%d", file, line)); 307 _sx_assert(sx, SA_XLOCKED, file, line); 308 curthread->td_locks--; 309 WITNESS_UNLOCK(&sx->lock_object, LOP_EXCLUSIVE, file, line); 310 LOCK_LOG_LOCK("XUNLOCK", &sx->lock_object, 0, sx->sx_recurse, file, 311 line); 312 if (!sx_recursed(sx)) 313 lock_profile_release_lock(&sx->lock_object); 314 __sx_xunlock(sx, curthread, file, line); 315 } 316 317 /* 318 * Try to do a non-blocking upgrade from a shared lock to an exclusive lock. 319 * This will only succeed if this thread holds a single shared lock. 320 * Return 1 if if the upgrade succeed, 0 otherwise. 321 */ 322 int 323 _sx_try_upgrade(struct sx *sx, const char *file, int line) 324 { 325 uintptr_t x; 326 int success; 327 328 KASSERT(sx->sx_lock != SX_LOCK_DESTROYED, 329 ("sx_try_upgrade() of destroyed sx @ %s:%d", file, line)); 330 _sx_assert(sx, SA_SLOCKED, file, line); 331 332 /* 333 * Try to switch from one shared lock to an exclusive lock. We need 334 * to maintain the SX_LOCK_EXCLUSIVE_WAITERS flag if set so that 335 * we will wake up the exclusive waiters when we drop the lock. 336 */ 337 x = sx->sx_lock & SX_LOCK_EXCLUSIVE_WAITERS; 338 success = atomic_cmpset_ptr(&sx->sx_lock, SX_SHARERS_LOCK(1) | x, 339 (uintptr_t)curthread | x); 340 LOCK_LOG_TRY("XUPGRADE", &sx->lock_object, 0, success, file, line); 341 if (success) 342 WITNESS_UPGRADE(&sx->lock_object, LOP_EXCLUSIVE | LOP_TRYLOCK, 343 file, line); 344 return (success); 345 } 346 347 /* 348 * Downgrade an unrecursed exclusive lock into a single shared lock. 349 */ 350 void 351 _sx_downgrade(struct sx *sx, const char *file, int line) 352 { 353 uintptr_t x; 354 355 KASSERT(sx->sx_lock != SX_LOCK_DESTROYED, 356 ("sx_downgrade() of destroyed sx @ %s:%d", file, line)); 357 _sx_assert(sx, SA_XLOCKED | SA_NOTRECURSED, file, line); 358 #ifndef INVARIANTS 359 if (sx_recursed(sx)) 360 panic("downgrade of a recursed lock"); 361 #endif 362 363 WITNESS_DOWNGRADE(&sx->lock_object, 0, file, line); 364 365 /* 366 * Try to switch from an exclusive lock with no shared waiters 367 * to one sharer with no shared waiters. If there are 368 * exclusive waiters, we don't need to lock the sleep queue so 369 * long as we preserve the flag. We do one quick try and if 370 * that fails we grab the sleepq lock to keep the flags from 371 * changing and do it the slow way. 372 * 373 * We have to lock the sleep queue if there are shared waiters 374 * so we can wake them up. 375 */ 376 x = sx->sx_lock; 377 if (!(x & SX_LOCK_SHARED_WAITERS) && 378 atomic_cmpset_rel_ptr(&sx->sx_lock, x, SX_SHARERS_LOCK(1) | 379 (x & SX_LOCK_EXCLUSIVE_WAITERS))) { 380 LOCK_LOG_LOCK("XDOWNGRADE", &sx->lock_object, 0, 0, file, line); 381 return; 382 } 383 384 /* 385 * Lock the sleep queue so we can read the waiters bits 386 * without any races and wakeup any shared waiters. 387 */ 388 sleepq_lock(&sx->lock_object); 389 390 /* 391 * Preserve SX_LOCK_EXCLUSIVE_WAITERS while downgraded to a single 392 * shared lock. If there are any shared waiters, wake them up. 393 */ 394 x = sx->sx_lock; 395 atomic_store_rel_ptr(&sx->sx_lock, SX_SHARERS_LOCK(1) | 396 (x & SX_LOCK_EXCLUSIVE_WAITERS)); 397 if (x & SX_LOCK_SHARED_WAITERS) 398 sleepq_broadcast(&sx->lock_object, SLEEPQ_SX, -1, 399 SQ_SHARED_QUEUE); 400 else 401 sleepq_release(&sx->lock_object); 402 403 LOCK_LOG_LOCK("XDOWNGRADE", &sx->lock_object, 0, 0, file, line); 404 } 405 406 /* 407 * This function represents the so-called 'hard case' for sx_xlock 408 * operation. All 'easy case' failures are redirected to this. Note 409 * that ideally this would be a static function, but it needs to be 410 * accessible from at least sx.h. 411 */ 412 int 413 _sx_xlock_hard(struct sx *sx, uintptr_t tid, int opts, const char *file, 414 int line) 415 { 416 GIANT_DECLARE; 417 #ifdef ADAPTIVE_SX 418 volatile struct thread *owner; 419 #endif 420 uint64_t waittime = 0; 421 uintptr_t x; 422 int contested = 0, error = 0; 423 424 /* If we already hold an exclusive lock, then recurse. */ 425 if (sx_xlocked(sx)) { 426 KASSERT((sx->lock_object.lo_flags & SX_RECURSE) != 0, 427 ("_sx_xlock_hard: recursed on non-recursive sx %s @ %s:%d\n", 428 sx->lock_object.lo_name, file, line)); 429 sx->sx_recurse++; 430 atomic_set_ptr(&sx->sx_lock, SX_LOCK_RECURSED); 431 if (LOCK_LOG_TEST(&sx->lock_object, 0)) 432 CTR2(KTR_LOCK, "%s: %p recursing", __func__, sx); 433 return (0); 434 } 435 436 if (LOCK_LOG_TEST(&sx->lock_object, 0)) 437 CTR5(KTR_LOCK, "%s: %s contested (lock=%p) at %s:%d", __func__, 438 sx->lock_object.lo_name, (void *)sx->sx_lock, file, line); 439 440 while (!atomic_cmpset_acq_ptr(&sx->sx_lock, SX_LOCK_UNLOCKED, tid)) { 441 #ifdef ADAPTIVE_SX 442 /* 443 * If the lock is write locked and the owner is 444 * running on another CPU, spin until the owner stops 445 * running or the state of the lock changes. 446 */ 447 x = sx->sx_lock; 448 if (!(x & SX_LOCK_SHARED) && 449 (sx->lock_object.lo_flags & SX_ADAPTIVESPIN)) { 450 x = SX_OWNER(x); 451 owner = (struct thread *)x; 452 if (TD_IS_RUNNING(owner)) { 453 if (LOCK_LOG_TEST(&sx->lock_object, 0)) 454 CTR3(KTR_LOCK, 455 "%s: spinning on %p held by %p", 456 __func__, sx, owner); 457 GIANT_SAVE(); 458 lock_profile_obtain_lock_failed( 459 &sx->lock_object, &contested, &waittime); 460 while (SX_OWNER(sx->sx_lock) == x && 461 TD_IS_RUNNING(owner)) 462 cpu_spinwait(); 463 continue; 464 } 465 } 466 #endif 467 468 sleepq_lock(&sx->lock_object); 469 x = sx->sx_lock; 470 471 /* 472 * If the lock was released while spinning on the 473 * sleep queue chain lock, try again. 474 */ 475 if (x == SX_LOCK_UNLOCKED) { 476 sleepq_release(&sx->lock_object); 477 continue; 478 } 479 480 #ifdef ADAPTIVE_SX 481 /* 482 * The current lock owner might have started executing 483 * on another CPU (or the lock could have changed 484 * owners) while we were waiting on the sleep queue 485 * chain lock. If so, drop the sleep queue lock and try 486 * again. 487 */ 488 if (!(x & SX_LOCK_SHARED) && 489 (sx->lock_object.lo_flags & SX_ADAPTIVESPIN)) { 490 owner = (struct thread *)SX_OWNER(x); 491 if (TD_IS_RUNNING(owner)) { 492 sleepq_release(&sx->lock_object); 493 continue; 494 } 495 } 496 #endif 497 498 /* 499 * If an exclusive lock was released with both shared 500 * and exclusive waiters and a shared waiter hasn't 501 * woken up and acquired the lock yet, sx_lock will be 502 * set to SX_LOCK_UNLOCKED | SX_LOCK_EXCLUSIVE_WAITERS. 503 * If we see that value, try to acquire it once. Note 504 * that we have to preserve SX_LOCK_EXCLUSIVE_WAITERS 505 * as there are other exclusive waiters still. If we 506 * fail, restart the loop. 507 */ 508 if (x == (SX_LOCK_UNLOCKED | SX_LOCK_EXCLUSIVE_WAITERS)) { 509 if (atomic_cmpset_acq_ptr(&sx->sx_lock, 510 SX_LOCK_UNLOCKED | SX_LOCK_EXCLUSIVE_WAITERS, 511 tid | SX_LOCK_EXCLUSIVE_WAITERS)) { 512 sleepq_release(&sx->lock_object); 513 CTR2(KTR_LOCK, "%s: %p claimed by new writer", 514 __func__, sx); 515 break; 516 } 517 sleepq_release(&sx->lock_object); 518 continue; 519 } 520 521 /* 522 * Try to set the SX_LOCK_EXCLUSIVE_WAITERS. If we fail, 523 * than loop back and retry. 524 */ 525 if (!(x & SX_LOCK_EXCLUSIVE_WAITERS)) { 526 if (!atomic_cmpset_ptr(&sx->sx_lock, x, 527 x | SX_LOCK_EXCLUSIVE_WAITERS)) { 528 sleepq_release(&sx->lock_object); 529 continue; 530 } 531 if (LOCK_LOG_TEST(&sx->lock_object, 0)) 532 CTR2(KTR_LOCK, "%s: %p set excl waiters flag", 533 __func__, sx); 534 } 535 536 /* 537 * Since we have been unable to acquire the exclusive 538 * lock and the exclusive waiters flag is set, we have 539 * to sleep. 540 */ 541 if (LOCK_LOG_TEST(&sx->lock_object, 0)) 542 CTR2(KTR_LOCK, "%s: %p blocking on sleep queue", 543 __func__, sx); 544 545 GIANT_SAVE(); 546 lock_profile_obtain_lock_failed(&sx->lock_object, &contested, 547 &waittime); 548 sleepq_add(&sx->lock_object, NULL, sx->lock_object.lo_name, 549 SLEEPQ_SX | ((opts & SX_INTERRUPTIBLE) ? 550 SLEEPQ_INTERRUPTIBLE : 0), SQ_EXCLUSIVE_QUEUE); 551 if (!(opts & SX_INTERRUPTIBLE)) 552 sleepq_wait(&sx->lock_object); 553 else 554 error = sleepq_wait_sig(&sx->lock_object); 555 556 if (error) { 557 if (LOCK_LOG_TEST(&sx->lock_object, 0)) 558 CTR2(KTR_LOCK, 559 "%s: interruptible sleep by %p suspended by signal", 560 __func__, sx); 561 break; 562 } 563 if (LOCK_LOG_TEST(&sx->lock_object, 0)) 564 CTR2(KTR_LOCK, "%s: %p resuming from sleep queue", 565 __func__, sx); 566 } 567 568 GIANT_RESTORE(); 569 if (!error) 570 lock_profile_obtain_lock_success(&sx->lock_object, contested, 571 waittime, file, line); 572 return (error); 573 } 574 575 /* 576 * This function represents the so-called 'hard case' for sx_xunlock 577 * operation. All 'easy case' failures are redirected to this. Note 578 * that ideally this would be a static function, but it needs to be 579 * accessible from at least sx.h. 580 */ 581 void 582 _sx_xunlock_hard(struct sx *sx, uintptr_t tid, const char *file, int line) 583 { 584 uintptr_t x; 585 int queue; 586 587 MPASS(!(sx->sx_lock & SX_LOCK_SHARED)); 588 589 /* If the lock is recursed, then unrecurse one level. */ 590 if (sx_xlocked(sx) && sx_recursed(sx)) { 591 if ((--sx->sx_recurse) == 0) 592 atomic_clear_ptr(&sx->sx_lock, SX_LOCK_RECURSED); 593 if (LOCK_LOG_TEST(&sx->lock_object, 0)) 594 CTR2(KTR_LOCK, "%s: %p unrecursing", __func__, sx); 595 return; 596 } 597 MPASS(sx->sx_lock & (SX_LOCK_SHARED_WAITERS | 598 SX_LOCK_EXCLUSIVE_WAITERS)); 599 if (LOCK_LOG_TEST(&sx->lock_object, 0)) 600 CTR2(KTR_LOCK, "%s: %p contested", __func__, sx); 601 602 sleepq_lock(&sx->lock_object); 603 x = SX_LOCK_UNLOCKED; 604 605 /* 606 * The wake up algorithm here is quite simple and probably not 607 * ideal. It gives precedence to shared waiters if they are 608 * present. For this condition, we have to preserve the 609 * state of the exclusive waiters flag. 610 */ 611 if (sx->sx_lock & SX_LOCK_SHARED_WAITERS) { 612 queue = SQ_SHARED_QUEUE; 613 x |= (sx->sx_lock & SX_LOCK_EXCLUSIVE_WAITERS); 614 } else 615 queue = SQ_EXCLUSIVE_QUEUE; 616 617 /* Wake up all the waiters for the specific queue. */ 618 if (LOCK_LOG_TEST(&sx->lock_object, 0)) 619 CTR3(KTR_LOCK, "%s: %p waking up all threads on %s queue", 620 __func__, sx, queue == SQ_SHARED_QUEUE ? "shared" : 621 "exclusive"); 622 atomic_store_rel_ptr(&sx->sx_lock, x); 623 sleepq_broadcast(&sx->lock_object, SLEEPQ_SX, -1, queue); 624 } 625 626 /* 627 * This function represents the so-called 'hard case' for sx_slock 628 * operation. All 'easy case' failures are redirected to this. Note 629 * that ideally this would be a static function, but it needs to be 630 * accessible from at least sx.h. 631 */ 632 int 633 _sx_slock_hard(struct sx *sx, int opts, const char *file, int line) 634 { 635 GIANT_DECLARE; 636 #ifdef ADAPTIVE_SX 637 volatile struct thread *owner; 638 #endif 639 #ifdef LOCK_PROFILING_SHARED 640 uint64_t waittime = 0; 641 int contested = 0; 642 #endif 643 uintptr_t x; 644 int error = 0; 645 646 /* 647 * As with rwlocks, we don't make any attempt to try to block 648 * shared locks once there is an exclusive waiter. 649 */ 650 for (;;) { 651 x = sx->sx_lock; 652 653 /* 654 * If no other thread has an exclusive lock then try to bump up 655 * the count of sharers. Since we have to preserve the state 656 * of SX_LOCK_EXCLUSIVE_WAITERS, if we fail to acquire the 657 * shared lock loop back and retry. 658 */ 659 if (x & SX_LOCK_SHARED) { 660 MPASS(!(x & SX_LOCK_SHARED_WAITERS)); 661 if (atomic_cmpset_acq_ptr(&sx->sx_lock, x, 662 x + SX_ONE_SHARER)) { 663 #ifdef LOCK_PROFILING_SHARED 664 if (SX_SHARERS(x) == 0) 665 lock_profile_obtain_lock_success( 666 &sx->lock_object, contested, 667 waittime, file, line); 668 #endif 669 if (LOCK_LOG_TEST(&sx->lock_object, 0)) 670 CTR4(KTR_LOCK, 671 "%s: %p succeed %p -> %p", __func__, 672 sx, (void *)x, 673 (void *)(x + SX_ONE_SHARER)); 674 break; 675 } 676 continue; 677 } 678 679 #ifdef ADAPTIVE_SX 680 /* 681 * If the owner is running on another CPU, spin until 682 * the owner stops running or the state of the lock 683 * changes. 684 */ 685 else if (sx->lock_object.lo_flags & SX_ADAPTIVESPIN) { 686 x = SX_OWNER(x); 687 owner = (struct thread *)x; 688 if (TD_IS_RUNNING(owner)) { 689 if (LOCK_LOG_TEST(&sx->lock_object, 0)) 690 CTR3(KTR_LOCK, 691 "%s: spinning on %p held by %p", 692 __func__, sx, owner); 693 GIANT_SAVE(); 694 #ifdef LOCK_PROFILING_SHARED 695 lock_profile_obtain_lock_failed( 696 &sx->lock_object, &contested, &waittime); 697 #endif 698 while (SX_OWNER(sx->sx_lock) == x && 699 TD_IS_RUNNING(owner)) 700 cpu_spinwait(); 701 continue; 702 } 703 } 704 #endif 705 706 /* 707 * Some other thread already has an exclusive lock, so 708 * start the process of blocking. 709 */ 710 sleepq_lock(&sx->lock_object); 711 x = sx->sx_lock; 712 713 /* 714 * The lock could have been released while we spun. 715 * In this case loop back and retry. 716 */ 717 if (x & SX_LOCK_SHARED) { 718 sleepq_release(&sx->lock_object); 719 continue; 720 } 721 722 #ifdef ADAPTIVE_SX 723 /* 724 * If the owner is running on another CPU, spin until 725 * the owner stops running or the state of the lock 726 * changes. 727 */ 728 if (!(x & SX_LOCK_SHARED) && 729 (sx->lock_object.lo_flags & SX_ADAPTIVESPIN)) { 730 owner = (struct thread *)SX_OWNER(x); 731 if (TD_IS_RUNNING(owner)) { 732 sleepq_release(&sx->lock_object); 733 continue; 734 } 735 } 736 #endif 737 738 /* 739 * Try to set the SX_LOCK_SHARED_WAITERS flag. If we 740 * fail to set it drop the sleep queue lock and loop 741 * back. 742 */ 743 if (!(x & SX_LOCK_SHARED_WAITERS)) { 744 if (!atomic_cmpset_ptr(&sx->sx_lock, x, 745 x | SX_LOCK_SHARED_WAITERS)) { 746 sleepq_release(&sx->lock_object); 747 continue; 748 } 749 if (LOCK_LOG_TEST(&sx->lock_object, 0)) 750 CTR2(KTR_LOCK, "%s: %p set shared waiters flag", 751 __func__, sx); 752 } 753 754 /* 755 * Since we have been unable to acquire the shared lock, 756 * we have to sleep. 757 */ 758 if (LOCK_LOG_TEST(&sx->lock_object, 0)) 759 CTR2(KTR_LOCK, "%s: %p blocking on sleep queue", 760 __func__, sx); 761 762 GIANT_SAVE(); 763 #ifdef LOCK_PROFILING_SHARED 764 lock_profile_obtain_lock_failed(&sx->lock_object, &contested, 765 &waittime); 766 #endif 767 sleepq_add(&sx->lock_object, NULL, sx->lock_object.lo_name, 768 SLEEPQ_SX | ((opts & SX_INTERRUPTIBLE) ? 769 SLEEPQ_INTERRUPTIBLE : 0), SQ_SHARED_QUEUE); 770 if (!(opts & SX_INTERRUPTIBLE)) 771 sleepq_wait(&sx->lock_object); 772 else 773 error = sleepq_wait_sig(&sx->lock_object); 774 775 if (error) { 776 if (LOCK_LOG_TEST(&sx->lock_object, 0)) 777 CTR2(KTR_LOCK, 778 "%s: interruptible sleep by %p suspended by signal", 779 __func__, sx); 780 break; 781 } 782 if (LOCK_LOG_TEST(&sx->lock_object, 0)) 783 CTR2(KTR_LOCK, "%s: %p resuming from sleep queue", 784 __func__, sx); 785 } 786 787 GIANT_RESTORE(); 788 return (error); 789 } 790 791 /* 792 * This function represents the so-called 'hard case' for sx_sunlock 793 * operation. All 'easy case' failures are redirected to this. Note 794 * that ideally this would be a static function, but it needs to be 795 * accessible from at least sx.h. 796 */ 797 void 798 _sx_sunlock_hard(struct sx *sx, const char *file, int line) 799 { 800 uintptr_t x; 801 802 for (;;) { 803 x = sx->sx_lock; 804 805 /* 806 * We should never have sharers while at least one thread 807 * holds a shared lock. 808 */ 809 KASSERT(!(x & SX_LOCK_SHARED_WAITERS), 810 ("%s: waiting sharers", __func__)); 811 812 /* 813 * See if there is more than one shared lock held. If 814 * so, just drop one and return. 815 */ 816 if (SX_SHARERS(x) > 1) { 817 if (atomic_cmpset_ptr(&sx->sx_lock, x, 818 x - SX_ONE_SHARER)) { 819 if (LOCK_LOG_TEST(&sx->lock_object, 0)) 820 CTR4(KTR_LOCK, 821 "%s: %p succeeded %p -> %p", 822 __func__, sx, (void *)x, 823 (void *)(x - SX_ONE_SHARER)); 824 break; 825 } 826 continue; 827 } 828 829 /* 830 * If there aren't any waiters for an exclusive lock, 831 * then try to drop it quickly. 832 */ 833 if (!(x & SX_LOCK_EXCLUSIVE_WAITERS)) { 834 MPASS(x == SX_SHARERS_LOCK(1)); 835 if (atomic_cmpset_ptr(&sx->sx_lock, SX_SHARERS_LOCK(1), 836 SX_LOCK_UNLOCKED)) { 837 if (LOCK_LOG_TEST(&sx->lock_object, 0)) 838 CTR2(KTR_LOCK, "%s: %p last succeeded", 839 __func__, sx); 840 break; 841 } 842 continue; 843 } 844 845 /* 846 * At this point, there should just be one sharer with 847 * exclusive waiters. 848 */ 849 MPASS(x == (SX_SHARERS_LOCK(1) | SX_LOCK_EXCLUSIVE_WAITERS)); 850 851 sleepq_lock(&sx->lock_object); 852 853 /* 854 * Wake up semantic here is quite simple: 855 * Just wake up all the exclusive waiters. 856 * Note that the state of the lock could have changed, 857 * so if it fails loop back and retry. 858 */ 859 if (!atomic_cmpset_ptr(&sx->sx_lock, 860 SX_SHARERS_LOCK(1) | SX_LOCK_EXCLUSIVE_WAITERS, 861 SX_LOCK_UNLOCKED)) { 862 sleepq_release(&sx->lock_object); 863 continue; 864 } 865 if (LOCK_LOG_TEST(&sx->lock_object, 0)) 866 CTR2(KTR_LOCK, "%s: %p waking up all thread on" 867 "exclusive queue", __func__, sx); 868 sleepq_broadcast(&sx->lock_object, SLEEPQ_SX, -1, 869 SQ_EXCLUSIVE_QUEUE); 870 break; 871 } 872 } 873 874 #ifdef INVARIANT_SUPPORT 875 #ifndef INVARIANTS 876 #undef _sx_assert 877 #endif 878 879 /* 880 * In the non-WITNESS case, sx_assert() can only detect that at least 881 * *some* thread owns an slock, but it cannot guarantee that *this* 882 * thread owns an slock. 883 */ 884 void 885 _sx_assert(struct sx *sx, int what, const char *file, int line) 886 { 887 #ifndef WITNESS 888 int slocked = 0; 889 #endif 890 891 if (panicstr != NULL) 892 return; 893 switch (what) { 894 case SA_SLOCKED: 895 case SA_SLOCKED | SA_NOTRECURSED: 896 case SA_SLOCKED | SA_RECURSED: 897 #ifndef WITNESS 898 slocked = 1; 899 /* FALLTHROUGH */ 900 #endif 901 case SA_LOCKED: 902 case SA_LOCKED | SA_NOTRECURSED: 903 case SA_LOCKED | SA_RECURSED: 904 #ifdef WITNESS 905 witness_assert(&sx->lock_object, what, file, line); 906 #else 907 /* 908 * If some other thread has an exclusive lock or we 909 * have one and are asserting a shared lock, fail. 910 * Also, if no one has a lock at all, fail. 911 */ 912 if (sx->sx_lock == SX_LOCK_UNLOCKED || 913 (!(sx->sx_lock & SX_LOCK_SHARED) && (slocked || 914 sx_xholder(sx) != curthread))) 915 panic("Lock %s not %slocked @ %s:%d\n", 916 sx->lock_object.lo_name, slocked ? "share " : "", 917 file, line); 918 919 if (!(sx->sx_lock & SX_LOCK_SHARED)) { 920 if (sx_recursed(sx)) { 921 if (what & SA_NOTRECURSED) 922 panic("Lock %s recursed @ %s:%d\n", 923 sx->lock_object.lo_name, file, 924 line); 925 } else if (what & SA_RECURSED) 926 panic("Lock %s not recursed @ %s:%d\n", 927 sx->lock_object.lo_name, file, line); 928 } 929 #endif 930 break; 931 case SA_XLOCKED: 932 case SA_XLOCKED | SA_NOTRECURSED: 933 case SA_XLOCKED | SA_RECURSED: 934 if (sx_xholder(sx) != curthread) 935 panic("Lock %s not exclusively locked @ %s:%d\n", 936 sx->lock_object.lo_name, file, line); 937 if (sx_recursed(sx)) { 938 if (what & SA_NOTRECURSED) 939 panic("Lock %s recursed @ %s:%d\n", 940 sx->lock_object.lo_name, file, line); 941 } else if (what & SA_RECURSED) 942 panic("Lock %s not recursed @ %s:%d\n", 943 sx->lock_object.lo_name, file, line); 944 break; 945 case SA_UNLOCKED: 946 #ifdef WITNESS 947 witness_assert(&sx->lock_object, what, file, line); 948 #else 949 /* 950 * If we hold an exclusve lock fail. We can't 951 * reliably check to see if we hold a shared lock or 952 * not. 953 */ 954 if (sx_xholder(sx) == curthread) 955 panic("Lock %s exclusively locked @ %s:%d\n", 956 sx->lock_object.lo_name, file, line); 957 #endif 958 break; 959 default: 960 panic("Unknown sx lock assertion: %d @ %s:%d", what, file, 961 line); 962 } 963 } 964 #endif /* INVARIANT_SUPPORT */ 965 966 #ifdef DDB 967 static void 968 db_show_sx(struct lock_object *lock) 969 { 970 struct thread *td; 971 struct sx *sx; 972 973 sx = (struct sx *)lock; 974 975 db_printf(" state: "); 976 if (sx->sx_lock == SX_LOCK_UNLOCKED) 977 db_printf("UNLOCKED\n"); 978 else if (sx->sx_lock == SX_LOCK_DESTROYED) { 979 db_printf("DESTROYED\n"); 980 return; 981 } else if (sx->sx_lock & SX_LOCK_SHARED) 982 db_printf("SLOCK: %ju\n", (uintmax_t)SX_SHARERS(sx->sx_lock)); 983 else { 984 td = sx_xholder(sx); 985 db_printf("XLOCK: %p (tid %d, pid %d, \"%s\")\n", td, 986 td->td_tid, td->td_proc->p_pid, td->td_proc->p_comm); 987 if (sx_recursed(sx)) 988 db_printf(" recursed: %d\n", sx->sx_recurse); 989 } 990 991 db_printf(" waiters: "); 992 switch(sx->sx_lock & 993 (SX_LOCK_SHARED_WAITERS | SX_LOCK_EXCLUSIVE_WAITERS)) { 994 case SX_LOCK_SHARED_WAITERS: 995 db_printf("shared\n"); 996 break; 997 case SX_LOCK_EXCLUSIVE_WAITERS: 998 db_printf("exclusive\n"); 999 break; 1000 case SX_LOCK_SHARED_WAITERS | SX_LOCK_EXCLUSIVE_WAITERS: 1001 db_printf("exclusive and shared\n"); 1002 break; 1003 default: 1004 db_printf("none\n"); 1005 } 1006 } 1007 1008 /* 1009 * Check to see if a thread that is blocked on a sleep queue is actually 1010 * blocked on an sx lock. If so, output some details and return true. 1011 * If the lock has an exclusive owner, return that in *ownerp. 1012 */ 1013 int 1014 sx_chain(struct thread *td, struct thread **ownerp) 1015 { 1016 struct sx *sx; 1017 1018 /* 1019 * Check to see if this thread is blocked on an sx lock. 1020 * First, we check the lock class. If that is ok, then we 1021 * compare the lock name against the wait message. 1022 */ 1023 sx = td->td_wchan; 1024 if (LOCK_CLASS(&sx->lock_object) != &lock_class_sx || 1025 sx->lock_object.lo_name != td->td_wmesg) 1026 return (0); 1027 1028 /* We think we have an sx lock, so output some details. */ 1029 db_printf("blocked on sx \"%s\" ", td->td_wmesg); 1030 *ownerp = sx_xholder(sx); 1031 if (sx->sx_lock & SX_LOCK_SHARED) 1032 db_printf("SLOCK (count %ju)\n", 1033 (uintmax_t)SX_SHARERS(sx->sx_lock)); 1034 else 1035 db_printf("XLOCK\n"); 1036 return (1); 1037 } 1038 #endif 1039