1 /*- 2 * Copyright (c) 2007 Attilio Rao <attilio@freebsd.org> 3 * Copyright (c) 2001 Jason Evans <jasone@freebsd.org> 4 * All rights reserved. 5 * 6 * Redistribution and use in source and binary forms, with or without 7 * modification, are permitted provided that the following conditions 8 * are met: 9 * 1. Redistributions of source code must retain the above copyright 10 * notice(s), this list of conditions and the following disclaimer as 11 * the first lines of this file unmodified other than the possible 12 * addition of one or more copyright notices. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice(s), this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER(S) ``AS IS'' AND ANY 18 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED 19 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE 20 * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) BE LIABLE FOR ANY 21 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES 22 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR 23 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER 24 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH 27 * DAMAGE. 28 */ 29 30 /* 31 * Shared/exclusive locks. This implementation attempts to ensure 32 * deterministic lock granting behavior, so that slocks and xlocks are 33 * interleaved. 34 * 35 * Priority propagation will not generally raise the priority of lock holders, 36 * so should not be relied upon in combination with sx locks. 37 */ 38 39 #include "opt_adaptive_sx.h" 40 #include "opt_ddb.h" 41 42 #include <sys/cdefs.h> 43 __FBSDID("$FreeBSD$"); 44 45 #include <sys/param.h> 46 #include <sys/ktr.h> 47 #include <sys/lock.h> 48 #include <sys/mutex.h> 49 #include <sys/proc.h> 50 #include <sys/sleepqueue.h> 51 #include <sys/sx.h> 52 #include <sys/systm.h> 53 54 #ifdef ADAPTIVE_SX 55 #include <machine/cpu.h> 56 #endif 57 58 #ifdef DDB 59 #include <ddb/ddb.h> 60 #endif 61 62 #if !defined(SMP) && defined(ADAPTIVE_SX) 63 #error "You must have SMP to enable the ADAPTIVE_SX option" 64 #endif 65 66 CTASSERT(((SX_ADAPTIVESPIN | SX_RECURSE) & LO_CLASSFLAGS) == 67 (SX_ADAPTIVESPIN | SX_RECURSE)); 68 69 /* Handy macros for sleep queues. */ 70 #define SQ_EXCLUSIVE_QUEUE 0 71 #define SQ_SHARED_QUEUE 1 72 73 /* 74 * Variations on DROP_GIANT()/PICKUP_GIANT() for use in this file. We 75 * drop Giant anytime we have to sleep or if we adaptively spin. 76 */ 77 #define GIANT_DECLARE \ 78 int _giantcnt = 0; \ 79 WITNESS_SAVE_DECL(Giant) \ 80 81 #define GIANT_SAVE() do { \ 82 if (mtx_owned(&Giant)) { \ 83 WITNESS_SAVE(&Giant.lock_object, Giant); \ 84 while (mtx_owned(&Giant)) { \ 85 _giantcnt++; \ 86 mtx_unlock(&Giant); \ 87 } \ 88 } \ 89 } while (0) 90 91 #define GIANT_RESTORE() do { \ 92 if (_giantcnt > 0) { \ 93 mtx_assert(&Giant, MA_NOTOWNED); \ 94 while (_giantcnt--) \ 95 mtx_lock(&Giant); \ 96 WITNESS_RESTORE(&Giant.lock_object, Giant); \ 97 } \ 98 } while (0) 99 100 /* 101 * Returns true if an exclusive lock is recursed. It assumes 102 * curthread currently has an exclusive lock. 103 */ 104 #define sx_recursed(sx) ((sx)->sx_recurse != 0) 105 106 static void assert_sx(struct lock_object *lock, int what); 107 #ifdef DDB 108 static void db_show_sx(struct lock_object *lock); 109 #endif 110 static void lock_sx(struct lock_object *lock, int how); 111 static int unlock_sx(struct lock_object *lock); 112 113 struct lock_class lock_class_sx = { 114 .lc_name = "sx", 115 .lc_flags = LC_SLEEPLOCK | LC_SLEEPABLE | LC_RECURSABLE | LC_UPGRADABLE, 116 .lc_assert = assert_sx, 117 #ifdef DDB 118 .lc_ddb_show = db_show_sx, 119 #endif 120 .lc_lock = lock_sx, 121 .lc_unlock = unlock_sx, 122 }; 123 124 #ifndef INVARIANTS 125 #define _sx_assert(sx, what, file, line) 126 #endif 127 128 void 129 assert_sx(struct lock_object *lock, int what) 130 { 131 132 sx_assert((struct sx *)lock, what); 133 } 134 135 void 136 lock_sx(struct lock_object *lock, int how) 137 { 138 struct sx *sx; 139 140 sx = (struct sx *)lock; 141 if (how) 142 sx_xlock(sx); 143 else 144 sx_slock(sx); 145 } 146 147 int 148 unlock_sx(struct lock_object *lock) 149 { 150 struct sx *sx; 151 152 sx = (struct sx *)lock; 153 sx_assert(sx, SA_LOCKED | SA_NOTRECURSED); 154 if (sx_xlocked(sx)) { 155 sx_xunlock(sx); 156 return (1); 157 } else { 158 sx_sunlock(sx); 159 return (0); 160 } 161 } 162 163 void 164 sx_sysinit(void *arg) 165 { 166 struct sx_args *sargs = arg; 167 168 sx_init(sargs->sa_sx, sargs->sa_desc); 169 } 170 171 void 172 sx_init_flags(struct sx *sx, const char *description, int opts) 173 { 174 int flags; 175 176 MPASS((opts & ~(SX_QUIET | SX_RECURSE | SX_NOWITNESS | SX_DUPOK | 177 SX_NOPROFILE | SX_ADAPTIVESPIN)) == 0); 178 179 flags = LO_RECURSABLE | LO_SLEEPABLE | LO_UPGRADABLE; 180 if (opts & SX_DUPOK) 181 flags |= LO_DUPOK; 182 if (opts & SX_NOPROFILE) 183 flags |= LO_NOPROFILE; 184 if (!(opts & SX_NOWITNESS)) 185 flags |= LO_WITNESS; 186 if (opts & SX_QUIET) 187 flags |= LO_QUIET; 188 189 flags |= opts & (SX_ADAPTIVESPIN | SX_RECURSE); 190 sx->sx_lock = SX_LOCK_UNLOCKED; 191 sx->sx_recurse = 0; 192 lock_init(&sx->lock_object, &lock_class_sx, description, NULL, flags); 193 } 194 195 void 196 sx_destroy(struct sx *sx) 197 { 198 199 KASSERT(sx->sx_lock == SX_LOCK_UNLOCKED, ("sx lock still held")); 200 KASSERT(sx->sx_recurse == 0, ("sx lock still recursed")); 201 sx->sx_lock = SX_LOCK_DESTROYED; 202 lock_destroy(&sx->lock_object); 203 } 204 205 int 206 _sx_slock(struct sx *sx, int opts, const char *file, int line) 207 { 208 int error = 0; 209 210 MPASS(curthread != NULL); 211 KASSERT(sx->sx_lock != SX_LOCK_DESTROYED, 212 ("sx_slock() of destroyed sx @ %s:%d", file, line)); 213 WITNESS_CHECKORDER(&sx->lock_object, LOP_NEWORDER, file, line); 214 error = __sx_slock(sx, opts, file, line); 215 if (!error) { 216 LOCK_LOG_LOCK("SLOCK", &sx->lock_object, 0, 0, file, line); 217 WITNESS_LOCK(&sx->lock_object, 0, file, line); 218 curthread->td_locks++; 219 } 220 221 return (error); 222 } 223 224 int 225 _sx_try_slock(struct sx *sx, const char *file, int line) 226 { 227 uintptr_t x; 228 229 for (;;) { 230 x = sx->sx_lock; 231 KASSERT(x != SX_LOCK_DESTROYED, 232 ("sx_try_slock() of destroyed sx @ %s:%d", file, line)); 233 if (!(x & SX_LOCK_SHARED)) 234 break; 235 if (atomic_cmpset_acq_ptr(&sx->sx_lock, x, x + SX_ONE_SHARER)) { 236 LOCK_LOG_TRY("SLOCK", &sx->lock_object, 0, 1, file, line); 237 WITNESS_LOCK(&sx->lock_object, LOP_TRYLOCK, file, line); 238 curthread->td_locks++; 239 return (1); 240 } 241 } 242 243 LOCK_LOG_TRY("SLOCK", &sx->lock_object, 0, 0, file, line); 244 return (0); 245 } 246 247 int 248 _sx_xlock(struct sx *sx, int opts, const char *file, int line) 249 { 250 int error = 0; 251 252 MPASS(curthread != NULL); 253 KASSERT(sx->sx_lock != SX_LOCK_DESTROYED, 254 ("sx_xlock() of destroyed sx @ %s:%d", file, line)); 255 WITNESS_CHECKORDER(&sx->lock_object, LOP_NEWORDER | LOP_EXCLUSIVE, file, 256 line); 257 error = __sx_xlock(sx, curthread, opts, file, line); 258 if (!error) { 259 LOCK_LOG_LOCK("XLOCK", &sx->lock_object, 0, sx->sx_recurse, 260 file, line); 261 WITNESS_LOCK(&sx->lock_object, LOP_EXCLUSIVE, file, line); 262 curthread->td_locks++; 263 } 264 265 return (error); 266 } 267 268 int 269 _sx_try_xlock(struct sx *sx, const char *file, int line) 270 { 271 int rval; 272 273 MPASS(curthread != NULL); 274 KASSERT(sx->sx_lock != SX_LOCK_DESTROYED, 275 ("sx_try_xlock() of destroyed sx @ %s:%d", file, line)); 276 277 if (sx_xlocked(sx) && (sx->lock_object.lo_flags & SX_RECURSE) != 0) { 278 sx->sx_recurse++; 279 atomic_set_ptr(&sx->sx_lock, SX_LOCK_RECURSED); 280 rval = 1; 281 } else 282 rval = atomic_cmpset_acq_ptr(&sx->sx_lock, SX_LOCK_UNLOCKED, 283 (uintptr_t)curthread); 284 LOCK_LOG_TRY("XLOCK", &sx->lock_object, 0, rval, file, line); 285 if (rval) { 286 WITNESS_LOCK(&sx->lock_object, LOP_EXCLUSIVE | LOP_TRYLOCK, 287 file, line); 288 curthread->td_locks++; 289 } 290 291 return (rval); 292 } 293 294 void 295 _sx_sunlock(struct sx *sx, const char *file, int line) 296 { 297 298 MPASS(curthread != NULL); 299 KASSERT(sx->sx_lock != SX_LOCK_DESTROYED, 300 ("sx_sunlock() of destroyed sx @ %s:%d", file, line)); 301 _sx_assert(sx, SA_SLOCKED, file, line); 302 curthread->td_locks--; 303 WITNESS_UNLOCK(&sx->lock_object, 0, file, line); 304 LOCK_LOG_LOCK("SUNLOCK", &sx->lock_object, 0, 0, file, line); 305 __sx_sunlock(sx, file, line); 306 lock_profile_release_lock(&sx->lock_object); 307 } 308 309 void 310 _sx_xunlock(struct sx *sx, const char *file, int line) 311 { 312 313 MPASS(curthread != NULL); 314 KASSERT(sx->sx_lock != SX_LOCK_DESTROYED, 315 ("sx_xunlock() of destroyed sx @ %s:%d", file, line)); 316 _sx_assert(sx, SA_XLOCKED, file, line); 317 curthread->td_locks--; 318 WITNESS_UNLOCK(&sx->lock_object, LOP_EXCLUSIVE, file, line); 319 LOCK_LOG_LOCK("XUNLOCK", &sx->lock_object, 0, sx->sx_recurse, file, 320 line); 321 if (!sx_recursed(sx)) 322 lock_profile_release_lock(&sx->lock_object); 323 __sx_xunlock(sx, curthread, file, line); 324 } 325 326 /* 327 * Try to do a non-blocking upgrade from a shared lock to an exclusive lock. 328 * This will only succeed if this thread holds a single shared lock. 329 * Return 1 if if the upgrade succeed, 0 otherwise. 330 */ 331 int 332 _sx_try_upgrade(struct sx *sx, const char *file, int line) 333 { 334 uintptr_t x; 335 int success; 336 337 KASSERT(sx->sx_lock != SX_LOCK_DESTROYED, 338 ("sx_try_upgrade() of destroyed sx @ %s:%d", file, line)); 339 _sx_assert(sx, SA_SLOCKED, file, line); 340 341 /* 342 * Try to switch from one shared lock to an exclusive lock. We need 343 * to maintain the SX_LOCK_EXCLUSIVE_WAITERS flag if set so that 344 * we will wake up the exclusive waiters when we drop the lock. 345 */ 346 x = sx->sx_lock & SX_LOCK_EXCLUSIVE_WAITERS; 347 success = atomic_cmpset_ptr(&sx->sx_lock, SX_SHARERS_LOCK(1) | x, 348 (uintptr_t)curthread | x); 349 LOCK_LOG_TRY("XUPGRADE", &sx->lock_object, 0, success, file, line); 350 if (success) 351 WITNESS_UPGRADE(&sx->lock_object, LOP_EXCLUSIVE | LOP_TRYLOCK, 352 file, line); 353 return (success); 354 } 355 356 /* 357 * Downgrade an unrecursed exclusive lock into a single shared lock. 358 */ 359 void 360 _sx_downgrade(struct sx *sx, const char *file, int line) 361 { 362 uintptr_t x; 363 364 KASSERT(sx->sx_lock != SX_LOCK_DESTROYED, 365 ("sx_downgrade() of destroyed sx @ %s:%d", file, line)); 366 _sx_assert(sx, SA_XLOCKED | SA_NOTRECURSED, file, line); 367 #ifndef INVARIANTS 368 if (sx_recursed(sx)) 369 panic("downgrade of a recursed lock"); 370 #endif 371 372 WITNESS_DOWNGRADE(&sx->lock_object, 0, file, line); 373 374 /* 375 * Try to switch from an exclusive lock with no shared waiters 376 * to one sharer with no shared waiters. If there are 377 * exclusive waiters, we don't need to lock the sleep queue so 378 * long as we preserve the flag. We do one quick try and if 379 * that fails we grab the sleepq lock to keep the flags from 380 * changing and do it the slow way. 381 * 382 * We have to lock the sleep queue if there are shared waiters 383 * so we can wake them up. 384 */ 385 x = sx->sx_lock; 386 if (!(x & SX_LOCK_SHARED_WAITERS) && 387 atomic_cmpset_rel_ptr(&sx->sx_lock, x, SX_SHARERS_LOCK(1) | 388 (x & SX_LOCK_EXCLUSIVE_WAITERS))) { 389 LOCK_LOG_LOCK("XDOWNGRADE", &sx->lock_object, 0, 0, file, line); 390 return; 391 } 392 393 /* 394 * Lock the sleep queue so we can read the waiters bits 395 * without any races and wakeup any shared waiters. 396 */ 397 sleepq_lock(&sx->lock_object); 398 399 /* 400 * Preserve SX_LOCK_EXCLUSIVE_WAITERS while downgraded to a single 401 * shared lock. If there are any shared waiters, wake them up. 402 */ 403 x = sx->sx_lock; 404 atomic_store_rel_ptr(&sx->sx_lock, SX_SHARERS_LOCK(1) | 405 (x & SX_LOCK_EXCLUSIVE_WAITERS)); 406 if (x & SX_LOCK_SHARED_WAITERS) 407 sleepq_broadcast(&sx->lock_object, SLEEPQ_SX, -1, 408 SQ_SHARED_QUEUE); 409 else 410 sleepq_release(&sx->lock_object); 411 412 LOCK_LOG_LOCK("XDOWNGRADE", &sx->lock_object, 0, 0, file, line); 413 } 414 415 /* 416 * This function represents the so-called 'hard case' for sx_xlock 417 * operation. All 'easy case' failures are redirected to this. Note 418 * that ideally this would be a static function, but it needs to be 419 * accessible from at least sx.h. 420 */ 421 int 422 _sx_xlock_hard(struct sx *sx, uintptr_t tid, int opts, const char *file, 423 int line) 424 { 425 GIANT_DECLARE; 426 #ifdef ADAPTIVE_SX 427 volatile struct thread *owner; 428 #endif 429 uint64_t waittime = 0; 430 uintptr_t x; 431 int contested = 0, error = 0; 432 433 /* If we already hold an exclusive lock, then recurse. */ 434 if (sx_xlocked(sx)) { 435 KASSERT((sx->lock_object.lo_flags & SX_RECURSE) != 0, 436 ("_sx_xlock_hard: recursed on non-recursive sx %s @ %s:%d\n", 437 sx->lock_object.lo_name, file, line)); 438 sx->sx_recurse++; 439 atomic_set_ptr(&sx->sx_lock, SX_LOCK_RECURSED); 440 if (LOCK_LOG_TEST(&sx->lock_object, 0)) 441 CTR2(KTR_LOCK, "%s: %p recursing", __func__, sx); 442 return (0); 443 } 444 445 if (LOCK_LOG_TEST(&sx->lock_object, 0)) 446 CTR5(KTR_LOCK, "%s: %s contested (lock=%p) at %s:%d", __func__, 447 sx->lock_object.lo_name, (void *)sx->sx_lock, file, line); 448 449 while (!atomic_cmpset_acq_ptr(&sx->sx_lock, SX_LOCK_UNLOCKED, tid)) { 450 lock_profile_obtain_lock_failed(&sx->lock_object, &contested, 451 &waittime); 452 #ifdef ADAPTIVE_SX 453 /* 454 * If the lock is write locked and the owner is 455 * running on another CPU, spin until the owner stops 456 * running or the state of the lock changes. 457 */ 458 x = sx->sx_lock; 459 if (!(x & SX_LOCK_SHARED) && 460 (sx->lock_object.lo_flags & SX_ADAPTIVESPIN)) { 461 x = SX_OWNER(x); 462 owner = (struct thread *)x; 463 if (TD_IS_RUNNING(owner)) { 464 if (LOCK_LOG_TEST(&sx->lock_object, 0)) 465 CTR3(KTR_LOCK, 466 "%s: spinning on %p held by %p", 467 __func__, sx, owner); 468 GIANT_SAVE(); 469 while (SX_OWNER(sx->sx_lock) == x && 470 TD_IS_RUNNING(owner)) 471 cpu_spinwait(); 472 continue; 473 } 474 } 475 #endif 476 477 sleepq_lock(&sx->lock_object); 478 x = sx->sx_lock; 479 480 /* 481 * If the lock was released while spinning on the 482 * sleep queue chain lock, try again. 483 */ 484 if (x == SX_LOCK_UNLOCKED) { 485 sleepq_release(&sx->lock_object); 486 continue; 487 } 488 489 #ifdef ADAPTIVE_SX 490 /* 491 * The current lock owner might have started executing 492 * on another CPU (or the lock could have changed 493 * owners) while we were waiting on the sleep queue 494 * chain lock. If so, drop the sleep queue lock and try 495 * again. 496 */ 497 if (!(x & SX_LOCK_SHARED) && 498 (sx->lock_object.lo_flags & SX_ADAPTIVESPIN)) { 499 owner = (struct thread *)SX_OWNER(x); 500 if (TD_IS_RUNNING(owner)) { 501 sleepq_release(&sx->lock_object); 502 continue; 503 } 504 } 505 #endif 506 507 /* 508 * If an exclusive lock was released with both shared 509 * and exclusive waiters and a shared waiter hasn't 510 * woken up and acquired the lock yet, sx_lock will be 511 * set to SX_LOCK_UNLOCKED | SX_LOCK_EXCLUSIVE_WAITERS. 512 * If we see that value, try to acquire it once. Note 513 * that we have to preserve SX_LOCK_EXCLUSIVE_WAITERS 514 * as there are other exclusive waiters still. If we 515 * fail, restart the loop. 516 */ 517 if (x == (SX_LOCK_UNLOCKED | SX_LOCK_EXCLUSIVE_WAITERS)) { 518 if (atomic_cmpset_acq_ptr(&sx->sx_lock, 519 SX_LOCK_UNLOCKED | SX_LOCK_EXCLUSIVE_WAITERS, 520 tid | SX_LOCK_EXCLUSIVE_WAITERS)) { 521 sleepq_release(&sx->lock_object); 522 CTR2(KTR_LOCK, "%s: %p claimed by new writer", 523 __func__, sx); 524 break; 525 } 526 sleepq_release(&sx->lock_object); 527 continue; 528 } 529 530 /* 531 * Try to set the SX_LOCK_EXCLUSIVE_WAITERS. If we fail, 532 * than loop back and retry. 533 */ 534 if (!(x & SX_LOCK_EXCLUSIVE_WAITERS)) { 535 if (!atomic_cmpset_ptr(&sx->sx_lock, x, 536 x | SX_LOCK_EXCLUSIVE_WAITERS)) { 537 sleepq_release(&sx->lock_object); 538 continue; 539 } 540 if (LOCK_LOG_TEST(&sx->lock_object, 0)) 541 CTR2(KTR_LOCK, "%s: %p set excl waiters flag", 542 __func__, sx); 543 } 544 545 /* 546 * Since we have been unable to acquire the exclusive 547 * lock and the exclusive waiters flag is set, we have 548 * to sleep. 549 */ 550 if (LOCK_LOG_TEST(&sx->lock_object, 0)) 551 CTR2(KTR_LOCK, "%s: %p blocking on sleep queue", 552 __func__, sx); 553 554 GIANT_SAVE(); 555 sleepq_add(&sx->lock_object, NULL, sx->lock_object.lo_name, 556 SLEEPQ_SX | ((opts & SX_INTERRUPTIBLE) ? 557 SLEEPQ_INTERRUPTIBLE : 0), SQ_EXCLUSIVE_QUEUE); 558 if (!(opts & SX_INTERRUPTIBLE)) 559 sleepq_wait(&sx->lock_object); 560 else 561 error = sleepq_wait_sig(&sx->lock_object); 562 563 if (error) { 564 if (LOCK_LOG_TEST(&sx->lock_object, 0)) 565 CTR2(KTR_LOCK, 566 "%s: interruptible sleep by %p suspended by signal", 567 __func__, sx); 568 break; 569 } 570 if (LOCK_LOG_TEST(&sx->lock_object, 0)) 571 CTR2(KTR_LOCK, "%s: %p resuming from sleep queue", 572 __func__, sx); 573 } 574 575 GIANT_RESTORE(); 576 if (!error) 577 lock_profile_obtain_lock_success(&sx->lock_object, contested, 578 waittime, file, line); 579 return (error); 580 } 581 582 /* 583 * This function represents the so-called 'hard case' for sx_xunlock 584 * operation. All 'easy case' failures are redirected to this. Note 585 * that ideally this would be a static function, but it needs to be 586 * accessible from at least sx.h. 587 */ 588 void 589 _sx_xunlock_hard(struct sx *sx, uintptr_t tid, const char *file, int line) 590 { 591 uintptr_t x; 592 int queue; 593 594 MPASS(!(sx->sx_lock & SX_LOCK_SHARED)); 595 596 /* If the lock is recursed, then unrecurse one level. */ 597 if (sx_xlocked(sx) && sx_recursed(sx)) { 598 if ((--sx->sx_recurse) == 0) 599 atomic_clear_ptr(&sx->sx_lock, SX_LOCK_RECURSED); 600 if (LOCK_LOG_TEST(&sx->lock_object, 0)) 601 CTR2(KTR_LOCK, "%s: %p unrecursing", __func__, sx); 602 return; 603 } 604 MPASS(sx->sx_lock & (SX_LOCK_SHARED_WAITERS | 605 SX_LOCK_EXCLUSIVE_WAITERS)); 606 if (LOCK_LOG_TEST(&sx->lock_object, 0)) 607 CTR2(KTR_LOCK, "%s: %p contested", __func__, sx); 608 609 sleepq_lock(&sx->lock_object); 610 x = SX_LOCK_UNLOCKED; 611 612 /* 613 * The wake up algorithm here is quite simple and probably not 614 * ideal. It gives precedence to shared waiters if they are 615 * present. For this condition, we have to preserve the 616 * state of the exclusive waiters flag. 617 */ 618 if (sx->sx_lock & SX_LOCK_SHARED_WAITERS) { 619 queue = SQ_SHARED_QUEUE; 620 x |= (sx->sx_lock & SX_LOCK_EXCLUSIVE_WAITERS); 621 } else 622 queue = SQ_EXCLUSIVE_QUEUE; 623 624 /* Wake up all the waiters for the specific queue. */ 625 if (LOCK_LOG_TEST(&sx->lock_object, 0)) 626 CTR3(KTR_LOCK, "%s: %p waking up all threads on %s queue", 627 __func__, sx, queue == SQ_SHARED_QUEUE ? "shared" : 628 "exclusive"); 629 atomic_store_rel_ptr(&sx->sx_lock, x); 630 sleepq_broadcast(&sx->lock_object, SLEEPQ_SX, -1, queue); 631 } 632 633 /* 634 * This function represents the so-called 'hard case' for sx_slock 635 * operation. All 'easy case' failures are redirected to this. Note 636 * that ideally this would be a static function, but it needs to be 637 * accessible from at least sx.h. 638 */ 639 int 640 _sx_slock_hard(struct sx *sx, int opts, const char *file, int line) 641 { 642 GIANT_DECLARE; 643 #ifdef ADAPTIVE_SX 644 volatile struct thread *owner; 645 #endif 646 uint64_t waittime = 0; 647 int contested = 0; 648 uintptr_t x; 649 int error = 0; 650 651 /* 652 * As with rwlocks, we don't make any attempt to try to block 653 * shared locks once there is an exclusive waiter. 654 */ 655 for (;;) { 656 x = sx->sx_lock; 657 658 /* 659 * If no other thread has an exclusive lock then try to bump up 660 * the count of sharers. Since we have to preserve the state 661 * of SX_LOCK_EXCLUSIVE_WAITERS, if we fail to acquire the 662 * shared lock loop back and retry. 663 */ 664 if (x & SX_LOCK_SHARED) { 665 MPASS(!(x & SX_LOCK_SHARED_WAITERS)); 666 if (atomic_cmpset_acq_ptr(&sx->sx_lock, x, 667 x + SX_ONE_SHARER)) { 668 if (LOCK_LOG_TEST(&sx->lock_object, 0)) 669 CTR4(KTR_LOCK, 670 "%s: %p succeed %p -> %p", __func__, 671 sx, (void *)x, 672 (void *)(x + SX_ONE_SHARER)); 673 break; 674 } 675 continue; 676 } 677 lock_profile_obtain_lock_failed(&sx->lock_object, &contested, 678 &waittime); 679 680 #ifdef ADAPTIVE_SX 681 /* 682 * If the owner is running on another CPU, spin until 683 * the owner stops running or the state of the lock 684 * changes. 685 */ 686 if (sx->lock_object.lo_flags & SX_ADAPTIVESPIN) { 687 x = SX_OWNER(x); 688 owner = (struct thread *)x; 689 if (TD_IS_RUNNING(owner)) { 690 if (LOCK_LOG_TEST(&sx->lock_object, 0)) 691 CTR3(KTR_LOCK, 692 "%s: spinning on %p held by %p", 693 __func__, sx, owner); 694 GIANT_SAVE(); 695 while (SX_OWNER(sx->sx_lock) == x && 696 TD_IS_RUNNING(owner)) 697 cpu_spinwait(); 698 continue; 699 } 700 } 701 #endif 702 703 /* 704 * Some other thread already has an exclusive lock, so 705 * start the process of blocking. 706 */ 707 sleepq_lock(&sx->lock_object); 708 x = sx->sx_lock; 709 710 /* 711 * The lock could have been released while we spun. 712 * In this case loop back and retry. 713 */ 714 if (x & SX_LOCK_SHARED) { 715 sleepq_release(&sx->lock_object); 716 continue; 717 } 718 719 #ifdef ADAPTIVE_SX 720 /* 721 * If the owner is running on another CPU, spin until 722 * the owner stops running or the state of the lock 723 * changes. 724 */ 725 if (!(x & SX_LOCK_SHARED) && 726 (sx->lock_object.lo_flags & SX_ADAPTIVESPIN)) { 727 owner = (struct thread *)SX_OWNER(x); 728 if (TD_IS_RUNNING(owner)) { 729 sleepq_release(&sx->lock_object); 730 continue; 731 } 732 } 733 #endif 734 735 /* 736 * Try to set the SX_LOCK_SHARED_WAITERS flag. If we 737 * fail to set it drop the sleep queue lock and loop 738 * back. 739 */ 740 if (!(x & SX_LOCK_SHARED_WAITERS)) { 741 if (!atomic_cmpset_ptr(&sx->sx_lock, x, 742 x | SX_LOCK_SHARED_WAITERS)) { 743 sleepq_release(&sx->lock_object); 744 continue; 745 } 746 if (LOCK_LOG_TEST(&sx->lock_object, 0)) 747 CTR2(KTR_LOCK, "%s: %p set shared waiters flag", 748 __func__, sx); 749 } 750 751 /* 752 * Since we have been unable to acquire the shared lock, 753 * we have to sleep. 754 */ 755 if (LOCK_LOG_TEST(&sx->lock_object, 0)) 756 CTR2(KTR_LOCK, "%s: %p blocking on sleep queue", 757 __func__, sx); 758 759 GIANT_SAVE(); 760 sleepq_add(&sx->lock_object, NULL, sx->lock_object.lo_name, 761 SLEEPQ_SX | ((opts & SX_INTERRUPTIBLE) ? 762 SLEEPQ_INTERRUPTIBLE : 0), SQ_SHARED_QUEUE); 763 if (!(opts & SX_INTERRUPTIBLE)) 764 sleepq_wait(&sx->lock_object); 765 else 766 error = sleepq_wait_sig(&sx->lock_object); 767 768 if (error) { 769 if (LOCK_LOG_TEST(&sx->lock_object, 0)) 770 CTR2(KTR_LOCK, 771 "%s: interruptible sleep by %p suspended by signal", 772 __func__, sx); 773 break; 774 } 775 if (LOCK_LOG_TEST(&sx->lock_object, 0)) 776 CTR2(KTR_LOCK, "%s: %p resuming from sleep queue", 777 __func__, sx); 778 } 779 if (error == 0) 780 lock_profile_obtain_lock_success(&sx->lock_object, contested, 781 waittime, file, line); 782 783 GIANT_RESTORE(); 784 return (error); 785 } 786 787 /* 788 * This function represents the so-called 'hard case' for sx_sunlock 789 * operation. All 'easy case' failures are redirected to this. Note 790 * that ideally this would be a static function, but it needs to be 791 * accessible from at least sx.h. 792 */ 793 void 794 _sx_sunlock_hard(struct sx *sx, const char *file, int line) 795 { 796 uintptr_t x; 797 798 for (;;) { 799 x = sx->sx_lock; 800 801 /* 802 * We should never have sharers while at least one thread 803 * holds a shared lock. 804 */ 805 KASSERT(!(x & SX_LOCK_SHARED_WAITERS), 806 ("%s: waiting sharers", __func__)); 807 808 /* 809 * See if there is more than one shared lock held. If 810 * so, just drop one and return. 811 */ 812 if (SX_SHARERS(x) > 1) { 813 if (atomic_cmpset_ptr(&sx->sx_lock, x, 814 x - SX_ONE_SHARER)) { 815 if (LOCK_LOG_TEST(&sx->lock_object, 0)) 816 CTR4(KTR_LOCK, 817 "%s: %p succeeded %p -> %p", 818 __func__, sx, (void *)x, 819 (void *)(x - SX_ONE_SHARER)); 820 break; 821 } 822 continue; 823 } 824 825 /* 826 * If there aren't any waiters for an exclusive lock, 827 * then try to drop it quickly. 828 */ 829 if (!(x & SX_LOCK_EXCLUSIVE_WAITERS)) { 830 MPASS(x == SX_SHARERS_LOCK(1)); 831 if (atomic_cmpset_ptr(&sx->sx_lock, SX_SHARERS_LOCK(1), 832 SX_LOCK_UNLOCKED)) { 833 if (LOCK_LOG_TEST(&sx->lock_object, 0)) 834 CTR2(KTR_LOCK, "%s: %p last succeeded", 835 __func__, sx); 836 break; 837 } 838 continue; 839 } 840 841 /* 842 * At this point, there should just be one sharer with 843 * exclusive waiters. 844 */ 845 MPASS(x == (SX_SHARERS_LOCK(1) | SX_LOCK_EXCLUSIVE_WAITERS)); 846 847 sleepq_lock(&sx->lock_object); 848 849 /* 850 * Wake up semantic here is quite simple: 851 * Just wake up all the exclusive waiters. 852 * Note that the state of the lock could have changed, 853 * so if it fails loop back and retry. 854 */ 855 if (!atomic_cmpset_ptr(&sx->sx_lock, 856 SX_SHARERS_LOCK(1) | SX_LOCK_EXCLUSIVE_WAITERS, 857 SX_LOCK_UNLOCKED)) { 858 sleepq_release(&sx->lock_object); 859 continue; 860 } 861 if (LOCK_LOG_TEST(&sx->lock_object, 0)) 862 CTR2(KTR_LOCK, "%s: %p waking up all thread on" 863 "exclusive queue", __func__, sx); 864 sleepq_broadcast(&sx->lock_object, SLEEPQ_SX, -1, 865 SQ_EXCLUSIVE_QUEUE); 866 break; 867 } 868 } 869 870 #ifdef INVARIANT_SUPPORT 871 #ifndef INVARIANTS 872 #undef _sx_assert 873 #endif 874 875 /* 876 * In the non-WITNESS case, sx_assert() can only detect that at least 877 * *some* thread owns an slock, but it cannot guarantee that *this* 878 * thread owns an slock. 879 */ 880 void 881 _sx_assert(struct sx *sx, int what, const char *file, int line) 882 { 883 #ifndef WITNESS 884 int slocked = 0; 885 #endif 886 887 if (panicstr != NULL) 888 return; 889 switch (what) { 890 case SA_SLOCKED: 891 case SA_SLOCKED | SA_NOTRECURSED: 892 case SA_SLOCKED | SA_RECURSED: 893 #ifndef WITNESS 894 slocked = 1; 895 /* FALLTHROUGH */ 896 #endif 897 case SA_LOCKED: 898 case SA_LOCKED | SA_NOTRECURSED: 899 case SA_LOCKED | SA_RECURSED: 900 #ifdef WITNESS 901 witness_assert(&sx->lock_object, what, file, line); 902 #else 903 /* 904 * If some other thread has an exclusive lock or we 905 * have one and are asserting a shared lock, fail. 906 * Also, if no one has a lock at all, fail. 907 */ 908 if (sx->sx_lock == SX_LOCK_UNLOCKED || 909 (!(sx->sx_lock & SX_LOCK_SHARED) && (slocked || 910 sx_xholder(sx) != curthread))) 911 panic("Lock %s not %slocked @ %s:%d\n", 912 sx->lock_object.lo_name, slocked ? "share " : "", 913 file, line); 914 915 if (!(sx->sx_lock & SX_LOCK_SHARED)) { 916 if (sx_recursed(sx)) { 917 if (what & SA_NOTRECURSED) 918 panic("Lock %s recursed @ %s:%d\n", 919 sx->lock_object.lo_name, file, 920 line); 921 } else if (what & SA_RECURSED) 922 panic("Lock %s not recursed @ %s:%d\n", 923 sx->lock_object.lo_name, file, line); 924 } 925 #endif 926 break; 927 case SA_XLOCKED: 928 case SA_XLOCKED | SA_NOTRECURSED: 929 case SA_XLOCKED | SA_RECURSED: 930 if (sx_xholder(sx) != curthread) 931 panic("Lock %s not exclusively locked @ %s:%d\n", 932 sx->lock_object.lo_name, file, line); 933 if (sx_recursed(sx)) { 934 if (what & SA_NOTRECURSED) 935 panic("Lock %s recursed @ %s:%d\n", 936 sx->lock_object.lo_name, file, line); 937 } else if (what & SA_RECURSED) 938 panic("Lock %s not recursed @ %s:%d\n", 939 sx->lock_object.lo_name, file, line); 940 break; 941 case SA_UNLOCKED: 942 #ifdef WITNESS 943 witness_assert(&sx->lock_object, what, file, line); 944 #else 945 /* 946 * If we hold an exclusve lock fail. We can't 947 * reliably check to see if we hold a shared lock or 948 * not. 949 */ 950 if (sx_xholder(sx) == curthread) 951 panic("Lock %s exclusively locked @ %s:%d\n", 952 sx->lock_object.lo_name, file, line); 953 #endif 954 break; 955 default: 956 panic("Unknown sx lock assertion: %d @ %s:%d", what, file, 957 line); 958 } 959 } 960 #endif /* INVARIANT_SUPPORT */ 961 962 #ifdef DDB 963 static void 964 db_show_sx(struct lock_object *lock) 965 { 966 struct thread *td; 967 struct sx *sx; 968 969 sx = (struct sx *)lock; 970 971 db_printf(" state: "); 972 if (sx->sx_lock == SX_LOCK_UNLOCKED) 973 db_printf("UNLOCKED\n"); 974 else if (sx->sx_lock == SX_LOCK_DESTROYED) { 975 db_printf("DESTROYED\n"); 976 return; 977 } else if (sx->sx_lock & SX_LOCK_SHARED) 978 db_printf("SLOCK: %ju\n", (uintmax_t)SX_SHARERS(sx->sx_lock)); 979 else { 980 td = sx_xholder(sx); 981 db_printf("XLOCK: %p (tid %d, pid %d, \"%s\")\n", td, 982 td->td_tid, td->td_proc->p_pid, td->td_name); 983 if (sx_recursed(sx)) 984 db_printf(" recursed: %d\n", sx->sx_recurse); 985 } 986 987 db_printf(" waiters: "); 988 switch(sx->sx_lock & 989 (SX_LOCK_SHARED_WAITERS | SX_LOCK_EXCLUSIVE_WAITERS)) { 990 case SX_LOCK_SHARED_WAITERS: 991 db_printf("shared\n"); 992 break; 993 case SX_LOCK_EXCLUSIVE_WAITERS: 994 db_printf("exclusive\n"); 995 break; 996 case SX_LOCK_SHARED_WAITERS | SX_LOCK_EXCLUSIVE_WAITERS: 997 db_printf("exclusive and shared\n"); 998 break; 999 default: 1000 db_printf("none\n"); 1001 } 1002 } 1003 1004 /* 1005 * Check to see if a thread that is blocked on a sleep queue is actually 1006 * blocked on an sx lock. If so, output some details and return true. 1007 * If the lock has an exclusive owner, return that in *ownerp. 1008 */ 1009 int 1010 sx_chain(struct thread *td, struct thread **ownerp) 1011 { 1012 struct sx *sx; 1013 1014 /* 1015 * Check to see if this thread is blocked on an sx lock. 1016 * First, we check the lock class. If that is ok, then we 1017 * compare the lock name against the wait message. 1018 */ 1019 sx = td->td_wchan; 1020 if (LOCK_CLASS(&sx->lock_object) != &lock_class_sx || 1021 sx->lock_object.lo_name != td->td_wmesg) 1022 return (0); 1023 1024 /* We think we have an sx lock, so output some details. */ 1025 db_printf("blocked on sx \"%s\" ", td->td_wmesg); 1026 *ownerp = sx_xholder(sx); 1027 if (sx->sx_lock & SX_LOCK_SHARED) 1028 db_printf("SLOCK (count %ju)\n", 1029 (uintmax_t)SX_SHARERS(sx->sx_lock)); 1030 else 1031 db_printf("XLOCK\n"); 1032 return (1); 1033 } 1034 #endif 1035