1 /* 2 * Copyright (c) 2001 Jake Burkholder <jake@FreeBSD.org> 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 17 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 24 * SUCH DAMAGE. 25 * 26 * $FreeBSD$ 27 */ 28 29 /*** 30 31 Here is the logic.. 32 33 If there are N processors, then there are at most N KSEs (kernel 34 schedulable entities) working to process threads that belong to a 35 KSEGOUP (kg). If there are X of these KSEs actually running at the 36 moment in question, then there are at most M (N-X) of these KSEs on 37 the run queue, as running KSEs are not on the queue. 38 39 Runnable threads are queued off the KSEGROUP in priority order. 40 If there are M or more threads runnable, the top M threads 41 (by priority) are 'preassigned' to the M KSEs not running. The KSEs take 42 their priority from those threads and are put on the run queue. 43 44 The last thread that had a priority high enough to have a KSE associated 45 with it, AND IS ON THE RUN QUEUE is pointed to by 46 kg->kg_last_assigned. If no threads queued off the KSEGROUP have KSEs 47 assigned as all the available KSEs are activly running, or because there 48 are no threads queued, that pointer is NULL. 49 50 When a KSE is removed from the run queue to become runnable, we know 51 it was associated with the highest priority thread in the queue (at the head 52 of the queue). If it is also the last assigned we know M was 1 and must 53 now be 0. Since the thread is no longer queued that pointer must be 54 removed from it. Since we know there were no more KSEs available, 55 (M was 1 and is now 0) and since we are not FREEING our KSE 56 but using it, we know there are STILL no more KSEs available, we can prove 57 that the next thread in the ksegrp list will not have a KSE to assign to 58 it, so we can show that the pointer must be made 'invalid' (NULL). 59 60 The pointer exists so that when a new thread is made runnable, it can 61 have its priority compared with the last assigned thread to see if 62 it should 'steal' its KSE or not.. i.e. is it 'earlier' 63 on the list than that thread or later.. If it's earlier, then the KSE is 64 removed from the last assigned (which is now not assigned a KSE) 65 and reassigned to the new thread, which is placed earlier in the list. 66 The pointer is then backed up to the previous thread (which may or may not 67 be the new thread). 68 69 When a thread sleeps or is removed, the KSE becomes available and if there 70 are queued threads that are not assigned KSEs, the highest priority one of 71 them is assigned the KSE, which is then placed back on the run queue at 72 the approipriate place, and the kg->kg_last_assigned pointer is adjusted down 73 to point to it. 74 75 The following diagram shows 2 KSEs and 3 threads from a single process. 76 77 RUNQ: --->KSE---KSE--... (KSEs queued at priorities from threads) 78 \ \____ 79 \ \ 80 KSEGROUP---thread--thread--thread (queued in priority order) 81 \ / 82 \_______________/ 83 (last_assigned) 84 85 The result of this scheme is that the M available KSEs are always 86 queued at the priorities they have inherrited from the M highest priority 87 threads for that KSEGROUP. If this situation changes, the KSEs are 88 reassigned to keep this true. 89 90 */ 91 92 #include <sys/param.h> 93 #include <sys/systm.h> 94 #include <sys/kernel.h> 95 #include <sys/ktr.h> 96 #include <sys/lock.h> 97 #include <sys/mutex.h> 98 #include <sys/proc.h> 99 #include <sys/queue.h> 100 #include <sys/sched.h> 101 #include <machine/critical.h> 102 103 CTASSERT((RQB_BPW * RQB_LEN) == RQ_NQS); 104 105 void panc(char *string1, char *string2); 106 107 #if 0 108 static void runq_readjust(struct runq *rq, struct kse *ke); 109 #endif 110 /************************************************************************ 111 * Functions that manipulate runnability from a thread perspective. * 112 ************************************************************************/ 113 /* 114 * Select the KSE that will be run next. From that find the thread, and 115 * remove it from the KSEGRP's run queue. If there is thread clustering, 116 * this will be what does it. 117 */ 118 struct thread * 119 choosethread(void) 120 { 121 struct kse *ke; 122 struct thread *td; 123 struct ksegrp *kg; 124 125 retry: 126 if ((ke = sched_choose())) { 127 td = ke->ke_thread; 128 KASSERT((td->td_kse == ke), ("kse/thread mismatch")); 129 kg = ke->ke_ksegrp; 130 if (td->td_proc->p_flag & P_THREADED) { 131 TAILQ_REMOVE(&kg->kg_runq, td, td_runq); 132 if (kg->kg_last_assigned == td) { 133 kg->kg_last_assigned = TAILQ_PREV(td, 134 threadqueue, td_runq); 135 } 136 } 137 kg->kg_runnable--; 138 CTR2(KTR_RUNQ, "choosethread: td=%p pri=%d", 139 td, td->td_priority); 140 } else { 141 /* Simulate runq_choose() having returned the idle thread */ 142 td = PCPU_GET(idlethread); 143 ke = td->td_kse; 144 CTR1(KTR_RUNQ, "choosethread: td=%p (idle)", td); 145 } 146 ke->ke_flags |= KEF_DIDRUN; 147 148 /* 149 * Only allow non system threads to run in panic 150 * if they are the one we are tracing. (I think.. [JRE]) 151 */ 152 if (panicstr && ((td->td_proc->p_flag & P_SYSTEM) == 0 && 153 (td->td_flags & TDF_INPANIC) == 0)) 154 goto retry; 155 156 TD_SET_RUNNING(td); 157 return (td); 158 } 159 160 /* 161 * Given a surplus KSE, either assign a new runable thread to it 162 * (and put it in the run queue) or put it in the ksegrp's idle KSE list. 163 * Assumes that the original thread is not runnable. 164 */ 165 void 166 kse_reassign(struct kse *ke) 167 { 168 struct ksegrp *kg; 169 struct thread *td; 170 struct thread *original; 171 struct kse_upcall *ku; 172 173 mtx_assert(&sched_lock, MA_OWNED); 174 original = ke->ke_thread; 175 KASSERT(original == NULL || TD_IS_INHIBITED(original), 176 ("reassigning KSE with runnable thread")); 177 kg = ke->ke_ksegrp; 178 if (original) { 179 /* 180 * If the outgoing thread is in threaded group and has never 181 * scheduled an upcall, decide whether this is a short 182 * or long term event and thus whether or not to schedule 183 * an upcall. 184 * If it is a short term event, just suspend it in 185 * a way that takes its KSE with it. 186 * Select the events for which we want to schedule upcalls. 187 * For now it's just sleep. 188 * XXXKSE eventually almost any inhibition could do. 189 */ 190 if (TD_CAN_UNBIND(original) && (original->td_standin) && 191 TD_ON_SLEEPQ(original)) { 192 /* 193 * Release ownership of upcall, and schedule an upcall 194 * thread, this new upcall thread becomes the owner of 195 * the upcall structure. 196 */ 197 ku = original->td_upcall; 198 ku->ku_owner = NULL; 199 original->td_upcall = NULL; 200 original->td_flags &= ~TDF_CAN_UNBIND; 201 thread_schedule_upcall(original, ku); 202 } 203 original->td_kse = NULL; 204 } 205 206 /* 207 * Find the first unassigned thread 208 */ 209 if ((td = kg->kg_last_assigned) != NULL) 210 td = TAILQ_NEXT(td, td_runq); 211 else 212 td = TAILQ_FIRST(&kg->kg_runq); 213 214 /* 215 * If we found one, assign it the kse, otherwise idle the kse. 216 */ 217 if (td) { 218 kg->kg_last_assigned = td; 219 td->td_kse = ke; 220 ke->ke_thread = td; 221 sched_add(ke); 222 CTR2(KTR_RUNQ, "kse_reassign: ke%p -> td%p", ke, td); 223 return; 224 } 225 226 ke->ke_state = KES_IDLE; 227 ke->ke_thread = NULL; 228 TAILQ_INSERT_TAIL(&kg->kg_iq, ke, ke_kgrlist); 229 kg->kg_idle_kses++; 230 CTR1(KTR_RUNQ, "kse_reassign: ke%p on idle queue", ke); 231 return; 232 } 233 234 #if 0 235 /* 236 * Remove a thread from its KSEGRP's run queue. 237 * This in turn may remove it from a KSE if it was already assigned 238 * to one, possibly causing a new thread to be assigned to the KSE 239 * and the KSE getting a new priority. 240 */ 241 static void 242 remrunqueue(struct thread *td) 243 { 244 struct thread *td2, *td3; 245 struct ksegrp *kg; 246 struct kse *ke; 247 248 mtx_assert(&sched_lock, MA_OWNED); 249 KASSERT((TD_ON_RUNQ(td)), ("remrunqueue: Bad state on run queue")); 250 kg = td->td_ksegrp; 251 ke = td->td_kse; 252 CTR1(KTR_RUNQ, "remrunqueue: td%p", td); 253 kg->kg_runnable--; 254 TD_SET_CAN_RUN(td); 255 /* 256 * If it is not a threaded process, take the shortcut. 257 */ 258 if ((td->td_proc->p_flag & P_THREADED) == 0) { 259 /* Bring its kse with it, leave the thread attached */ 260 sched_rem(ke); 261 ke->ke_state = KES_THREAD; 262 return; 263 } 264 td3 = TAILQ_PREV(td, threadqueue, td_runq); 265 TAILQ_REMOVE(&kg->kg_runq, td, td_runq); 266 if (ke) { 267 /* 268 * This thread has been assigned to a KSE. 269 * We need to dissociate it and try assign the 270 * KSE to the next available thread. Then, we should 271 * see if we need to move the KSE in the run queues. 272 */ 273 sched_rem(ke); 274 ke->ke_state = KES_THREAD; 275 td2 = kg->kg_last_assigned; 276 KASSERT((td2 != NULL), ("last assigned has wrong value")); 277 if (td2 == td) 278 kg->kg_last_assigned = td3; 279 kse_reassign(ke); 280 } 281 } 282 #endif 283 284 /* 285 * Change the priority of a thread that is on the run queue. 286 */ 287 void 288 adjustrunqueue( struct thread *td, int newpri) 289 { 290 struct ksegrp *kg; 291 struct kse *ke; 292 293 mtx_assert(&sched_lock, MA_OWNED); 294 KASSERT((TD_ON_RUNQ(td)), ("adjustrunqueue: Bad state on run queue")); 295 296 ke = td->td_kse; 297 CTR1(KTR_RUNQ, "adjustrunqueue: td%p", td); 298 /* 299 * If it is not a threaded process, take the shortcut. 300 */ 301 if ((td->td_proc->p_flag & P_THREADED) == 0) { 302 /* We only care about the kse in the run queue. */ 303 td->td_priority = newpri; 304 if (ke->ke_rqindex != (newpri / RQ_PPQ)) { 305 sched_rem(ke); 306 sched_add(ke); 307 } 308 return; 309 } 310 311 /* It is a threaded process */ 312 kg = td->td_ksegrp; 313 kg->kg_runnable--; 314 TD_SET_CAN_RUN(td); 315 if (ke) { 316 if (kg->kg_last_assigned == td) { 317 kg->kg_last_assigned = 318 TAILQ_PREV(td, threadqueue, td_runq); 319 } 320 sched_rem(ke); 321 } 322 TAILQ_REMOVE(&kg->kg_runq, td, td_runq); 323 td->td_priority = newpri; 324 setrunqueue(td); 325 } 326 327 void 328 setrunqueue(struct thread *td) 329 { 330 struct kse *ke; 331 struct ksegrp *kg; 332 struct thread *td2; 333 struct thread *tda; 334 335 CTR1(KTR_RUNQ, "setrunqueue: td%p", td); 336 mtx_assert(&sched_lock, MA_OWNED); 337 KASSERT((TD_CAN_RUN(td) || TD_IS_RUNNING(td)), 338 ("setrunqueue: bad thread state")); 339 TD_SET_RUNQ(td); 340 kg = td->td_ksegrp; 341 kg->kg_runnable++; 342 if ((td->td_proc->p_flag & P_THREADED) == 0) { 343 /* 344 * Common path optimisation: Only one of everything 345 * and the KSE is always already attached. 346 * Totally ignore the ksegrp run queue. 347 */ 348 sched_add(td->td_kse); 349 return; 350 } 351 352 tda = kg->kg_last_assigned; 353 if ((ke = td->td_kse) == NULL) { 354 if (kg->kg_idle_kses) { 355 /* 356 * There is a free one so it's ours for the asking.. 357 */ 358 ke = TAILQ_FIRST(&kg->kg_iq); 359 TAILQ_REMOVE(&kg->kg_iq, ke, ke_kgrlist); 360 ke->ke_state = KES_THREAD; 361 kg->kg_idle_kses--; 362 } else if (tda && (tda->td_priority > td->td_priority)) { 363 /* 364 * None free, but there is one we can commandeer. 365 */ 366 ke = tda->td_kse; 367 tda->td_kse = NULL; 368 ke->ke_thread = NULL; 369 tda = kg->kg_last_assigned = 370 TAILQ_PREV(tda, threadqueue, td_runq); 371 sched_rem(ke); 372 } 373 } else { 374 /* 375 * Temporarily disassociate so it looks like the other cases. 376 */ 377 ke->ke_thread = NULL; 378 td->td_kse = NULL; 379 } 380 381 /* 382 * Add the thread to the ksegrp's run queue at 383 * the appropriate place. 384 */ 385 TAILQ_FOREACH(td2, &kg->kg_runq, td_runq) { 386 if (td2->td_priority > td->td_priority) { 387 TAILQ_INSERT_BEFORE(td2, td, td_runq); 388 break; 389 } 390 } 391 if (td2 == NULL) { 392 /* We ran off the end of the TAILQ or it was empty. */ 393 TAILQ_INSERT_TAIL(&kg->kg_runq, td, td_runq); 394 } 395 396 /* 397 * If we have a ke to use, then put it on the run queue and 398 * If needed, readjust the last_assigned pointer. 399 */ 400 if (ke) { 401 if (tda == NULL) { 402 /* 403 * No pre-existing last assigned so whoever is first 404 * gets the KSE we brought in.. (maybe us) 405 */ 406 td2 = TAILQ_FIRST(&kg->kg_runq); 407 KASSERT((td2->td_kse == NULL), 408 ("unexpected ke present")); 409 td2->td_kse = ke; 410 ke->ke_thread = td2; 411 kg->kg_last_assigned = td2; 412 } else if (tda->td_priority > td->td_priority) { 413 /* 414 * It's ours, grab it, but last_assigned is past us 415 * so don't change it. 416 */ 417 td->td_kse = ke; 418 ke->ke_thread = td; 419 } else { 420 /* 421 * We are past last_assigned, so 422 * put the new kse on whatever is next, 423 * which may or may not be us. 424 */ 425 td2 = TAILQ_NEXT(tda, td_runq); 426 kg->kg_last_assigned = td2; 427 td2->td_kse = ke; 428 ke->ke_thread = td2; 429 } 430 sched_add(ke); 431 } 432 } 433 434 /************************************************************************ 435 * Critical section marker functions * 436 ************************************************************************/ 437 /* Critical sections that prevent preemption. */ 438 void 439 critical_enter(void) 440 { 441 struct thread *td; 442 443 td = curthread; 444 if (td->td_critnest == 0) 445 cpu_critical_enter(); 446 td->td_critnest++; 447 } 448 449 void 450 critical_exit(void) 451 { 452 struct thread *td; 453 454 td = curthread; 455 if (td->td_critnest == 1) { 456 td->td_critnest = 0; 457 cpu_critical_exit(); 458 } else { 459 td->td_critnest--; 460 } 461 } 462 463 464 /************************************************************************ 465 * SYSTEM RUN QUEUE manipulations and tests * 466 ************************************************************************/ 467 /* 468 * Initialize a run structure. 469 */ 470 void 471 runq_init(struct runq *rq) 472 { 473 int i; 474 475 bzero(rq, sizeof *rq); 476 for (i = 0; i < RQ_NQS; i++) 477 TAILQ_INIT(&rq->rq_queues[i]); 478 } 479 480 /* 481 * Clear the status bit of the queue corresponding to priority level pri, 482 * indicating that it is empty. 483 */ 484 static __inline void 485 runq_clrbit(struct runq *rq, int pri) 486 { 487 struct rqbits *rqb; 488 489 rqb = &rq->rq_status; 490 CTR4(KTR_RUNQ, "runq_clrbit: bits=%#x %#x bit=%#x word=%d", 491 rqb->rqb_bits[RQB_WORD(pri)], 492 rqb->rqb_bits[RQB_WORD(pri)] & ~RQB_BIT(pri), 493 RQB_BIT(pri), RQB_WORD(pri)); 494 rqb->rqb_bits[RQB_WORD(pri)] &= ~RQB_BIT(pri); 495 } 496 497 /* 498 * Find the index of the first non-empty run queue. This is done by 499 * scanning the status bits, a set bit indicates a non-empty queue. 500 */ 501 static __inline int 502 runq_findbit(struct runq *rq) 503 { 504 struct rqbits *rqb; 505 int pri; 506 int i; 507 508 rqb = &rq->rq_status; 509 for (i = 0; i < RQB_LEN; i++) 510 if (rqb->rqb_bits[i]) { 511 pri = RQB_FFS(rqb->rqb_bits[i]) + (i << RQB_L2BPW); 512 CTR3(KTR_RUNQ, "runq_findbit: bits=%#x i=%d pri=%d", 513 rqb->rqb_bits[i], i, pri); 514 return (pri); 515 } 516 517 return (-1); 518 } 519 520 /* 521 * Set the status bit of the queue corresponding to priority level pri, 522 * indicating that it is non-empty. 523 */ 524 static __inline void 525 runq_setbit(struct runq *rq, int pri) 526 { 527 struct rqbits *rqb; 528 529 rqb = &rq->rq_status; 530 CTR4(KTR_RUNQ, "runq_setbit: bits=%#x %#x bit=%#x word=%d", 531 rqb->rqb_bits[RQB_WORD(pri)], 532 rqb->rqb_bits[RQB_WORD(pri)] | RQB_BIT(pri), 533 RQB_BIT(pri), RQB_WORD(pri)); 534 rqb->rqb_bits[RQB_WORD(pri)] |= RQB_BIT(pri); 535 } 536 537 /* 538 * Add the KSE to the queue specified by its priority, and set the 539 * corresponding status bit. 540 */ 541 void 542 runq_add(struct runq *rq, struct kse *ke) 543 { 544 struct rqhead *rqh; 545 int pri; 546 547 pri = ke->ke_thread->td_priority / RQ_PPQ; 548 ke->ke_rqindex = pri; 549 runq_setbit(rq, pri); 550 rqh = &rq->rq_queues[pri]; 551 CTR4(KTR_RUNQ, "runq_add: p=%p pri=%d %d rqh=%p", 552 ke->ke_proc, ke->ke_thread->td_priority, pri, rqh); 553 TAILQ_INSERT_TAIL(rqh, ke, ke_procq); 554 } 555 556 /* 557 * Return true if there are runnable processes of any priority on the run 558 * queue, false otherwise. Has no side effects, does not modify the run 559 * queue structure. 560 */ 561 int 562 runq_check(struct runq *rq) 563 { 564 struct rqbits *rqb; 565 int i; 566 567 rqb = &rq->rq_status; 568 for (i = 0; i < RQB_LEN; i++) 569 if (rqb->rqb_bits[i]) { 570 CTR2(KTR_RUNQ, "runq_check: bits=%#x i=%d", 571 rqb->rqb_bits[i], i); 572 return (1); 573 } 574 CTR0(KTR_RUNQ, "runq_check: empty"); 575 576 return (0); 577 } 578 579 /* 580 * Find the highest priority process on the run queue. 581 */ 582 struct kse * 583 runq_choose(struct runq *rq) 584 { 585 struct rqhead *rqh; 586 struct kse *ke; 587 int pri; 588 589 mtx_assert(&sched_lock, MA_OWNED); 590 while ((pri = runq_findbit(rq)) != -1) { 591 rqh = &rq->rq_queues[pri]; 592 ke = TAILQ_FIRST(rqh); 593 KASSERT(ke != NULL, ("runq_choose: no proc on busy queue")); 594 CTR3(KTR_RUNQ, 595 "runq_choose: pri=%d kse=%p rqh=%p", pri, ke, rqh); 596 return (ke); 597 } 598 CTR1(KTR_RUNQ, "runq_choose: idleproc pri=%d", pri); 599 600 return (NULL); 601 } 602 603 /* 604 * Remove the KSE from the queue specified by its priority, and clear the 605 * corresponding status bit if the queue becomes empty. 606 * Caller must set ke->ke_state afterwards. 607 */ 608 void 609 runq_remove(struct runq *rq, struct kse *ke) 610 { 611 struct rqhead *rqh; 612 int pri; 613 614 KASSERT(ke->ke_proc->p_sflag & PS_INMEM, 615 ("runq_remove: process swapped out")); 616 pri = ke->ke_rqindex; 617 rqh = &rq->rq_queues[pri]; 618 CTR4(KTR_RUNQ, "runq_remove: p=%p pri=%d %d rqh=%p", 619 ke, ke->ke_thread->td_priority, pri, rqh); 620 KASSERT(ke != NULL, ("runq_remove: no proc on busy queue")); 621 TAILQ_REMOVE(rqh, ke, ke_procq); 622 if (TAILQ_EMPTY(rqh)) { 623 CTR0(KTR_RUNQ, "runq_remove: empty"); 624 runq_clrbit(rq, pri); 625 } 626 } 627 628 #if 0 629 void 630 panc(char *string1, char *string2) 631 { 632 printf("%s", string1); 633 Debugger(string2); 634 } 635 636 void 637 thread_sanity_check(struct thread *td, char *string) 638 { 639 struct proc *p; 640 struct ksegrp *kg; 641 struct kse *ke; 642 struct thread *td2 = NULL; 643 unsigned int prevpri; 644 int saw_lastassigned = 0; 645 int unassigned = 0; 646 int assigned = 0; 647 648 p = td->td_proc; 649 kg = td->td_ksegrp; 650 ke = td->td_kse; 651 652 653 if (ke) { 654 if (p != ke->ke_proc) { 655 panc(string, "wrong proc"); 656 } 657 if (ke->ke_thread != td) { 658 panc(string, "wrong thread"); 659 } 660 } 661 662 if ((p->p_flag & P_THREADED) == 0) { 663 if (ke == NULL) { 664 panc(string, "non KSE thread lost kse"); 665 } 666 } else { 667 prevpri = 0; 668 saw_lastassigned = 0; 669 unassigned = 0; 670 assigned = 0; 671 TAILQ_FOREACH(td2, &kg->kg_runq, td_runq) { 672 if (td2->td_priority < prevpri) { 673 panc(string, "thread runqueue unosorted"); 674 } 675 if ((td2->td_state == TDS_RUNQ) && 676 td2->td_kse && 677 (td2->td_kse->ke_state != KES_ONRUNQ)) { 678 panc(string, "KSE wrong state"); 679 } 680 prevpri = td2->td_priority; 681 if (td2->td_kse) { 682 assigned++; 683 if (unassigned) { 684 panc(string, "unassigned before assigned"); 685 } 686 if (kg->kg_last_assigned == NULL) { 687 panc(string, "lastassigned corrupt"); 688 } 689 if (saw_lastassigned) { 690 panc(string, "last assigned not last"); 691 } 692 if (td2->td_kse->ke_thread != td2) { 693 panc(string, "mismatched kse/thread"); 694 } 695 } else { 696 unassigned++; 697 } 698 if (td2 == kg->kg_last_assigned) { 699 saw_lastassigned = 1; 700 if (td2->td_kse == NULL) { 701 panc(string, "last assigned not assigned"); 702 } 703 } 704 } 705 if (kg->kg_last_assigned && (saw_lastassigned == 0)) { 706 panc(string, "where on earth does lastassigned point?"); 707 } 708 #if 0 709 FOREACH_THREAD_IN_GROUP(kg, td2) { 710 if (((td2->td_flags & TDF_UNBOUND) == 0) && 711 (TD_ON_RUNQ(td2))) { 712 assigned++; 713 if (td2->td_kse == NULL) { 714 panc(string, "BOUND thread with no KSE"); 715 } 716 } 717 } 718 #endif 719 #if 0 720 if ((unassigned + assigned) != kg->kg_runnable) { 721 panc(string, "wrong number in runnable"); 722 } 723 #endif 724 } 725 if (assigned == 12345) { 726 printf("%p %p %p %p %p %d, %d", 727 td, td2, ke, kg, p, assigned, saw_lastassigned); 728 } 729 } 730 #endif 731 732