xref: /freebsd/sys/kern/kern_switch.c (revision e8807f22f9383f9a5f3a86fb6dbe77efb5beade6)
1 /*
2  * Copyright (c) 2001 Jake Burkholder <jake@FreeBSD.org>
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  */
26 
27 /***
28 Here is the logic..
29 
30 If there are N processors, then there are at most N KSEs (kernel
31 schedulable entities) working to process threads that belong to a
32 KSEGROUP (kg). If there are X of these KSEs actually running at the
33 moment in question, then there are at most M (N-X) of these KSEs on
34 the run queue, as running KSEs are not on the queue.
35 
36 Runnable threads are queued off the KSEGROUP in priority order.
37 If there are M or more threads runnable, the top M threads
38 (by priority) are 'preassigned' to the M KSEs not running. The KSEs take
39 their priority from those threads and are put on the run queue.
40 
41 The last thread that had a priority high enough to have a KSE associated
42 with it, AND IS ON THE RUN QUEUE is pointed to by
43 kg->kg_last_assigned. If no threads queued off the KSEGROUP have KSEs
44 assigned as all the available KSEs are activly running, or because there
45 are no threads queued, that pointer is NULL.
46 
47 When a KSE is removed from the run queue to become runnable, we know
48 it was associated with the highest priority thread in the queue (at the head
49 of the queue). If it is also the last assigned we know M was 1 and must
50 now be 0. Since the thread is no longer queued that pointer must be
51 removed from it. Since we know there were no more KSEs available,
52 (M was 1 and is now 0) and since we are not FREEING our KSE
53 but using it, we know there are STILL no more KSEs available, we can prove
54 that the next thread in the ksegrp list will not have a KSE to assign to
55 it, so we can show that the pointer must be made 'invalid' (NULL).
56 
57 The pointer exists so that when a new thread is made runnable, it can
58 have its priority compared with the last assigned thread to see if
59 it should 'steal' its KSE or not.. i.e. is it 'earlier'
60 on the list than that thread or later.. If it's earlier, then the KSE is
61 removed from the last assigned (which is now not assigned a KSE)
62 and reassigned to the new thread, which is placed earlier in the list.
63 The pointer is then backed up to the previous thread (which may or may not
64 be the new thread).
65 
66 When a thread sleeps or is removed, the KSE becomes available and if there
67 are queued threads that are not assigned KSEs, the highest priority one of
68 them is assigned the KSE, which is then placed back on the run queue at
69 the approipriate place, and the kg->kg_last_assigned pointer is adjusted down
70 to point to it.
71 
72 The following diagram shows 2 KSEs and 3 threads from a single process.
73 
74  RUNQ: --->KSE---KSE--...    (KSEs queued at priorities from threads)
75               \    \____
76                \        \
77     KSEGROUP---thread--thread--thread    (queued in priority order)
78         \                 /
79          \_______________/
80           (last_assigned)
81 
82 The result of this scheme is that the M available KSEs are always
83 queued at the priorities they have inherrited from the M highest priority
84 threads for that KSEGROUP. If this situation changes, the KSEs are
85 reassigned to keep this true.
86 ***/
87 
88 #include <sys/cdefs.h>
89 __FBSDID("$FreeBSD$");
90 
91 #include "opt_sched.h"
92 
93 #ifndef KERN_SWITCH_INCLUDE
94 #include <sys/param.h>
95 #include <sys/systm.h>
96 #include <sys/kdb.h>
97 #include <sys/kernel.h>
98 #include <sys/ktr.h>
99 #include <sys/lock.h>
100 #include <sys/mutex.h>
101 #include <sys/proc.h>
102 #include <sys/queue.h>
103 #include <sys/sched.h>
104 #else  /* KERN_SWITCH_INCLUDE */
105 #if defined(SMP) && (defined(__i386__) || defined(__amd64__))
106 #include <sys/smp.h>
107 #endif
108 #include <machine/critical.h>
109 #if defined(SMP) && defined(SCHED_4BSD)
110 #include <sys/sysctl.h>
111 #endif
112 
113 #ifdef FULL_PREEMPTION
114 #ifndef PREEMPTION
115 #error "The FULL_PREEMPTION option requires the PREEMPTION option"
116 #endif
117 #endif
118 
119 CTASSERT((RQB_BPW * RQB_LEN) == RQ_NQS);
120 
121 #define td_kse td_sched
122 
123 /************************************************************************
124  * Functions that manipulate runnability from a thread perspective.	*
125  ************************************************************************/
126 /*
127  * Select the KSE that will be run next.  From that find the thread, and
128  * remove it from the KSEGRP's run queue.  If there is thread clustering,
129  * this will be what does it.
130  */
131 struct thread *
132 choosethread(void)
133 {
134 	struct kse *ke;
135 	struct thread *td;
136 	struct ksegrp *kg;
137 
138 #if defined(SMP) && (defined(__i386__) || defined(__amd64__))
139 	if (smp_active == 0 && PCPU_GET(cpuid) != 0) {
140 		/* Shutting down, run idlethread on AP's */
141 		td = PCPU_GET(idlethread);
142 		ke = td->td_kse;
143 		CTR1(KTR_RUNQ, "choosethread: td=%p (idle)", td);
144 		ke->ke_flags |= KEF_DIDRUN;
145 		TD_SET_RUNNING(td);
146 		return (td);
147 	}
148 #endif
149 
150 retry:
151 	ke = sched_choose();
152 	if (ke) {
153 		td = ke->ke_thread;
154 		KASSERT((td->td_kse == ke), ("kse/thread mismatch"));
155 		kg = ke->ke_ksegrp;
156 		if (td->td_proc->p_flag & P_HADTHREADS) {
157 			if (kg->kg_last_assigned == td) {
158 				kg->kg_last_assigned = TAILQ_PREV(td,
159 				    threadqueue, td_runq);
160 			}
161 			TAILQ_REMOVE(&kg->kg_runq, td, td_runq);
162 			kg->kg_runnable--;
163 		}
164 		CTR2(KTR_RUNQ, "choosethread: td=%p pri=%d",
165 		    td, td->td_priority);
166 	} else {
167 		/* Simulate runq_choose() having returned the idle thread */
168 		td = PCPU_GET(idlethread);
169 		ke = td->td_kse;
170 		CTR1(KTR_RUNQ, "choosethread: td=%p (idle)", td);
171 	}
172 	ke->ke_flags |= KEF_DIDRUN;
173 
174 	/*
175 	 * If we are in panic, only allow system threads,
176 	 * plus the one we are running in, to be run.
177 	 */
178 	if (panicstr && ((td->td_proc->p_flag & P_SYSTEM) == 0 &&
179 	    (td->td_flags & TDF_INPANIC) == 0)) {
180 		/* note that it is no longer on the run queue */
181 		TD_SET_CAN_RUN(td);
182 		goto retry;
183 	}
184 
185 	TD_SET_RUNNING(td);
186 	return (td);
187 }
188 
189 /*
190  * Given a surplus system slot, try assign a new runnable thread to it.
191  * Called from:
192  *  sched_thread_exit()  (local)
193  *  sched_switch()  (local)
194  *  sched_thread_exit()  (local)
195  *  remrunqueue()  (local)
196  */
197 static void
198 slot_fill(struct ksegrp *kg)
199 {
200 	struct thread *td;
201 
202 	mtx_assert(&sched_lock, MA_OWNED);
203 	while (kg->kg_avail_opennings > 0) {
204 		/*
205 		 * Find the first unassigned thread
206 		 */
207 		if ((td = kg->kg_last_assigned) != NULL)
208 			td = TAILQ_NEXT(td, td_runq);
209 		else
210 			td = TAILQ_FIRST(&kg->kg_runq);
211 
212 		/*
213 		 * If we found one, send it to the system scheduler.
214 		 */
215 		if (td) {
216 			kg->kg_last_assigned = td;
217 			kg->kg_avail_opennings--;
218 			sched_add(td, SRQ_BORING);
219 			CTR2(KTR_RUNQ, "slot_fill: td%p -> kg%p", td, kg);
220 		} else {
221 			/* no threads to use up the slots. quit now */
222 			break;
223 		}
224 	}
225 }
226 
227 #ifdef	SCHED_4BSD
228 /*
229  * Remove a thread from its KSEGRP's run queue.
230  * This in turn may remove it from a KSE if it was already assigned
231  * to one, possibly causing a new thread to be assigned to the KSE
232  * and the KSE getting a new priority.
233  */
234 static void
235 remrunqueue(struct thread *td)
236 {
237 	struct thread *td2, *td3;
238 	struct ksegrp *kg;
239 	struct kse *ke;
240 
241 	mtx_assert(&sched_lock, MA_OWNED);
242 	KASSERT((TD_ON_RUNQ(td)), ("remrunqueue: Bad state on run queue"));
243 	kg = td->td_ksegrp;
244 	ke = td->td_kse;
245 	CTR1(KTR_RUNQ, "remrunqueue: td%p", td);
246 	TD_SET_CAN_RUN(td);
247 	/*
248 	 * If it is not a threaded process, take the shortcut.
249 	 */
250 	if ((td->td_proc->p_flag & P_HADTHREADS) == 0) {
251 		/* remve from sys run queue and free up a slot */
252 		sched_rem(td);
253 		kg->kg_avail_opennings++;
254 		ke->ke_state = KES_THREAD;
255 		return;
256 	}
257    	td3 = TAILQ_PREV(td, threadqueue, td_runq);
258 	TAILQ_REMOVE(&kg->kg_runq, td, td_runq);
259 	kg->kg_runnable--;
260 	if (ke->ke_state == KES_ONRUNQ) {
261 		/*
262 		 * This thread has been assigned to the system run queue.
263 		 * We need to dissociate it and try assign the
264 		 * KSE to the next available thread. Then, we should
265 		 * see if we need to move the KSE in the run queues.
266 		 */
267 		sched_rem(td);
268 		kg->kg_avail_opennings++;
269 		ke->ke_state = KES_THREAD;
270 		td2 = kg->kg_last_assigned;
271 		KASSERT((td2 != NULL), ("last assigned has wrong value"));
272 		if (td2 == td)
273 			kg->kg_last_assigned = td3;
274 		/* slot_fill(kg); */ /* will replace it with another */
275 	}
276 }
277 #endif
278 
279 /*
280  * Change the priority of a thread that is on the run queue.
281  */
282 void
283 adjustrunqueue( struct thread *td, int newpri)
284 {
285 	struct ksegrp *kg;
286 	struct kse *ke;
287 
288 	mtx_assert(&sched_lock, MA_OWNED);
289 	KASSERT((TD_ON_RUNQ(td)), ("adjustrunqueue: Bad state on run queue"));
290 
291 	ke = td->td_kse;
292 	CTR1(KTR_RUNQ, "adjustrunqueue: td%p", td);
293 	/*
294 	 * If it is not a threaded process, take the shortcut.
295 	 */
296 	if ((td->td_proc->p_flag & P_HADTHREADS) == 0) {
297 		/* We only care about the kse in the run queue. */
298 		td->td_priority = newpri;
299 		if (ke->ke_rqindex != (newpri / RQ_PPQ)) {
300 			sched_rem(td);
301 			sched_add(td, SRQ_BORING);
302 		}
303 		return;
304 	}
305 
306 	/* It is a threaded process */
307 	kg = td->td_ksegrp;
308 	TD_SET_CAN_RUN(td);
309 	if (ke->ke_state == KES_ONRUNQ) {
310 		if (kg->kg_last_assigned == td) {
311 			kg->kg_last_assigned =
312 			    TAILQ_PREV(td, threadqueue, td_runq);
313 		}
314 		sched_rem(td);
315 		kg->kg_avail_opennings++;
316 	}
317 	TAILQ_REMOVE(&kg->kg_runq, td, td_runq);
318 	kg->kg_runnable--;
319 	td->td_priority = newpri;
320 	setrunqueue(td, SRQ_BORING);
321 }
322 int limitcount;
323 void
324 setrunqueue(struct thread *td, int flags)
325 {
326 	struct ksegrp *kg;
327 	struct thread *td2;
328 	struct thread *tda;
329 	int count;
330 
331 	CTR3(KTR_RUNQ, "setrunqueue: td:%p kg:%p pid:%d",
332 	    td, td->td_ksegrp, td->td_proc->p_pid);
333 	mtx_assert(&sched_lock, MA_OWNED);
334 	KASSERT((td->td_inhibitors == 0),
335 			("setrunqueue: trying to run inhibitted thread"));
336 	KASSERT((TD_CAN_RUN(td) || TD_IS_RUNNING(td)),
337 	    ("setrunqueue: bad thread state"));
338 	TD_SET_RUNQ(td);
339 	kg = td->td_ksegrp;
340 	if ((td->td_proc->p_flag & P_HADTHREADS) == 0) {
341 		/*
342 		 * Common path optimisation: Only one of everything
343 		 * and the KSE is always already attached.
344 		 * Totally ignore the ksegrp run queue.
345 		 */
346 		if (kg->kg_avail_opennings != 1) {
347 			if (limitcount < 1) {
348 				limitcount++;
349 				printf("pid %d: corrected slot count (%d->1)\n",
350 				    td->td_proc->p_pid, kg->kg_avail_opennings);
351 
352 			}
353 			kg->kg_avail_opennings = 1;
354 		}
355 		kg->kg_avail_opennings--;
356 		sched_add(td, flags);
357 		return;
358 	}
359 
360 	tda = kg->kg_last_assigned;
361 	if ((kg->kg_avail_opennings <= 0) &&
362 	(tda && (tda->td_priority > td->td_priority))) {
363 		/*
364 		 * None free, but there is one we can commandeer.
365 		 */
366 		CTR2(KTR_RUNQ,
367 		    "setrunqueue: kg:%p: take slot from td: %p", kg, tda);
368 		sched_rem(tda);
369 		tda = kg->kg_last_assigned =
370 		    TAILQ_PREV(tda, threadqueue, td_runq);
371 		kg->kg_avail_opennings++;
372 	}
373 
374 	/*
375 	 * Add the thread to the ksegrp's run queue at
376 	 * the appropriate place.
377 	 */
378 	count = 0;
379 	TAILQ_FOREACH(td2, &kg->kg_runq, td_runq) {
380 		if (td2->td_priority > td->td_priority) {
381 			kg->kg_runnable++;
382 			TAILQ_INSERT_BEFORE(td2, td, td_runq);
383 			break;
384 		}
385 		/* XXX Debugging hack */
386 		if (++count > 10000) {
387 			printf("setrunqueue(): corrupt kq_runq, td= %p\n", td);
388 			panic("deadlock in setrunqueue");
389 		}
390 	}
391 	if (td2 == NULL) {
392 		/* We ran off the end of the TAILQ or it was empty. */
393 		kg->kg_runnable++;
394 		TAILQ_INSERT_TAIL(&kg->kg_runq, td, td_runq);
395 	}
396 
397 	/*
398 	 * If we have a slot to use, then put the thread on the system
399 	 * run queue and if needed, readjust the last_assigned pointer.
400 	 */
401 	if (kg->kg_avail_opennings > 0) {
402 		if (tda == NULL) {
403 			/*
404 			 * No pre-existing last assigned so whoever is first
405 			 * gets the KSE we brought in.. (maybe us)
406 			 */
407 			td2 = TAILQ_FIRST(&kg->kg_runq);
408 			kg->kg_last_assigned = td2;
409 		} else if (tda->td_priority > td->td_priority) {
410 			td2 = td;
411 		} else {
412 			/*
413 			 * We are past last_assigned, so
414 			 * gave the next slot to whatever is next,
415 			 * which may or may not be us.
416 			 */
417 			td2 = TAILQ_NEXT(tda, td_runq);
418 			kg->kg_last_assigned = td2;
419 		}
420 		kg->kg_avail_opennings--;
421 		sched_add(td2, flags);
422 	} else {
423 		CTR3(KTR_RUNQ, "setrunqueue: held: td%p kg%p pid%d",
424 			td, td->td_ksegrp, td->td_proc->p_pid);
425 	}
426 }
427 
428 /*
429  * Kernel thread preemption implementation.  Critical sections mark
430  * regions of code in which preemptions are not allowed.
431  */
432 void
433 critical_enter(void)
434 {
435 	struct thread *td;
436 
437 	td = curthread;
438 	if (td->td_critnest == 0)
439 		cpu_critical_enter(td);
440 	td->td_critnest++;
441 }
442 
443 void
444 critical_exit(void)
445 {
446 	struct thread *td;
447 
448 	td = curthread;
449 	KASSERT(td->td_critnest != 0,
450 	    ("critical_exit: td_critnest == 0"));
451 	if (td->td_critnest == 1) {
452 #ifdef PREEMPTION
453 		mtx_assert(&sched_lock, MA_NOTOWNED);
454 		if (td->td_pflags & TDP_OWEPREEMPT) {
455 			mtx_lock_spin(&sched_lock);
456 			mi_switch(SW_INVOL, NULL);
457 			mtx_unlock_spin(&sched_lock);
458 		}
459 #endif
460 		td->td_critnest = 0;
461 		cpu_critical_exit(td);
462 	} else {
463 		td->td_critnest--;
464 	}
465 }
466 
467 /*
468  * This function is called when a thread is about to be put on run queue
469  * because it has been made runnable or its priority has been adjusted.  It
470  * determines if the new thread should be immediately preempted to.  If so,
471  * it switches to it and eventually returns true.  If not, it returns false
472  * so that the caller may place the thread on an appropriate run queue.
473  */
474 int
475 maybe_preempt(struct thread *td)
476 {
477 #ifdef PREEMPTION
478 	struct thread *ctd;
479 	int cpri, pri;
480 #endif
481 
482 	mtx_assert(&sched_lock, MA_OWNED);
483 #ifdef PREEMPTION
484 	/*
485 	 * The new thread should not preempt the current thread if any of the
486 	 * following conditions are true:
487 	 *
488 	 *  - The current thread has a higher (numerically lower) or
489 	 *    equivalent priority.  Note that this prevents curthread from
490 	 *    trying to preempt to itself.
491 	 *  - It is too early in the boot for context switches (cold is set).
492 	 *  - The current thread has an inhibitor set or is in the process of
493 	 *    exiting.  In this case, the current thread is about to switch
494 	 *    out anyways, so there's no point in preempting.  If we did,
495 	 *    the current thread would not be properly resumed as well, so
496 	 *    just avoid that whole landmine.
497 	 *  - If the new thread's priority is not a realtime priority and
498 	 *    the current thread's priority is not an idle priority and
499 	 *    FULL_PREEMPTION is disabled.
500 	 *
501 	 * If all of these conditions are false, but the current thread is in
502 	 * a nested critical section, then we have to defer the preemption
503 	 * until we exit the critical section.  Otherwise, switch immediately
504 	 * to the new thread.
505 	 */
506 	ctd = curthread;
507 	KASSERT ((ctd->td_kse != NULL && ctd->td_kse->ke_thread == ctd),
508 	  ("thread has no (or wrong) sched-private part."));
509 	KASSERT((td->td_inhibitors == 0),
510 			("maybe_preempt: trying to run inhibitted thread"));
511 	pri = td->td_priority;
512 	cpri = ctd->td_priority;
513 	if (pri >= cpri || cold /* || dumping */ || TD_IS_INHIBITED(ctd) ||
514 	    td->td_kse->ke_state != KES_THREAD)
515 		return (0);
516 #ifndef FULL_PREEMPTION
517 	if (!(pri >= PRI_MIN_ITHD && pri <= PRI_MAX_ITHD) &&
518 	    !(cpri >= PRI_MIN_IDLE))
519 		return (0);
520 #endif
521 	if (ctd->td_critnest > 1) {
522 		CTR1(KTR_PROC, "maybe_preempt: in critical section %d",
523 		    ctd->td_critnest);
524 		ctd->td_pflags |= TDP_OWEPREEMPT;
525 		return (0);
526 	}
527 
528 	/*
529 	 * Our thread state says that we are already on a run queue, so
530 	 * update our state as if we had been dequeued by choosethread().
531 	 * However we must not actually be on the system run queue yet.
532 	 */
533 	MPASS(TD_ON_RUNQ(td));
534 	MPASS(td->td_sched->ke_state != KES_ONRUNQ);
535 	if (td->td_proc->p_flag & P_HADTHREADS) {
536 		/*
537 		 * If this is a threaded process we actually ARE on the
538 		 * ksegrp run queue so take it off that first.
539 		 */
540 		remrunqueue(td); /* maybe use a simpler version */
541 	}
542 
543 	TD_SET_RUNNING(td);
544 	CTR3(KTR_PROC, "preempting to thread %p (pid %d, %s)\n", td,
545 	    td->td_proc->p_pid, td->td_proc->p_comm);
546 	mi_switch(SW_INVOL, td);
547 	return (1);
548 #else
549 	return (0);
550 #endif
551 }
552 
553 #if 0
554 #ifndef PREEMPTION
555 /* XXX: There should be a non-static version of this. */
556 static void
557 printf_caddr_t(void *data)
558 {
559 	printf("%s", (char *)data);
560 }
561 static char preempt_warning[] =
562     "WARNING: Kernel preemption is disabled, expect reduced performance.\n";
563 SYSINIT(preempt_warning, SI_SUB_COPYRIGHT, SI_ORDER_ANY, printf_caddr_t,
564     preempt_warning)
565 #endif
566 #endif
567 
568 /************************************************************************
569  * SYSTEM RUN QUEUE manipulations and tests				*
570  ************************************************************************/
571 /*
572  * Initialize a run structure.
573  */
574 void
575 runq_init(struct runq *rq)
576 {
577 	int i;
578 
579 	bzero(rq, sizeof *rq);
580 	for (i = 0; i < RQ_NQS; i++)
581 		TAILQ_INIT(&rq->rq_queues[i]);
582 }
583 
584 /*
585  * Clear the status bit of the queue corresponding to priority level pri,
586  * indicating that it is empty.
587  */
588 static __inline void
589 runq_clrbit(struct runq *rq, int pri)
590 {
591 	struct rqbits *rqb;
592 
593 	rqb = &rq->rq_status;
594 	CTR4(KTR_RUNQ, "runq_clrbit: bits=%#x %#x bit=%#x word=%d",
595 	    rqb->rqb_bits[RQB_WORD(pri)],
596 	    rqb->rqb_bits[RQB_WORD(pri)] & ~RQB_BIT(pri),
597 	    RQB_BIT(pri), RQB_WORD(pri));
598 	rqb->rqb_bits[RQB_WORD(pri)] &= ~RQB_BIT(pri);
599 }
600 
601 /*
602  * Find the index of the first non-empty run queue.  This is done by
603  * scanning the status bits, a set bit indicates a non-empty queue.
604  */
605 static __inline int
606 runq_findbit(struct runq *rq)
607 {
608 	struct rqbits *rqb;
609 	int pri;
610 	int i;
611 
612 	rqb = &rq->rq_status;
613 	for (i = 0; i < RQB_LEN; i++)
614 		if (rqb->rqb_bits[i]) {
615 			pri = RQB_FFS(rqb->rqb_bits[i]) + (i << RQB_L2BPW);
616 			CTR3(KTR_RUNQ, "runq_findbit: bits=%#x i=%d pri=%d",
617 			    rqb->rqb_bits[i], i, pri);
618 			return (pri);
619 		}
620 
621 	return (-1);
622 }
623 
624 /*
625  * Set the status bit of the queue corresponding to priority level pri,
626  * indicating that it is non-empty.
627  */
628 static __inline void
629 runq_setbit(struct runq *rq, int pri)
630 {
631 	struct rqbits *rqb;
632 
633 	rqb = &rq->rq_status;
634 	CTR4(KTR_RUNQ, "runq_setbit: bits=%#x %#x bit=%#x word=%d",
635 	    rqb->rqb_bits[RQB_WORD(pri)],
636 	    rqb->rqb_bits[RQB_WORD(pri)] | RQB_BIT(pri),
637 	    RQB_BIT(pri), RQB_WORD(pri));
638 	rqb->rqb_bits[RQB_WORD(pri)] |= RQB_BIT(pri);
639 }
640 
641 /*
642  * Add the KSE to the queue specified by its priority, and set the
643  * corresponding status bit.
644  */
645 void
646 runq_add(struct runq *rq, struct kse *ke)
647 {
648 	struct rqhead *rqh;
649 	int pri;
650 
651 	pri = ke->ke_thread->td_priority / RQ_PPQ;
652 	ke->ke_rqindex = pri;
653 	runq_setbit(rq, pri);
654 	rqh = &rq->rq_queues[pri];
655 	CTR5(KTR_RUNQ, "runq_add: td=%p ke=%p pri=%d %d rqh=%p",
656 	    ke->ke_thread, ke, ke->ke_thread->td_priority, pri, rqh);
657 	TAILQ_INSERT_TAIL(rqh, ke, ke_procq);
658 }
659 
660 /*
661  * Return true if there are runnable processes of any priority on the run
662  * queue, false otherwise.  Has no side effects, does not modify the run
663  * queue structure.
664  */
665 int
666 runq_check(struct runq *rq)
667 {
668 	struct rqbits *rqb;
669 	int i;
670 
671 	rqb = &rq->rq_status;
672 	for (i = 0; i < RQB_LEN; i++)
673 		if (rqb->rqb_bits[i]) {
674 			CTR2(KTR_RUNQ, "runq_check: bits=%#x i=%d",
675 			    rqb->rqb_bits[i], i);
676 			return (1);
677 		}
678 	CTR0(KTR_RUNQ, "runq_check: empty");
679 
680 	return (0);
681 }
682 
683 #if defined(SMP) && defined(SCHED_4BSD)
684 int runq_fuzz = 1;
685 SYSCTL_INT(_kern_sched, OID_AUTO, runq_fuzz, CTLFLAG_RW, &runq_fuzz, 0, "");
686 #endif
687 
688 /*
689  * Find the highest priority process on the run queue.
690  */
691 struct kse *
692 runq_choose(struct runq *rq)
693 {
694 	struct rqhead *rqh;
695 	struct kse *ke;
696 	int pri;
697 
698 	mtx_assert(&sched_lock, MA_OWNED);
699 	while ((pri = runq_findbit(rq)) != -1) {
700 		rqh = &rq->rq_queues[pri];
701 #if defined(SMP) && defined(SCHED_4BSD)
702 		/* fuzz == 1 is normal.. 0 or less are ignored */
703 		if (runq_fuzz > 1) {
704 			/*
705 			 * In the first couple of entries, check if
706 			 * there is one for our CPU as a preference.
707 			 */
708 			int count = runq_fuzz;
709 			int cpu = PCPU_GET(cpuid);
710 			struct kse *ke2;
711 			ke2 = ke = TAILQ_FIRST(rqh);
712 
713 			while (count-- && ke2) {
714 				if (ke->ke_thread->td_lastcpu == cpu) {
715 					ke = ke2;
716 					break;
717 				}
718 				ke2 = TAILQ_NEXT(ke2, ke_procq);
719 			}
720 		} else
721 #endif
722 			ke = TAILQ_FIRST(rqh);
723 		KASSERT(ke != NULL, ("runq_choose: no proc on busy queue"));
724 		CTR3(KTR_RUNQ,
725 		    "runq_choose: pri=%d kse=%p rqh=%p", pri, ke, rqh);
726 		return (ke);
727 	}
728 	CTR1(KTR_RUNQ, "runq_choose: idleproc pri=%d", pri);
729 
730 	return (NULL);
731 }
732 
733 /*
734  * Remove the KSE from the queue specified by its priority, and clear the
735  * corresponding status bit if the queue becomes empty.
736  * Caller must set ke->ke_state afterwards.
737  */
738 void
739 runq_remove(struct runq *rq, struct kse *ke)
740 {
741 	struct rqhead *rqh;
742 	int pri;
743 
744 	KASSERT(ke->ke_proc->p_sflag & PS_INMEM,
745 		("runq_remove: process swapped out"));
746 	pri = ke->ke_rqindex;
747 	rqh = &rq->rq_queues[pri];
748 	CTR5(KTR_RUNQ, "runq_remove: td=%p, ke=%p pri=%d %d rqh=%p",
749 	    ke->ke_thread, ke, ke->ke_thread->td_priority, pri, rqh);
750 	KASSERT(ke != NULL, ("runq_remove: no proc on busy queue"));
751 	TAILQ_REMOVE(rqh, ke, ke_procq);
752 	if (TAILQ_EMPTY(rqh)) {
753 		CTR0(KTR_RUNQ, "runq_remove: empty");
754 		runq_clrbit(rq, pri);
755 	}
756 }
757 
758 /****** functions that are temporarily here ***********/
759 #include <vm/uma.h>
760 #define RANGEOF(type, start, end) (offsetof(type, end) - offsetof(type, start))
761 extern struct mtx kse_zombie_lock;
762 
763 /*
764  *  Allocate scheduler specific per-process resources.
765  * The thread and ksegrp have already been linked in.
766  * In this case just set the default concurrency value.
767  *
768  * Called from:
769  *  proc_init() (UMA init method)
770  */
771 void
772 sched_newproc(struct proc *p, struct ksegrp *kg, struct thread *td)
773 {
774 
775 	/* This can go in sched_fork */
776 	sched_init_concurrency(kg);
777 }
778 
779 /*
780  * Called by the uma process fini routine..
781  * undo anything we may have done in the uma_init method.
782  * Panic if it's not all 1:1:1:1
783  * Called from:
784  *  proc_fini() (UMA method)
785  */
786 void
787 sched_destroyproc(struct proc *p)
788 {
789 
790 	/* this function slated for destruction */
791 	KASSERT((p->p_numthreads == 1), ("Cached proc with > 1 thread "));
792 	KASSERT((p->p_numksegrps == 1), ("Cached proc with > 1 ksegrp "));
793 }
794 
795 #define RANGEOF(type, start, end) (offsetof(type, end) - offsetof(type, start))
796 /*
797  * thread is being either created or recycled.
798  * Fix up the per-scheduler resources associated with it.
799  * Called from:
800  *  sched_fork_thread()
801  *  thread_dtor()  (*may go away)
802  *  thread_init()  (*may go away)
803  */
804 void
805 sched_newthread(struct thread *td)
806 {
807 	struct td_sched *ke;
808 
809 	ke = (struct td_sched *) (td + 1);
810 	bzero(ke, sizeof(*ke));
811 	td->td_sched     = ke;
812 	ke->ke_thread	= td;
813 	ke->ke_oncpu	= NOCPU;
814 	ke->ke_state	= KES_THREAD;
815 }
816 
817 /*
818  * Set up an initial concurrency of 1
819  * and set the given thread (if given) to be using that
820  * concurrency slot.
821  * May be used "offline"..before the ksegrp is attached to the world
822  * and thus wouldn't need schedlock in that case.
823  * Called from:
824  *  thr_create()
825  *  proc_init() (UMA) via sched_newproc()
826  */
827 void
828 sched_init_concurrency(struct ksegrp *kg)
829 {
830 
831 	kg->kg_concurrency = 1;
832 	kg->kg_avail_opennings = 1;
833 }
834 
835 /*
836  * Change the concurrency of an existing ksegrp to N
837  * Called from:
838  *  kse_create()
839  *  kse_exit()
840  *  thread_exit()
841  *  thread_single()
842  */
843 void
844 sched_set_concurrency(struct ksegrp *kg, int concurrency)
845 {
846 
847 	/* Handle the case for a declining concurrency */
848 	kg->kg_avail_opennings += (concurrency - kg->kg_concurrency);
849 	kg->kg_concurrency = concurrency;
850 }
851 
852 /*
853  * Called from thread_exit() for all exiting thread
854  *
855  * Not to be confused with sched_exit_thread()
856  * that is only called from thread_exit() for threads exiting
857  * without the rest of the process exiting because it is also called from
858  * sched_exit() and we wouldn't want to call it twice.
859  * XXX This can probably be fixed.
860  */
861 void
862 sched_thread_exit(struct thread *td)
863 {
864 
865 	td->td_ksegrp->kg_avail_opennings++;
866 	slot_fill(td->td_ksegrp);
867 }
868 
869 #endif /* KERN_SWITCH_INCLUDE */
870