xref: /freebsd/sys/kern/kern_switch.c (revision d429ea332342fcb98d27a350d0c4944bf9aec3f9)
1 /*-
2  * Copyright (c) 2001 Jake Burkholder <jake@FreeBSD.org>
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  */
26 
27 /***
28 Here is the logic..
29 
30 If there are N processors, then there are at most N KSEs (kernel
31 schedulable entities) working to process threads that belong to a
32 KSEGROUP (kg). If there are X of these KSEs actually running at the
33 moment in question, then there are at most M (N-X) of these KSEs on
34 the run queue, as running KSEs are not on the queue.
35 
36 Runnable threads are queued off the KSEGROUP in priority order.
37 If there are M or more threads runnable, the top M threads
38 (by priority) are 'preassigned' to the M KSEs not running. The KSEs take
39 their priority from those threads and are put on the run queue.
40 
41 The last thread that had a priority high enough to have a KSE associated
42 with it, AND IS ON THE RUN QUEUE is pointed to by
43 kg->kg_last_assigned. If no threads queued off the KSEGROUP have KSEs
44 assigned as all the available KSEs are activly running, or because there
45 are no threads queued, that pointer is NULL.
46 
47 When a KSE is removed from the run queue to become runnable, we know
48 it was associated with the highest priority thread in the queue (at the head
49 of the queue). If it is also the last assigned we know M was 1 and must
50 now be 0. Since the thread is no longer queued that pointer must be
51 removed from it. Since we know there were no more KSEs available,
52 (M was 1 and is now 0) and since we are not FREEING our KSE
53 but using it, we know there are STILL no more KSEs available, we can prove
54 that the next thread in the ksegrp list will not have a KSE to assign to
55 it, so we can show that the pointer must be made 'invalid' (NULL).
56 
57 The pointer exists so that when a new thread is made runnable, it can
58 have its priority compared with the last assigned thread to see if
59 it should 'steal' its KSE or not.. i.e. is it 'earlier'
60 on the list than that thread or later.. If it's earlier, then the KSE is
61 removed from the last assigned (which is now not assigned a KSE)
62 and reassigned to the new thread, which is placed earlier in the list.
63 The pointer is then backed up to the previous thread (which may or may not
64 be the new thread).
65 
66 When a thread sleeps or is removed, the KSE becomes available and if there
67 are queued threads that are not assigned KSEs, the highest priority one of
68 them is assigned the KSE, which is then placed back on the run queue at
69 the approipriate place, and the kg->kg_last_assigned pointer is adjusted down
70 to point to it.
71 
72 The following diagram shows 2 KSEs and 3 threads from a single process.
73 
74  RUNQ: --->KSE---KSE--...    (KSEs queued at priorities from threads)
75               \    \____
76                \        \
77     KSEGROUP---thread--thread--thread    (queued in priority order)
78         \                 /
79          \_______________/
80           (last_assigned)
81 
82 The result of this scheme is that the M available KSEs are always
83 queued at the priorities they have inherrited from the M highest priority
84 threads for that KSEGROUP. If this situation changes, the KSEs are
85 reassigned to keep this true.
86 ***/
87 
88 #include <sys/cdefs.h>
89 __FBSDID("$FreeBSD$");
90 
91 #include "opt_sched.h"
92 
93 #ifndef KERN_SWITCH_INCLUDE
94 #include <sys/param.h>
95 #include <sys/systm.h>
96 #include <sys/kdb.h>
97 #include <sys/kernel.h>
98 #include <sys/ktr.h>
99 #include <sys/lock.h>
100 #include <sys/mutex.h>
101 #include <sys/proc.h>
102 #include <sys/queue.h>
103 #include <sys/sched.h>
104 #else  /* KERN_SWITCH_INCLUDE */
105 #if defined(SMP) && (defined(__i386__) || defined(__amd64__))
106 #include <sys/smp.h>
107 #endif
108 #if defined(SMP) && defined(SCHED_4BSD)
109 #include <sys/sysctl.h>
110 #endif
111 
112 #ifdef FULL_PREEMPTION
113 #ifndef PREEMPTION
114 #error "The FULL_PREEMPTION option requires the PREEMPTION option"
115 #endif
116 #endif
117 
118 CTASSERT((RQB_BPW * RQB_LEN) == RQ_NQS);
119 
120 #define td_kse td_sched
121 
122 /*
123  * kern.sched.preemption allows user space to determine if preemption support
124  * is compiled in or not.  It is not currently a boot or runtime flag that
125  * can be changed.
126  */
127 #ifdef PREEMPTION
128 static int kern_sched_preemption = 1;
129 #else
130 static int kern_sched_preemption = 0;
131 #endif
132 SYSCTL_INT(_kern_sched, OID_AUTO, preemption, CTLFLAG_RD,
133     &kern_sched_preemption, 0, "Kernel preemption enabled");
134 
135 /************************************************************************
136  * Functions that manipulate runnability from a thread perspective.	*
137  ************************************************************************/
138 /*
139  * Select the KSE that will be run next.  From that find the thread, and
140  * remove it from the KSEGRP's run queue.  If there is thread clustering,
141  * this will be what does it.
142  */
143 struct thread *
144 choosethread(void)
145 {
146 	struct kse *ke;
147 	struct thread *td;
148 	struct ksegrp *kg;
149 
150 #if defined(SMP) && (defined(__i386__) || defined(__amd64__))
151 	if (smp_active == 0 && PCPU_GET(cpuid) != 0) {
152 		/* Shutting down, run idlethread on AP's */
153 		td = PCPU_GET(idlethread);
154 		ke = td->td_kse;
155 		CTR1(KTR_RUNQ, "choosethread: td=%p (idle)", td);
156 		ke->ke_flags |= KEF_DIDRUN;
157 		TD_SET_RUNNING(td);
158 		return (td);
159 	}
160 #endif
161 
162 retry:
163 	ke = sched_choose();
164 	if (ke) {
165 		td = ke->ke_thread;
166 		KASSERT((td->td_kse == ke), ("kse/thread mismatch"));
167 		kg = ke->ke_ksegrp;
168 		if (td->td_proc->p_flag & P_HADTHREADS) {
169 			if (kg->kg_last_assigned == td) {
170 				kg->kg_last_assigned = TAILQ_PREV(td,
171 				    threadqueue, td_runq);
172 			}
173 			TAILQ_REMOVE(&kg->kg_runq, td, td_runq);
174 		}
175 		CTR2(KTR_RUNQ, "choosethread: td=%p pri=%d",
176 		    td, td->td_priority);
177 	} else {
178 		/* Simulate runq_choose() having returned the idle thread */
179 		td = PCPU_GET(idlethread);
180 		ke = td->td_kse;
181 		CTR1(KTR_RUNQ, "choosethread: td=%p (idle)", td);
182 	}
183 	ke->ke_flags |= KEF_DIDRUN;
184 
185 	/*
186 	 * If we are in panic, only allow system threads,
187 	 * plus the one we are running in, to be run.
188 	 */
189 	if (panicstr && ((td->td_proc->p_flag & P_SYSTEM) == 0 &&
190 	    (td->td_flags & TDF_INPANIC) == 0)) {
191 		/* note that it is no longer on the run queue */
192 		TD_SET_CAN_RUN(td);
193 		goto retry;
194 	}
195 
196 	TD_SET_RUNNING(td);
197 	return (td);
198 }
199 
200 /*
201  * Given a surplus system slot, try assign a new runnable thread to it.
202  * Called from:
203  *  sched_thread_exit()  (local)
204  *  sched_switch()  (local)
205  *  sched_thread_exit()  (local)
206  *  remrunqueue()  (local)  (not at the moment)
207  */
208 static void
209 slot_fill(struct ksegrp *kg)
210 {
211 	struct thread *td;
212 
213 	mtx_assert(&sched_lock, MA_OWNED);
214 	while (kg->kg_avail_opennings > 0) {
215 		/*
216 		 * Find the first unassigned thread
217 		 */
218 		if ((td = kg->kg_last_assigned) != NULL)
219 			td = TAILQ_NEXT(td, td_runq);
220 		else
221 			td = TAILQ_FIRST(&kg->kg_runq);
222 
223 		/*
224 		 * If we found one, send it to the system scheduler.
225 		 */
226 		if (td) {
227 			kg->kg_last_assigned = td;
228 			sched_add(td, SRQ_YIELDING);
229 			CTR2(KTR_RUNQ, "slot_fill: td%p -> kg%p", td, kg);
230 		} else {
231 			/* no threads to use up the slots. quit now */
232 			break;
233 		}
234 	}
235 }
236 
237 #ifdef	SCHED_4BSD
238 /*
239  * Remove a thread from its KSEGRP's run queue.
240  * This in turn may remove it from a KSE if it was already assigned
241  * to one, possibly causing a new thread to be assigned to the KSE
242  * and the KSE getting a new priority.
243  */
244 static void
245 remrunqueue(struct thread *td)
246 {
247 	struct thread *td2, *td3;
248 	struct ksegrp *kg;
249 	struct kse *ke;
250 
251 	mtx_assert(&sched_lock, MA_OWNED);
252 	KASSERT((TD_ON_RUNQ(td)), ("remrunqueue: Bad state on run queue"));
253 	kg = td->td_ksegrp;
254 	ke = td->td_kse;
255 	CTR1(KTR_RUNQ, "remrunqueue: td%p", td);
256 	TD_SET_CAN_RUN(td);
257 	/*
258 	 * If it is not a threaded process, take the shortcut.
259 	 */
260 	if ((td->td_proc->p_flag & P_HADTHREADS) == 0) {
261 		/* remve from sys run queue and free up a slot */
262 		sched_rem(td);
263 		ke->ke_state = KES_THREAD;
264 		return;
265 	}
266    	td3 = TAILQ_PREV(td, threadqueue, td_runq);
267 	TAILQ_REMOVE(&kg->kg_runq, td, td_runq);
268 	if (ke->ke_state == KES_ONRUNQ) {
269 		/*
270 		 * This thread has been assigned to the system run queue.
271 		 * We need to dissociate it and try assign the
272 		 * KSE to the next available thread. Then, we should
273 		 * see if we need to move the KSE in the run queues.
274 		 */
275 		sched_rem(td);
276 		ke->ke_state = KES_THREAD;
277 		td2 = kg->kg_last_assigned;
278 		KASSERT((td2 != NULL), ("last assigned has wrong value"));
279 		if (td2 == td)
280 			kg->kg_last_assigned = td3;
281 		/* slot_fill(kg); */ /* will replace it with another */
282 	}
283 }
284 #endif
285 
286 /*
287  * Change the priority of a thread that is on the run queue.
288  */
289 void
290 adjustrunqueue( struct thread *td, int newpri)
291 {
292 	struct ksegrp *kg;
293 	struct kse *ke;
294 
295 	mtx_assert(&sched_lock, MA_OWNED);
296 	KASSERT((TD_ON_RUNQ(td)), ("adjustrunqueue: Bad state on run queue"));
297 
298 	ke = td->td_kse;
299 	CTR1(KTR_RUNQ, "adjustrunqueue: td%p", td);
300 	/*
301 	 * If it is not a threaded process, take the shortcut.
302 	 */
303 	if ((td->td_proc->p_flag & P_HADTHREADS) == 0) {
304 		/* We only care about the kse in the run queue. */
305 		td->td_priority = newpri;
306 		if (ke->ke_rqindex != (newpri / RQ_PPQ)) {
307 			sched_rem(td);
308 			sched_add(td, SRQ_BORING);
309 		}
310 		return;
311 	}
312 
313 	/* It is a threaded process */
314 	kg = td->td_ksegrp;
315 	if (ke->ke_state == KES_ONRUNQ) {
316 		if (kg->kg_last_assigned == td) {
317 			kg->kg_last_assigned =
318 			    TAILQ_PREV(td, threadqueue, td_runq);
319 		}
320 		sched_rem(td);
321 	}
322 	TAILQ_REMOVE(&kg->kg_runq, td, td_runq);
323 	TD_SET_CAN_RUN(td);
324 	td->td_priority = newpri;
325 	setrunqueue(td, SRQ_BORING);
326 }
327 
328 /*
329  * This function is called when a thread is about to be put on a
330  * ksegrp run queue because it has been made runnable or its
331  * priority has been adjusted and the ksegrp does not have a
332  * free kse slot.  It determines if a thread from the same ksegrp
333  * should be preempted.  If so, it tries to switch threads
334  * if the thread is on the same cpu or notifies another cpu that
335  * it should switch threads.
336  */
337 
338 static void
339 maybe_preempt_in_ksegrp(struct thread *td)
340 #if  !defined(SMP)
341 {
342 	struct thread *running_thread;
343 
344 	mtx_assert(&sched_lock, MA_OWNED);
345 	running_thread = curthread;
346 
347 	if (running_thread->td_ksegrp != td->td_ksegrp)
348 		return;
349 
350 	if (td->td_priority >= running_thread->td_priority)
351 		return;
352 #ifdef PREEMPTION
353 #ifndef FULL_PREEMPTION
354 	if (td->td_priority > PRI_MAX_ITHD) {
355 		running_thread->td_flags |= TDF_NEEDRESCHED;
356 		return;
357 	}
358 #endif /* FULL_PREEMPTION */
359 
360 	if (running_thread->td_critnest > 1)
361 		running_thread->td_owepreempt = 1;
362 	 else
363 		 mi_switch(SW_INVOL, NULL);
364 
365 #else /* PREEMPTION */
366 	running_thread->td_flags |= TDF_NEEDRESCHED;
367 #endif /* PREEMPTION */
368 	return;
369 }
370 
371 #else /* SMP */
372 {
373 	struct thread *running_thread;
374 	int worst_pri;
375 	struct ksegrp *kg;
376 	cpumask_t cpumask,dontuse;
377 	struct pcpu *pc;
378 	struct pcpu *best_pcpu;
379 	struct thread *cputhread;
380 
381 	mtx_assert(&sched_lock, MA_OWNED);
382 
383 	running_thread = curthread;
384 
385 #if !defined(KSEG_PEEMPT_BEST_CPU)
386 	if (running_thread->td_ksegrp != td->td_ksegrp) {
387 #endif
388 		kg = td->td_ksegrp;
389 
390 		/* if someone is ahead of this thread, wait our turn */
391 		if (td != TAILQ_FIRST(&kg->kg_runq))
392 			return;
393 
394 		worst_pri = td->td_priority;
395 		best_pcpu = NULL;
396 		dontuse   = stopped_cpus | idle_cpus_mask;
397 
398 		/*
399 		 * Find a cpu with the worst priority that runs at thread from
400 		 * the same  ksegrp - if multiple exist give first the last run
401 		 * cpu and then the current cpu priority
402 		 */
403 
404 		SLIST_FOREACH(pc, &cpuhead, pc_allcpu) {
405 			cpumask   = pc->pc_cpumask;
406 			cputhread = pc->pc_curthread;
407 
408 			if ((cpumask & dontuse)  ||
409 			    cputhread->td_ksegrp != kg)
410 				continue;
411 
412 			if (cputhread->td_priority > worst_pri) {
413 				worst_pri = cputhread->td_priority;
414 				best_pcpu = pc;
415 				continue;
416 			}
417 
418 			if (cputhread->td_priority == worst_pri &&
419 			    best_pcpu != NULL &&
420 			    (td->td_lastcpu == pc->pc_cpuid ||
421 				(PCPU_GET(cpumask) == cpumask &&
422 				    td->td_lastcpu != best_pcpu->pc_cpuid)))
423 			    best_pcpu = pc;
424 		}
425 
426 		/* Check if we need to preempt someone */
427 		if (best_pcpu == NULL)
428 			return;
429 
430 #if defined(IPI_PREEMPTION) && defined(PREEMPTION)
431 #if !defined(FULL_PREEMPTION)
432 		if (td->td_priority <= PRI_MAX_ITHD)
433 #endif /* ! FULL_PREEMPTION */
434 			{
435 				ipi_selected(best_pcpu->pc_cpumask, IPI_PREEMPT);
436 				return;
437 			}
438 #endif /* defined(IPI_PREEMPTION) && defined(PREEMPTION) */
439 
440 		if (PCPU_GET(cpuid) != best_pcpu->pc_cpuid) {
441 			best_pcpu->pc_curthread->td_flags |= TDF_NEEDRESCHED;
442 			ipi_selected(best_pcpu->pc_cpumask, IPI_AST);
443 			return;
444 		}
445 #if !defined(KSEG_PEEMPT_BEST_CPU)
446 	}
447 #endif
448 
449 	if (td->td_priority >= running_thread->td_priority)
450 		return;
451 #ifdef PREEMPTION
452 
453 #if !defined(FULL_PREEMPTION)
454 	if (td->td_priority > PRI_MAX_ITHD) {
455 		running_thread->td_flags |= TDF_NEEDRESCHED;
456 	}
457 #endif /* ! FULL_PREEMPTION */
458 
459 	if (running_thread->td_critnest > 1)
460 		running_thread->td_owepreempt = 1;
461 	 else
462 		 mi_switch(SW_INVOL, NULL);
463 
464 #else /* PREEMPTION */
465 	running_thread->td_flags |= TDF_NEEDRESCHED;
466 #endif /* PREEMPTION */
467 	return;
468 }
469 #endif /* !SMP */
470 
471 
472 int limitcount;
473 void
474 setrunqueue(struct thread *td, int flags)
475 {
476 	struct ksegrp *kg;
477 	struct thread *td2;
478 	struct thread *tda;
479 
480 	CTR3(KTR_RUNQ, "setrunqueue: td:%p kg:%p pid:%d",
481 	    td, td->td_ksegrp, td->td_proc->p_pid);
482 	CTR5(KTR_SCHED, "setrunqueue: %p(%s) prio %d by %p(%s)",
483             td, td->td_proc->p_comm, td->td_priority, curthread,
484             curthread->td_proc->p_comm);
485 	mtx_assert(&sched_lock, MA_OWNED);
486 	KASSERT((td->td_inhibitors == 0),
487 			("setrunqueue: trying to run inhibitted thread"));
488 	KASSERT((TD_CAN_RUN(td) || TD_IS_RUNNING(td)),
489 	    ("setrunqueue: bad thread state"));
490 	TD_SET_RUNQ(td);
491 	kg = td->td_ksegrp;
492 	if ((td->td_proc->p_flag & P_HADTHREADS) == 0) {
493 		/*
494 		 * Common path optimisation: Only one of everything
495 		 * and the KSE is always already attached.
496 		 * Totally ignore the ksegrp run queue.
497 		 */
498 		if (kg->kg_avail_opennings != 1) {
499 			if (limitcount < 1) {
500 				limitcount++;
501 				printf("pid %d: corrected slot count (%d->1)\n",
502 				    td->td_proc->p_pid, kg->kg_avail_opennings);
503 
504 			}
505 			kg->kg_avail_opennings = 1;
506 		}
507 		sched_add(td, flags);
508 		return;
509 	}
510 
511 	/*
512 	 * If the concurrency has reduced, and we would go in the
513 	 * assigned section, then keep removing entries from the
514 	 * system run queue, until we are not in that section
515 	 * or there is room for us to be put in that section.
516 	 * What we MUST avoid is the case where there are threads of less
517 	 * priority than the new one scheduled, but it can not
518 	 * be scheduled itself. That would lead to a non contiguous set
519 	 * of scheduled threads, and everything would break.
520 	 */
521 	tda = kg->kg_last_assigned;
522 	while ((kg->kg_avail_opennings <= 0) &&
523 	    (tda && (tda->td_priority > td->td_priority))) {
524 		/*
525 		 * None free, but there is one we can commandeer.
526 		 */
527 		CTR2(KTR_RUNQ,
528 		    "setrunqueue: kg:%p: take slot from td: %p", kg, tda);
529 		sched_rem(tda);
530 		tda = kg->kg_last_assigned =
531 		    TAILQ_PREV(tda, threadqueue, td_runq);
532 	}
533 
534 	/*
535 	 * Add the thread to the ksegrp's run queue at
536 	 * the appropriate place.
537 	 */
538 	TAILQ_FOREACH(td2, &kg->kg_runq, td_runq) {
539 		if (td2->td_priority > td->td_priority) {
540 			TAILQ_INSERT_BEFORE(td2, td, td_runq);
541 			break;
542 		}
543 	}
544 	if (td2 == NULL) {
545 		/* We ran off the end of the TAILQ or it was empty. */
546 		TAILQ_INSERT_TAIL(&kg->kg_runq, td, td_runq);
547 	}
548 
549 	/*
550 	 * If we have a slot to use, then put the thread on the system
551 	 * run queue and if needed, readjust the last_assigned pointer.
552 	 * it may be that we need to schedule something anyhow
553 	 * even if the availabel slots are -ve so that
554 	 * all the items < last_assigned are scheduled.
555 	 */
556 	if (kg->kg_avail_opennings > 0) {
557 		if (tda == NULL) {
558 			/*
559 			 * No pre-existing last assigned so whoever is first
560 			 * gets the slot.. (maybe us)
561 			 */
562 			td2 = TAILQ_FIRST(&kg->kg_runq);
563 			kg->kg_last_assigned = td2;
564 		} else if (tda->td_priority > td->td_priority) {
565 			td2 = td;
566 		} else {
567 			/*
568 			 * We are past last_assigned, so
569 			 * give the next slot to whatever is next,
570 			 * which may or may not be us.
571 			 */
572 			td2 = TAILQ_NEXT(tda, td_runq);
573 			kg->kg_last_assigned = td2;
574 		}
575 		sched_add(td2, flags);
576 	} else {
577 		CTR3(KTR_RUNQ, "setrunqueue: held: td%p kg%p pid%d",
578 			td, td->td_ksegrp, td->td_proc->p_pid);
579 		if ((flags & SRQ_YIELDING) == 0)
580 			maybe_preempt_in_ksegrp(td);
581 	}
582 }
583 
584 /*
585  * Kernel thread preemption implementation.  Critical sections mark
586  * regions of code in which preemptions are not allowed.
587  */
588 void
589 critical_enter(void)
590 {
591 	struct thread *td;
592 
593 	td = curthread;
594 	td->td_critnest++;
595 	CTR4(KTR_CRITICAL, "critical_enter by thread %p (%ld, %s) to %d", td,
596 	    (long)td->td_proc->p_pid, td->td_proc->p_comm, td->td_critnest);
597 }
598 
599 void
600 critical_exit(void)
601 {
602 	struct thread *td;
603 
604 	td = curthread;
605 	KASSERT(td->td_critnest != 0,
606 	    ("critical_exit: td_critnest == 0"));
607 #ifdef PREEMPTION
608 	if (td->td_critnest == 1) {
609 		td->td_critnest = 0;
610 		mtx_assert(&sched_lock, MA_NOTOWNED);
611 		if (td->td_owepreempt) {
612 			td->td_critnest = 1;
613 			mtx_lock_spin(&sched_lock);
614 			td->td_critnest--;
615 			mi_switch(SW_INVOL, NULL);
616 			mtx_unlock_spin(&sched_lock);
617 		}
618 	} else
619 #endif
620 		td->td_critnest--;
621 
622 
623 	CTR4(KTR_CRITICAL, "critical_exit by thread %p (%ld, %s) to %d", td,
624 	    (long)td->td_proc->p_pid, td->td_proc->p_comm, td->td_critnest);
625 }
626 
627 /*
628  * This function is called when a thread is about to be put on run queue
629  * because it has been made runnable or its priority has been adjusted.  It
630  * determines if the new thread should be immediately preempted to.  If so,
631  * it switches to it and eventually returns true.  If not, it returns false
632  * so that the caller may place the thread on an appropriate run queue.
633  */
634 int
635 maybe_preempt(struct thread *td)
636 {
637 #ifdef PREEMPTION
638 	struct thread *ctd;
639 	int cpri, pri;
640 #endif
641 
642 	mtx_assert(&sched_lock, MA_OWNED);
643 #ifdef PREEMPTION
644 	/*
645 	 * The new thread should not preempt the current thread if any of the
646 	 * following conditions are true:
647 	 *
648 	 *  - The kernel is in the throes of crashing (panicstr).
649 	 *  - The current thread has a higher (numerically lower) or
650 	 *    equivalent priority.  Note that this prevents curthread from
651 	 *    trying to preempt to itself.
652 	 *  - It is too early in the boot for context switches (cold is set).
653 	 *  - The current thread has an inhibitor set or is in the process of
654 	 *    exiting.  In this case, the current thread is about to switch
655 	 *    out anyways, so there's no point in preempting.  If we did,
656 	 *    the current thread would not be properly resumed as well, so
657 	 *    just avoid that whole landmine.
658 	 *  - If the new thread's priority is not a realtime priority and
659 	 *    the current thread's priority is not an idle priority and
660 	 *    FULL_PREEMPTION is disabled.
661 	 *
662 	 * If all of these conditions are false, but the current thread is in
663 	 * a nested critical section, then we have to defer the preemption
664 	 * until we exit the critical section.  Otherwise, switch immediately
665 	 * to the new thread.
666 	 */
667 	ctd = curthread;
668 	KASSERT ((ctd->td_kse != NULL && ctd->td_kse->ke_thread == ctd),
669 	  ("thread has no (or wrong) sched-private part."));
670 	KASSERT((td->td_inhibitors == 0),
671 			("maybe_preempt: trying to run inhibitted thread"));
672 	pri = td->td_priority;
673 	cpri = ctd->td_priority;
674 	if (panicstr != NULL || pri >= cpri || cold /* || dumping */ ||
675 	    TD_IS_INHIBITED(ctd) || td->td_kse->ke_state != KES_THREAD)
676 		return (0);
677 #ifndef FULL_PREEMPTION
678 	if (pri > PRI_MAX_ITHD && cpri < PRI_MIN_IDLE)
679 		return (0);
680 #endif
681 
682 	if (ctd->td_critnest > 1) {
683 		CTR1(KTR_PROC, "maybe_preempt: in critical section %d",
684 		    ctd->td_critnest);
685 		ctd->td_owepreempt = 1;
686 		return (0);
687 	}
688 
689 	/*
690 	 * Thread is runnable but not yet put on system run queue.
691 	 */
692 	MPASS(TD_ON_RUNQ(td));
693 	MPASS(td->td_sched->ke_state != KES_ONRUNQ);
694 	if (td->td_proc->p_flag & P_HADTHREADS) {
695 		/*
696 		 * If this is a threaded process we actually ARE on the
697 		 * ksegrp run queue so take it off that first.
698 		 * Also undo any damage done to the last_assigned pointer.
699 		 * XXX Fix setrunqueue so this isn't needed
700 		 */
701 		struct ksegrp *kg;
702 
703 		kg = td->td_ksegrp;
704 		if (kg->kg_last_assigned == td)
705 			kg->kg_last_assigned =
706 			    TAILQ_PREV(td, threadqueue, td_runq);
707 		TAILQ_REMOVE(&kg->kg_runq, td, td_runq);
708 	}
709 
710 	TD_SET_RUNNING(td);
711 	CTR3(KTR_PROC, "preempting to thread %p (pid %d, %s)\n", td,
712 	    td->td_proc->p_pid, td->td_proc->p_comm);
713 	mi_switch(SW_INVOL|SW_PREEMPT, td);
714 	return (1);
715 #else
716 	return (0);
717 #endif
718 }
719 
720 #if 0
721 #ifndef PREEMPTION
722 /* XXX: There should be a non-static version of this. */
723 static void
724 printf_caddr_t(void *data)
725 {
726 	printf("%s", (char *)data);
727 }
728 static char preempt_warning[] =
729     "WARNING: Kernel preemption is disabled, expect reduced performance.\n";
730 SYSINIT(preempt_warning, SI_SUB_COPYRIGHT, SI_ORDER_ANY, printf_caddr_t,
731     preempt_warning)
732 #endif
733 #endif
734 
735 /************************************************************************
736  * SYSTEM RUN QUEUE manipulations and tests				*
737  ************************************************************************/
738 /*
739  * Initialize a run structure.
740  */
741 void
742 runq_init(struct runq *rq)
743 {
744 	int i;
745 
746 	bzero(rq, sizeof *rq);
747 	for (i = 0; i < RQ_NQS; i++)
748 		TAILQ_INIT(&rq->rq_queues[i]);
749 }
750 
751 /*
752  * Clear the status bit of the queue corresponding to priority level pri,
753  * indicating that it is empty.
754  */
755 static __inline void
756 runq_clrbit(struct runq *rq, int pri)
757 {
758 	struct rqbits *rqb;
759 
760 	rqb = &rq->rq_status;
761 	CTR4(KTR_RUNQ, "runq_clrbit: bits=%#x %#x bit=%#x word=%d",
762 	    rqb->rqb_bits[RQB_WORD(pri)],
763 	    rqb->rqb_bits[RQB_WORD(pri)] & ~RQB_BIT(pri),
764 	    RQB_BIT(pri), RQB_WORD(pri));
765 	rqb->rqb_bits[RQB_WORD(pri)] &= ~RQB_BIT(pri);
766 }
767 
768 /*
769  * Find the index of the first non-empty run queue.  This is done by
770  * scanning the status bits, a set bit indicates a non-empty queue.
771  */
772 static __inline int
773 runq_findbit(struct runq *rq)
774 {
775 	struct rqbits *rqb;
776 	int pri;
777 	int i;
778 
779 	rqb = &rq->rq_status;
780 	for (i = 0; i < RQB_LEN; i++)
781 		if (rqb->rqb_bits[i]) {
782 			pri = RQB_FFS(rqb->rqb_bits[i]) + (i << RQB_L2BPW);
783 			CTR3(KTR_RUNQ, "runq_findbit: bits=%#x i=%d pri=%d",
784 			    rqb->rqb_bits[i], i, pri);
785 			return (pri);
786 		}
787 
788 	return (-1);
789 }
790 
791 /*
792  * Set the status bit of the queue corresponding to priority level pri,
793  * indicating that it is non-empty.
794  */
795 static __inline void
796 runq_setbit(struct runq *rq, int pri)
797 {
798 	struct rqbits *rqb;
799 
800 	rqb = &rq->rq_status;
801 	CTR4(KTR_RUNQ, "runq_setbit: bits=%#x %#x bit=%#x word=%d",
802 	    rqb->rqb_bits[RQB_WORD(pri)],
803 	    rqb->rqb_bits[RQB_WORD(pri)] | RQB_BIT(pri),
804 	    RQB_BIT(pri), RQB_WORD(pri));
805 	rqb->rqb_bits[RQB_WORD(pri)] |= RQB_BIT(pri);
806 }
807 
808 /*
809  * Add the KSE to the queue specified by its priority, and set the
810  * corresponding status bit.
811  */
812 void
813 runq_add(struct runq *rq, struct kse *ke, int flags)
814 {
815 	struct rqhead *rqh;
816 	int pri;
817 
818 	pri = ke->ke_thread->td_priority / RQ_PPQ;
819 	ke->ke_rqindex = pri;
820 	runq_setbit(rq, pri);
821 	rqh = &rq->rq_queues[pri];
822 	CTR5(KTR_RUNQ, "runq_add: td=%p ke=%p pri=%d %d rqh=%p",
823 	    ke->ke_thread, ke, ke->ke_thread->td_priority, pri, rqh);
824 	if (flags & SRQ_PREEMPTED) {
825 		TAILQ_INSERT_HEAD(rqh, ke, ke_procq);
826 	} else {
827 		TAILQ_INSERT_TAIL(rqh, ke, ke_procq);
828 	}
829 }
830 
831 /*
832  * Return true if there are runnable processes of any priority on the run
833  * queue, false otherwise.  Has no side effects, does not modify the run
834  * queue structure.
835  */
836 int
837 runq_check(struct runq *rq)
838 {
839 	struct rqbits *rqb;
840 	int i;
841 
842 	rqb = &rq->rq_status;
843 	for (i = 0; i < RQB_LEN; i++)
844 		if (rqb->rqb_bits[i]) {
845 			CTR2(KTR_RUNQ, "runq_check: bits=%#x i=%d",
846 			    rqb->rqb_bits[i], i);
847 			return (1);
848 		}
849 	CTR0(KTR_RUNQ, "runq_check: empty");
850 
851 	return (0);
852 }
853 
854 #if defined(SMP) && defined(SCHED_4BSD)
855 int runq_fuzz = 1;
856 SYSCTL_INT(_kern_sched, OID_AUTO, runq_fuzz, CTLFLAG_RW, &runq_fuzz, 0, "");
857 #endif
858 
859 /*
860  * Find the highest priority process on the run queue.
861  */
862 struct kse *
863 runq_choose(struct runq *rq)
864 {
865 	struct rqhead *rqh;
866 	struct kse *ke;
867 	int pri;
868 
869 	mtx_assert(&sched_lock, MA_OWNED);
870 	while ((pri = runq_findbit(rq)) != -1) {
871 		rqh = &rq->rq_queues[pri];
872 #if defined(SMP) && defined(SCHED_4BSD)
873 		/* fuzz == 1 is normal.. 0 or less are ignored */
874 		if (runq_fuzz > 1) {
875 			/*
876 			 * In the first couple of entries, check if
877 			 * there is one for our CPU as a preference.
878 			 */
879 			int count = runq_fuzz;
880 			int cpu = PCPU_GET(cpuid);
881 			struct kse *ke2;
882 			ke2 = ke = TAILQ_FIRST(rqh);
883 
884 			while (count-- && ke2) {
885 				if (ke->ke_thread->td_lastcpu == cpu) {
886 					ke = ke2;
887 					break;
888 				}
889 				ke2 = TAILQ_NEXT(ke2, ke_procq);
890 			}
891 		} else
892 #endif
893 			ke = TAILQ_FIRST(rqh);
894 		KASSERT(ke != NULL, ("runq_choose: no proc on busy queue"));
895 		CTR3(KTR_RUNQ,
896 		    "runq_choose: pri=%d kse=%p rqh=%p", pri, ke, rqh);
897 		return (ke);
898 	}
899 	CTR1(KTR_RUNQ, "runq_choose: idleproc pri=%d", pri);
900 
901 	return (NULL);
902 }
903 
904 /*
905  * Remove the KSE from the queue specified by its priority, and clear the
906  * corresponding status bit if the queue becomes empty.
907  * Caller must set ke->ke_state afterwards.
908  */
909 void
910 runq_remove(struct runq *rq, struct kse *ke)
911 {
912 	struct rqhead *rqh;
913 	int pri;
914 
915 	KASSERT(ke->ke_proc->p_sflag & PS_INMEM,
916 		("runq_remove: process swapped out"));
917 	pri = ke->ke_rqindex;
918 	rqh = &rq->rq_queues[pri];
919 	CTR5(KTR_RUNQ, "runq_remove: td=%p, ke=%p pri=%d %d rqh=%p",
920 	    ke->ke_thread, ke, ke->ke_thread->td_priority, pri, rqh);
921 	KASSERT(ke != NULL, ("runq_remove: no proc on busy queue"));
922 	TAILQ_REMOVE(rqh, ke, ke_procq);
923 	if (TAILQ_EMPTY(rqh)) {
924 		CTR0(KTR_RUNQ, "runq_remove: empty");
925 		runq_clrbit(rq, pri);
926 	}
927 }
928 
929 /****** functions that are temporarily here ***********/
930 #include <vm/uma.h>
931 extern struct mtx kse_zombie_lock;
932 
933 /*
934  *  Allocate scheduler specific per-process resources.
935  * The thread and ksegrp have already been linked in.
936  * In this case just set the default concurrency value.
937  *
938  * Called from:
939  *  proc_init() (UMA init method)
940  */
941 void
942 sched_newproc(struct proc *p, struct ksegrp *kg, struct thread *td)
943 {
944 
945 	/* This can go in sched_fork */
946 	sched_init_concurrency(kg);
947 }
948 
949 /*
950  * thread is being either created or recycled.
951  * Fix up the per-scheduler resources associated with it.
952  * Called from:
953  *  sched_fork_thread()
954  *  thread_dtor()  (*may go away)
955  *  thread_init()  (*may go away)
956  */
957 void
958 sched_newthread(struct thread *td)
959 {
960 	struct td_sched *ke;
961 
962 	ke = (struct td_sched *) (td + 1);
963 	bzero(ke, sizeof(*ke));
964 	td->td_sched     = ke;
965 	ke->ke_thread	= td;
966 	ke->ke_state	= KES_THREAD;
967 }
968 
969 /*
970  * Set up an initial concurrency of 1
971  * and set the given thread (if given) to be using that
972  * concurrency slot.
973  * May be used "offline"..before the ksegrp is attached to the world
974  * and thus wouldn't need schedlock in that case.
975  * Called from:
976  *  thr_create()
977  *  proc_init() (UMA) via sched_newproc()
978  */
979 void
980 sched_init_concurrency(struct ksegrp *kg)
981 {
982 
983 	CTR1(KTR_RUNQ,"kg %p init slots and concurrency to 1", kg);
984 	kg->kg_concurrency = 1;
985 	kg->kg_avail_opennings = 1;
986 }
987 
988 /*
989  * Change the concurrency of an existing ksegrp to N
990  * Called from:
991  *  kse_create()
992  *  kse_exit()
993  *  thread_exit()
994  *  thread_single()
995  */
996 void
997 sched_set_concurrency(struct ksegrp *kg, int concurrency)
998 {
999 
1000 	CTR4(KTR_RUNQ,"kg %p set concurrency to %d, slots %d -> %d",
1001 	    kg,
1002 	    concurrency,
1003 	    kg->kg_avail_opennings,
1004 	    kg->kg_avail_opennings + (concurrency - kg->kg_concurrency));
1005 	kg->kg_avail_opennings += (concurrency - kg->kg_concurrency);
1006 	kg->kg_concurrency = concurrency;
1007 }
1008 
1009 /*
1010  * Called from thread_exit() for all exiting thread
1011  *
1012  * Not to be confused with sched_exit_thread()
1013  * that is only called from thread_exit() for threads exiting
1014  * without the rest of the process exiting because it is also called from
1015  * sched_exit() and we wouldn't want to call it twice.
1016  * XXX This can probably be fixed.
1017  */
1018 void
1019 sched_thread_exit(struct thread *td)
1020 {
1021 
1022 	SLOT_RELEASE(td->td_ksegrp);
1023 	slot_fill(td->td_ksegrp);
1024 }
1025 
1026 #endif /* KERN_SWITCH_INCLUDE */
1027