1 /* 2 * Copyright (c) 2001 Jake Burkholder <jake@FreeBSD.org> 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 17 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 24 * SUCH DAMAGE. 25 */ 26 27 /*** 28 Here is the logic.. 29 30 If there are N processors, then there are at most N KSEs (kernel 31 schedulable entities) working to process threads that belong to a 32 KSEGROUP (kg). If there are X of these KSEs actually running at the 33 moment in question, then there are at most M (N-X) of these KSEs on 34 the run queue, as running KSEs are not on the queue. 35 36 Runnable threads are queued off the KSEGROUP in priority order. 37 If there are M or more threads runnable, the top M threads 38 (by priority) are 'preassigned' to the M KSEs not running. The KSEs take 39 their priority from those threads and are put on the run queue. 40 41 The last thread that had a priority high enough to have a KSE associated 42 with it, AND IS ON THE RUN QUEUE is pointed to by 43 kg->kg_last_assigned. If no threads queued off the KSEGROUP have KSEs 44 assigned as all the available KSEs are activly running, or because there 45 are no threads queued, that pointer is NULL. 46 47 When a KSE is removed from the run queue to become runnable, we know 48 it was associated with the highest priority thread in the queue (at the head 49 of the queue). If it is also the last assigned we know M was 1 and must 50 now be 0. Since the thread is no longer queued that pointer must be 51 removed from it. Since we know there were no more KSEs available, 52 (M was 1 and is now 0) and since we are not FREEING our KSE 53 but using it, we know there are STILL no more KSEs available, we can prove 54 that the next thread in the ksegrp list will not have a KSE to assign to 55 it, so we can show that the pointer must be made 'invalid' (NULL). 56 57 The pointer exists so that when a new thread is made runnable, it can 58 have its priority compared with the last assigned thread to see if 59 it should 'steal' its KSE or not.. i.e. is it 'earlier' 60 on the list than that thread or later.. If it's earlier, then the KSE is 61 removed from the last assigned (which is now not assigned a KSE) 62 and reassigned to the new thread, which is placed earlier in the list. 63 The pointer is then backed up to the previous thread (which may or may not 64 be the new thread). 65 66 When a thread sleeps or is removed, the KSE becomes available and if there 67 are queued threads that are not assigned KSEs, the highest priority one of 68 them is assigned the KSE, which is then placed back on the run queue at 69 the approipriate place, and the kg->kg_last_assigned pointer is adjusted down 70 to point to it. 71 72 The following diagram shows 2 KSEs and 3 threads from a single process. 73 74 RUNQ: --->KSE---KSE--... (KSEs queued at priorities from threads) 75 \ \____ 76 \ \ 77 KSEGROUP---thread--thread--thread (queued in priority order) 78 \ / 79 \_______________/ 80 (last_assigned) 81 82 The result of this scheme is that the M available KSEs are always 83 queued at the priorities they have inherrited from the M highest priority 84 threads for that KSEGROUP. If this situation changes, the KSEs are 85 reassigned to keep this true. 86 ***/ 87 88 #include <sys/cdefs.h> 89 __FBSDID("$FreeBSD$"); 90 91 #include <sys/param.h> 92 #include <sys/systm.h> 93 #include <sys/kernel.h> 94 #include <sys/ktr.h> 95 #include <sys/lock.h> 96 #include <sys/mutex.h> 97 #include <sys/proc.h> 98 #include <sys/queue.h> 99 #include <sys/sched.h> 100 #if defined(SMP) && (defined(__i386__) || defined(__amd64__)) 101 #include <sys/smp.h> 102 #endif 103 #include <machine/critical.h> 104 105 CTASSERT((RQB_BPW * RQB_LEN) == RQ_NQS); 106 107 void panc(char *string1, char *string2); 108 109 #if 0 110 static void runq_readjust(struct runq *rq, struct kse *ke); 111 #endif 112 /************************************************************************ 113 * Functions that manipulate runnability from a thread perspective. * 114 ************************************************************************/ 115 /* 116 * Select the KSE that will be run next. From that find the thread, and 117 * remove it from the KSEGRP's run queue. If there is thread clustering, 118 * this will be what does it. 119 */ 120 struct thread * 121 choosethread(void) 122 { 123 struct kse *ke; 124 struct thread *td; 125 struct ksegrp *kg; 126 127 #if defined(SMP) && (defined(__i386__) || defined(__amd64__)) 128 if (smp_active == 0 && PCPU_GET(cpuid) != 0) { 129 /* Shutting down, run idlethread on AP's */ 130 td = PCPU_GET(idlethread); 131 ke = td->td_kse; 132 CTR1(KTR_RUNQ, "choosethread: td=%p (idle)", td); 133 ke->ke_flags |= KEF_DIDRUN; 134 TD_SET_RUNNING(td); 135 return (td); 136 } 137 #endif 138 139 retry: 140 ke = sched_choose(); 141 if (ke) { 142 td = ke->ke_thread; 143 KASSERT((td->td_kse == ke), ("kse/thread mismatch")); 144 kg = ke->ke_ksegrp; 145 if (td->td_proc->p_flag & P_SA) { 146 if (kg->kg_last_assigned == td) { 147 kg->kg_last_assigned = TAILQ_PREV(td, 148 threadqueue, td_runq); 149 } 150 TAILQ_REMOVE(&kg->kg_runq, td, td_runq); 151 } 152 kg->kg_runnable--; 153 CTR2(KTR_RUNQ, "choosethread: td=%p pri=%d", 154 td, td->td_priority); 155 } else { 156 /* Simulate runq_choose() having returned the idle thread */ 157 td = PCPU_GET(idlethread); 158 ke = td->td_kse; 159 CTR1(KTR_RUNQ, "choosethread: td=%p (idle)", td); 160 } 161 ke->ke_flags |= KEF_DIDRUN; 162 163 /* 164 * If we are in panic, only allow system threads, 165 * plus the one we are running in, to be run. 166 */ 167 if (panicstr && ((td->td_proc->p_flag & P_SYSTEM) == 0 && 168 (td->td_flags & TDF_INPANIC) == 0)) { 169 /* note that it is no longer on the run queue */ 170 TD_SET_CAN_RUN(td); 171 goto retry; 172 } 173 174 TD_SET_RUNNING(td); 175 return (td); 176 } 177 178 /* 179 * Given a surplus KSE, either assign a new runable thread to it 180 * (and put it in the run queue) or put it in the ksegrp's idle KSE list. 181 * Assumes that the original thread is not runnable. 182 */ 183 void 184 kse_reassign(struct kse *ke) 185 { 186 struct ksegrp *kg; 187 struct thread *td; 188 struct thread *original; 189 190 mtx_assert(&sched_lock, MA_OWNED); 191 original = ke->ke_thread; 192 KASSERT(original == NULL || TD_IS_INHIBITED(original), 193 ("reassigning KSE with runnable thread")); 194 kg = ke->ke_ksegrp; 195 if (original) 196 original->td_kse = NULL; 197 198 /* 199 * Find the first unassigned thread 200 */ 201 if ((td = kg->kg_last_assigned) != NULL) 202 td = TAILQ_NEXT(td, td_runq); 203 else 204 td = TAILQ_FIRST(&kg->kg_runq); 205 206 /* 207 * If we found one, assign it the kse, otherwise idle the kse. 208 */ 209 if (td) { 210 kg->kg_last_assigned = td; 211 td->td_kse = ke; 212 ke->ke_thread = td; 213 sched_add(td); 214 CTR2(KTR_RUNQ, "kse_reassign: ke%p -> td%p", ke, td); 215 return; 216 } 217 218 ke->ke_state = KES_IDLE; 219 ke->ke_thread = NULL; 220 TAILQ_INSERT_TAIL(&kg->kg_iq, ke, ke_kgrlist); 221 kg->kg_idle_kses++; 222 CTR1(KTR_RUNQ, "kse_reassign: ke%p on idle queue", ke); 223 return; 224 } 225 226 #if 0 227 /* 228 * Remove a thread from its KSEGRP's run queue. 229 * This in turn may remove it from a KSE if it was already assigned 230 * to one, possibly causing a new thread to be assigned to the KSE 231 * and the KSE getting a new priority. 232 */ 233 static void 234 remrunqueue(struct thread *td) 235 { 236 struct thread *td2, *td3; 237 struct ksegrp *kg; 238 struct kse *ke; 239 240 mtx_assert(&sched_lock, MA_OWNED); 241 KASSERT((TD_ON_RUNQ(td)), ("remrunqueue: Bad state on run queue")); 242 kg = td->td_ksegrp; 243 ke = td->td_kse; 244 CTR1(KTR_RUNQ, "remrunqueue: td%p", td); 245 kg->kg_runnable--; 246 TD_SET_CAN_RUN(td); 247 /* 248 * If it is not a threaded process, take the shortcut. 249 */ 250 if ((td->td_proc->p_flag & P_SA) == 0) { 251 /* Bring its kse with it, leave the thread attached */ 252 sched_rem(td); 253 ke->ke_state = KES_THREAD; 254 return; 255 } 256 td3 = TAILQ_PREV(td, threadqueue, td_runq); 257 TAILQ_REMOVE(&kg->kg_runq, td, td_runq); 258 if (ke) { 259 /* 260 * This thread has been assigned to a KSE. 261 * We need to dissociate it and try assign the 262 * KSE to the next available thread. Then, we should 263 * see if we need to move the KSE in the run queues. 264 */ 265 sched_rem(td); 266 ke->ke_state = KES_THREAD; 267 td2 = kg->kg_last_assigned; 268 KASSERT((td2 != NULL), ("last assigned has wrong value")); 269 if (td2 == td) 270 kg->kg_last_assigned = td3; 271 kse_reassign(ke); 272 } 273 } 274 #endif 275 276 /* 277 * Change the priority of a thread that is on the run queue. 278 */ 279 void 280 adjustrunqueue( struct thread *td, int newpri) 281 { 282 struct ksegrp *kg; 283 struct kse *ke; 284 285 mtx_assert(&sched_lock, MA_OWNED); 286 KASSERT((TD_ON_RUNQ(td)), ("adjustrunqueue: Bad state on run queue")); 287 288 ke = td->td_kse; 289 CTR1(KTR_RUNQ, "adjustrunqueue: td%p", td); 290 /* 291 * If it is not a threaded process, take the shortcut. 292 */ 293 if ((td->td_proc->p_flag & P_SA) == 0) { 294 /* We only care about the kse in the run queue. */ 295 td->td_priority = newpri; 296 if (ke->ke_rqindex != (newpri / RQ_PPQ)) { 297 sched_rem(td); 298 sched_add(td); 299 } 300 return; 301 } 302 303 /* It is a threaded process */ 304 kg = td->td_ksegrp; 305 kg->kg_runnable--; 306 TD_SET_CAN_RUN(td); 307 if (ke) { 308 if (kg->kg_last_assigned == td) { 309 kg->kg_last_assigned = 310 TAILQ_PREV(td, threadqueue, td_runq); 311 } 312 sched_rem(td); 313 } 314 TAILQ_REMOVE(&kg->kg_runq, td, td_runq); 315 td->td_priority = newpri; 316 setrunqueue(td); 317 } 318 319 void 320 setrunqueue(struct thread *td) 321 { 322 struct kse *ke; 323 struct ksegrp *kg; 324 struct thread *td2; 325 struct thread *tda; 326 327 CTR1(KTR_RUNQ, "setrunqueue: td%p", td); 328 mtx_assert(&sched_lock, MA_OWNED); 329 KASSERT((TD_CAN_RUN(td) || TD_IS_RUNNING(td)), 330 ("setrunqueue: bad thread state")); 331 TD_SET_RUNQ(td); 332 kg = td->td_ksegrp; 333 kg->kg_runnable++; 334 if ((td->td_proc->p_flag & P_SA) == 0) { 335 /* 336 * Common path optimisation: Only one of everything 337 * and the KSE is always already attached. 338 * Totally ignore the ksegrp run queue. 339 */ 340 sched_add(td); 341 return; 342 } 343 344 tda = kg->kg_last_assigned; 345 if ((ke = td->td_kse) == NULL) { 346 if (kg->kg_idle_kses) { 347 /* 348 * There is a free one so it's ours for the asking.. 349 */ 350 ke = TAILQ_FIRST(&kg->kg_iq); 351 TAILQ_REMOVE(&kg->kg_iq, ke, ke_kgrlist); 352 ke->ke_state = KES_THREAD; 353 kg->kg_idle_kses--; 354 } else if (tda && (tda->td_priority > td->td_priority)) { 355 /* 356 * None free, but there is one we can commandeer. 357 */ 358 ke = tda->td_kse; 359 sched_rem(tda); 360 tda->td_kse = NULL; 361 ke->ke_thread = NULL; 362 tda = kg->kg_last_assigned = 363 TAILQ_PREV(tda, threadqueue, td_runq); 364 } 365 } else { 366 /* 367 * Temporarily disassociate so it looks like the other cases. 368 */ 369 ke->ke_thread = NULL; 370 td->td_kse = NULL; 371 } 372 373 /* 374 * Add the thread to the ksegrp's run queue at 375 * the appropriate place. 376 */ 377 TAILQ_FOREACH(td2, &kg->kg_runq, td_runq) { 378 if (td2->td_priority > td->td_priority) { 379 TAILQ_INSERT_BEFORE(td2, td, td_runq); 380 break; 381 } 382 } 383 if (td2 == NULL) { 384 /* We ran off the end of the TAILQ or it was empty. */ 385 TAILQ_INSERT_TAIL(&kg->kg_runq, td, td_runq); 386 } 387 388 /* 389 * If we have a ke to use, then put it on the run queue and 390 * If needed, readjust the last_assigned pointer. 391 */ 392 if (ke) { 393 if (tda == NULL) { 394 /* 395 * No pre-existing last assigned so whoever is first 396 * gets the KSE we brought in.. (maybe us) 397 */ 398 td2 = TAILQ_FIRST(&kg->kg_runq); 399 KASSERT((td2->td_kse == NULL), 400 ("unexpected ke present")); 401 td2->td_kse = ke; 402 ke->ke_thread = td2; 403 kg->kg_last_assigned = td2; 404 } else if (tda->td_priority > td->td_priority) { 405 /* 406 * It's ours, grab it, but last_assigned is past us 407 * so don't change it. 408 */ 409 td->td_kse = ke; 410 ke->ke_thread = td; 411 } else { 412 /* 413 * We are past last_assigned, so 414 * put the new kse on whatever is next, 415 * which may or may not be us. 416 */ 417 td2 = TAILQ_NEXT(tda, td_runq); 418 kg->kg_last_assigned = td2; 419 td2->td_kse = ke; 420 ke->ke_thread = td2; 421 } 422 sched_add(ke->ke_thread); 423 } 424 } 425 426 /************************************************************************ 427 * Critical section marker functions * 428 ************************************************************************/ 429 /* Critical sections that prevent preemption. */ 430 void 431 critical_enter(void) 432 { 433 struct thread *td; 434 435 td = curthread; 436 if (td->td_critnest == 0) 437 cpu_critical_enter(); 438 td->td_critnest++; 439 } 440 441 void 442 critical_exit(void) 443 { 444 struct thread *td; 445 446 td = curthread; 447 KASSERT(td->td_critnest != 0, 448 ("critical_exit: td_critnest == 0")); 449 if (td->td_critnest == 1) { 450 td->td_critnest = 0; 451 cpu_critical_exit(); 452 } else { 453 td->td_critnest--; 454 } 455 } 456 457 458 /************************************************************************ 459 * SYSTEM RUN QUEUE manipulations and tests * 460 ************************************************************************/ 461 /* 462 * Initialize a run structure. 463 */ 464 void 465 runq_init(struct runq *rq) 466 { 467 int i; 468 469 bzero(rq, sizeof *rq); 470 for (i = 0; i < RQ_NQS; i++) 471 TAILQ_INIT(&rq->rq_queues[i]); 472 } 473 474 /* 475 * Clear the status bit of the queue corresponding to priority level pri, 476 * indicating that it is empty. 477 */ 478 static __inline void 479 runq_clrbit(struct runq *rq, int pri) 480 { 481 struct rqbits *rqb; 482 483 rqb = &rq->rq_status; 484 CTR4(KTR_RUNQ, "runq_clrbit: bits=%#x %#x bit=%#x word=%d", 485 rqb->rqb_bits[RQB_WORD(pri)], 486 rqb->rqb_bits[RQB_WORD(pri)] & ~RQB_BIT(pri), 487 RQB_BIT(pri), RQB_WORD(pri)); 488 rqb->rqb_bits[RQB_WORD(pri)] &= ~RQB_BIT(pri); 489 } 490 491 /* 492 * Find the index of the first non-empty run queue. This is done by 493 * scanning the status bits, a set bit indicates a non-empty queue. 494 */ 495 static __inline int 496 runq_findbit(struct runq *rq) 497 { 498 struct rqbits *rqb; 499 int pri; 500 int i; 501 502 rqb = &rq->rq_status; 503 for (i = 0; i < RQB_LEN; i++) 504 if (rqb->rqb_bits[i]) { 505 pri = RQB_FFS(rqb->rqb_bits[i]) + (i << RQB_L2BPW); 506 CTR3(KTR_RUNQ, "runq_findbit: bits=%#x i=%d pri=%d", 507 rqb->rqb_bits[i], i, pri); 508 return (pri); 509 } 510 511 return (-1); 512 } 513 514 /* 515 * Set the status bit of the queue corresponding to priority level pri, 516 * indicating that it is non-empty. 517 */ 518 static __inline void 519 runq_setbit(struct runq *rq, int pri) 520 { 521 struct rqbits *rqb; 522 523 rqb = &rq->rq_status; 524 CTR4(KTR_RUNQ, "runq_setbit: bits=%#x %#x bit=%#x word=%d", 525 rqb->rqb_bits[RQB_WORD(pri)], 526 rqb->rqb_bits[RQB_WORD(pri)] | RQB_BIT(pri), 527 RQB_BIT(pri), RQB_WORD(pri)); 528 rqb->rqb_bits[RQB_WORD(pri)] |= RQB_BIT(pri); 529 } 530 531 /* 532 * Add the KSE to the queue specified by its priority, and set the 533 * corresponding status bit. 534 */ 535 void 536 runq_add(struct runq *rq, struct kse *ke) 537 { 538 struct rqhead *rqh; 539 int pri; 540 541 pri = ke->ke_thread->td_priority / RQ_PPQ; 542 ke->ke_rqindex = pri; 543 runq_setbit(rq, pri); 544 rqh = &rq->rq_queues[pri]; 545 CTR4(KTR_RUNQ, "runq_add: p=%p pri=%d %d rqh=%p", 546 ke->ke_proc, ke->ke_thread->td_priority, pri, rqh); 547 TAILQ_INSERT_TAIL(rqh, ke, ke_procq); 548 } 549 550 /* 551 * Return true if there are runnable processes of any priority on the run 552 * queue, false otherwise. Has no side effects, does not modify the run 553 * queue structure. 554 */ 555 int 556 runq_check(struct runq *rq) 557 { 558 struct rqbits *rqb; 559 int i; 560 561 rqb = &rq->rq_status; 562 for (i = 0; i < RQB_LEN; i++) 563 if (rqb->rqb_bits[i]) { 564 CTR2(KTR_RUNQ, "runq_check: bits=%#x i=%d", 565 rqb->rqb_bits[i], i); 566 return (1); 567 } 568 CTR0(KTR_RUNQ, "runq_check: empty"); 569 570 return (0); 571 } 572 573 /* 574 * Find the highest priority process on the run queue. 575 */ 576 struct kse * 577 runq_choose(struct runq *rq) 578 { 579 struct rqhead *rqh; 580 struct kse *ke; 581 int pri; 582 583 mtx_assert(&sched_lock, MA_OWNED); 584 while ((pri = runq_findbit(rq)) != -1) { 585 rqh = &rq->rq_queues[pri]; 586 ke = TAILQ_FIRST(rqh); 587 KASSERT(ke != NULL, ("runq_choose: no proc on busy queue")); 588 CTR3(KTR_RUNQ, 589 "runq_choose: pri=%d kse=%p rqh=%p", pri, ke, rqh); 590 return (ke); 591 } 592 CTR1(KTR_RUNQ, "runq_choose: idleproc pri=%d", pri); 593 594 return (NULL); 595 } 596 597 /* 598 * Remove the KSE from the queue specified by its priority, and clear the 599 * corresponding status bit if the queue becomes empty. 600 * Caller must set ke->ke_state afterwards. 601 */ 602 void 603 runq_remove(struct runq *rq, struct kse *ke) 604 { 605 struct rqhead *rqh; 606 int pri; 607 608 KASSERT(ke->ke_proc->p_sflag & PS_INMEM, 609 ("runq_remove: process swapped out")); 610 pri = ke->ke_rqindex; 611 rqh = &rq->rq_queues[pri]; 612 CTR4(KTR_RUNQ, "runq_remove: p=%p pri=%d %d rqh=%p", 613 ke, ke->ke_thread->td_priority, pri, rqh); 614 KASSERT(ke != NULL, ("runq_remove: no proc on busy queue")); 615 TAILQ_REMOVE(rqh, ke, ke_procq); 616 if (TAILQ_EMPTY(rqh)) { 617 CTR0(KTR_RUNQ, "runq_remove: empty"); 618 runq_clrbit(rq, pri); 619 } 620 } 621 622 #if 0 623 void 624 panc(char *string1, char *string2) 625 { 626 printf("%s", string1); 627 Debugger(string2); 628 } 629 630 void 631 thread_sanity_check(struct thread *td, char *string) 632 { 633 struct proc *p; 634 struct ksegrp *kg; 635 struct kse *ke; 636 struct thread *td2 = NULL; 637 unsigned int prevpri; 638 int saw_lastassigned = 0; 639 int unassigned = 0; 640 int assigned = 0; 641 642 p = td->td_proc; 643 kg = td->td_ksegrp; 644 ke = td->td_kse; 645 646 647 if (ke) { 648 if (p != ke->ke_proc) { 649 panc(string, "wrong proc"); 650 } 651 if (ke->ke_thread != td) { 652 panc(string, "wrong thread"); 653 } 654 } 655 656 if ((p->p_flag & P_SA) == 0) { 657 if (ke == NULL) { 658 panc(string, "non KSE thread lost kse"); 659 } 660 } else { 661 prevpri = 0; 662 saw_lastassigned = 0; 663 unassigned = 0; 664 assigned = 0; 665 TAILQ_FOREACH(td2, &kg->kg_runq, td_runq) { 666 if (td2->td_priority < prevpri) { 667 panc(string, "thread runqueue unosorted"); 668 } 669 if ((td2->td_state == TDS_RUNQ) && 670 td2->td_kse && 671 (td2->td_kse->ke_state != KES_ONRUNQ)) { 672 panc(string, "KSE wrong state"); 673 } 674 prevpri = td2->td_priority; 675 if (td2->td_kse) { 676 assigned++; 677 if (unassigned) { 678 panc(string, "unassigned before assigned"); 679 } 680 if (kg->kg_last_assigned == NULL) { 681 panc(string, "lastassigned corrupt"); 682 } 683 if (saw_lastassigned) { 684 panc(string, "last assigned not last"); 685 } 686 if (td2->td_kse->ke_thread != td2) { 687 panc(string, "mismatched kse/thread"); 688 } 689 } else { 690 unassigned++; 691 } 692 if (td2 == kg->kg_last_assigned) { 693 saw_lastassigned = 1; 694 if (td2->td_kse == NULL) { 695 panc(string, "last assigned not assigned"); 696 } 697 } 698 } 699 if (kg->kg_last_assigned && (saw_lastassigned == 0)) { 700 panc(string, "where on earth does lastassigned point?"); 701 } 702 #if 0 703 FOREACH_THREAD_IN_GROUP(kg, td2) { 704 if (((td2->td_flags & TDF_UNBOUND) == 0) && 705 (TD_ON_RUNQ(td2))) { 706 assigned++; 707 if (td2->td_kse == NULL) { 708 panc(string, "BOUND thread with no KSE"); 709 } 710 } 711 } 712 #endif 713 #if 0 714 if ((unassigned + assigned) != kg->kg_runnable) { 715 panc(string, "wrong number in runnable"); 716 } 717 #endif 718 } 719 if (assigned == 12345) { 720 printf("%p %p %p %p %p %d, %d", 721 td, td2, ke, kg, p, assigned, saw_lastassigned); 722 } 723 } 724 #endif 725 726