xref: /freebsd/sys/kern/kern_switch.c (revision ca9ac06c99bfd0150b85d4d83c396ce6237c0e05)
1 /*-
2  * Copyright (c) 2001 Jake Burkholder <jake@FreeBSD.org>
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  */
26 
27 /***
28 Here is the logic..
29 
30 If there are N processors, then there are at most N KSEs (kernel
31 schedulable entities) working to process threads that belong to a
32 KSEGROUP (kg). If there are X of these KSEs actually running at the
33 moment in question, then there are at most M (N-X) of these KSEs on
34 the run queue, as running KSEs are not on the queue.
35 
36 Runnable threads are queued off the KSEGROUP in priority order.
37 If there are M or more threads runnable, the top M threads
38 (by priority) are 'preassigned' to the M KSEs not running. The KSEs take
39 their priority from those threads and are put on the run queue.
40 
41 The last thread that had a priority high enough to have a KSE associated
42 with it, AND IS ON THE RUN QUEUE is pointed to by
43 kg->kg_last_assigned. If no threads queued off the KSEGROUP have KSEs
44 assigned as all the available KSEs are activly running, or because there
45 are no threads queued, that pointer is NULL.
46 
47 When a KSE is removed from the run queue to become runnable, we know
48 it was associated with the highest priority thread in the queue (at the head
49 of the queue). If it is also the last assigned we know M was 1 and must
50 now be 0. Since the thread is no longer queued that pointer must be
51 removed from it. Since we know there were no more KSEs available,
52 (M was 1 and is now 0) and since we are not FREEING our KSE
53 but using it, we know there are STILL no more KSEs available, we can prove
54 that the next thread in the ksegrp list will not have a KSE to assign to
55 it, so we can show that the pointer must be made 'invalid' (NULL).
56 
57 The pointer exists so that when a new thread is made runnable, it can
58 have its priority compared with the last assigned thread to see if
59 it should 'steal' its KSE or not.. i.e. is it 'earlier'
60 on the list than that thread or later.. If it's earlier, then the KSE is
61 removed from the last assigned (which is now not assigned a KSE)
62 and reassigned to the new thread, which is placed earlier in the list.
63 The pointer is then backed up to the previous thread (which may or may not
64 be the new thread).
65 
66 When a thread sleeps or is removed, the KSE becomes available and if there
67 are queued threads that are not assigned KSEs, the highest priority one of
68 them is assigned the KSE, which is then placed back on the run queue at
69 the approipriate place, and the kg->kg_last_assigned pointer is adjusted down
70 to point to it.
71 
72 The following diagram shows 2 KSEs and 3 threads from a single process.
73 
74  RUNQ: --->KSE---KSE--...    (KSEs queued at priorities from threads)
75               \    \____
76                \        \
77     KSEGROUP---thread--thread--thread    (queued in priority order)
78         \                 /
79          \_______________/
80           (last_assigned)
81 
82 The result of this scheme is that the M available KSEs are always
83 queued at the priorities they have inherrited from the M highest priority
84 threads for that KSEGROUP. If this situation changes, the KSEs are
85 reassigned to keep this true.
86 ***/
87 
88 #include <sys/cdefs.h>
89 __FBSDID("$FreeBSD$");
90 
91 #include "opt_sched.h"
92 
93 #ifndef KERN_SWITCH_INCLUDE
94 #include <sys/param.h>
95 #include <sys/systm.h>
96 #include <sys/kdb.h>
97 #include <sys/kernel.h>
98 #include <sys/ktr.h>
99 #include <sys/lock.h>
100 #include <sys/mutex.h>
101 #include <sys/proc.h>
102 #include <sys/queue.h>
103 #include <sys/sched.h>
104 #else  /* KERN_SWITCH_INCLUDE */
105 #if defined(SMP) && (defined(__i386__) || defined(__amd64__))
106 #include <sys/smp.h>
107 #endif
108 #include <machine/critical.h>
109 #if defined(SMP) && defined(SCHED_4BSD)
110 #include <sys/sysctl.h>
111 #endif
112 
113 #ifdef FULL_PREEMPTION
114 #ifndef PREEMPTION
115 #error "The FULL_PREEMPTION option requires the PREEMPTION option"
116 #endif
117 #endif
118 
119 CTASSERT((RQB_BPW * RQB_LEN) == RQ_NQS);
120 
121 #define td_kse td_sched
122 
123 /************************************************************************
124  * Functions that manipulate runnability from a thread perspective.	*
125  ************************************************************************/
126 /*
127  * Select the KSE that will be run next.  From that find the thread, and
128  * remove it from the KSEGRP's run queue.  If there is thread clustering,
129  * this will be what does it.
130  */
131 struct thread *
132 choosethread(void)
133 {
134 	struct kse *ke;
135 	struct thread *td;
136 	struct ksegrp *kg;
137 
138 #if defined(SMP) && (defined(__i386__) || defined(__amd64__))
139 	if (smp_active == 0 && PCPU_GET(cpuid) != 0) {
140 		/* Shutting down, run idlethread on AP's */
141 		td = PCPU_GET(idlethread);
142 		ke = td->td_kse;
143 		CTR1(KTR_RUNQ, "choosethread: td=%p (idle)", td);
144 		ke->ke_flags |= KEF_DIDRUN;
145 		TD_SET_RUNNING(td);
146 		return (td);
147 	}
148 #endif
149 
150 retry:
151 	ke = sched_choose();
152 	if (ke) {
153 		td = ke->ke_thread;
154 		KASSERT((td->td_kse == ke), ("kse/thread mismatch"));
155 		kg = ke->ke_ksegrp;
156 		if (td->td_proc->p_flag & P_HADTHREADS) {
157 			if (kg->kg_last_assigned == td) {
158 				kg->kg_last_assigned = TAILQ_PREV(td,
159 				    threadqueue, td_runq);
160 			}
161 			TAILQ_REMOVE(&kg->kg_runq, td, td_runq);
162 		}
163 		CTR2(KTR_RUNQ, "choosethread: td=%p pri=%d",
164 		    td, td->td_priority);
165 	} else {
166 		/* Simulate runq_choose() having returned the idle thread */
167 		td = PCPU_GET(idlethread);
168 		ke = td->td_kse;
169 		CTR1(KTR_RUNQ, "choosethread: td=%p (idle)", td);
170 	}
171 	ke->ke_flags |= KEF_DIDRUN;
172 
173 	/*
174 	 * If we are in panic, only allow system threads,
175 	 * plus the one we are running in, to be run.
176 	 */
177 	if (panicstr && ((td->td_proc->p_flag & P_SYSTEM) == 0 &&
178 	    (td->td_flags & TDF_INPANIC) == 0)) {
179 		/* note that it is no longer on the run queue */
180 		TD_SET_CAN_RUN(td);
181 		goto retry;
182 	}
183 
184 	TD_SET_RUNNING(td);
185 	return (td);
186 }
187 
188 /*
189  * Given a surplus system slot, try assign a new runnable thread to it.
190  * Called from:
191  *  sched_thread_exit()  (local)
192  *  sched_switch()  (local)
193  *  sched_thread_exit()  (local)
194  *  remrunqueue()  (local)  (not at the moment)
195  */
196 static void
197 slot_fill(struct ksegrp *kg)
198 {
199 	struct thread *td;
200 
201 	mtx_assert(&sched_lock, MA_OWNED);
202 	while (kg->kg_avail_opennings > 0) {
203 		/*
204 		 * Find the first unassigned thread
205 		 */
206 		if ((td = kg->kg_last_assigned) != NULL)
207 			td = TAILQ_NEXT(td, td_runq);
208 		else
209 			td = TAILQ_FIRST(&kg->kg_runq);
210 
211 		/*
212 		 * If we found one, send it to the system scheduler.
213 		 */
214 		if (td) {
215 			kg->kg_last_assigned = td;
216 			sched_add(td, SRQ_YIELDING);
217 			CTR2(KTR_RUNQ, "slot_fill: td%p -> kg%p", td, kg);
218 		} else {
219 			/* no threads to use up the slots. quit now */
220 			break;
221 		}
222 	}
223 }
224 
225 #ifdef	SCHED_4BSD
226 /*
227  * Remove a thread from its KSEGRP's run queue.
228  * This in turn may remove it from a KSE if it was already assigned
229  * to one, possibly causing a new thread to be assigned to the KSE
230  * and the KSE getting a new priority.
231  */
232 static void
233 remrunqueue(struct thread *td)
234 {
235 	struct thread *td2, *td3;
236 	struct ksegrp *kg;
237 	struct kse *ke;
238 
239 	mtx_assert(&sched_lock, MA_OWNED);
240 	KASSERT((TD_ON_RUNQ(td)), ("remrunqueue: Bad state on run queue"));
241 	kg = td->td_ksegrp;
242 	ke = td->td_kse;
243 	CTR1(KTR_RUNQ, "remrunqueue: td%p", td);
244 	TD_SET_CAN_RUN(td);
245 	/*
246 	 * If it is not a threaded process, take the shortcut.
247 	 */
248 	if ((td->td_proc->p_flag & P_HADTHREADS) == 0) {
249 		/* remve from sys run queue and free up a slot */
250 		sched_rem(td);
251 		ke->ke_state = KES_THREAD;
252 		return;
253 	}
254    	td3 = TAILQ_PREV(td, threadqueue, td_runq);
255 	TAILQ_REMOVE(&kg->kg_runq, td, td_runq);
256 	if (ke->ke_state == KES_ONRUNQ) {
257 		/*
258 		 * This thread has been assigned to the system run queue.
259 		 * We need to dissociate it and try assign the
260 		 * KSE to the next available thread. Then, we should
261 		 * see if we need to move the KSE in the run queues.
262 		 */
263 		sched_rem(td);
264 		ke->ke_state = KES_THREAD;
265 		td2 = kg->kg_last_assigned;
266 		KASSERT((td2 != NULL), ("last assigned has wrong value"));
267 		if (td2 == td)
268 			kg->kg_last_assigned = td3;
269 		/* slot_fill(kg); */ /* will replace it with another */
270 	}
271 }
272 #endif
273 
274 /*
275  * Change the priority of a thread that is on the run queue.
276  */
277 void
278 adjustrunqueue( struct thread *td, int newpri)
279 {
280 	struct ksegrp *kg;
281 	struct kse *ke;
282 
283 	mtx_assert(&sched_lock, MA_OWNED);
284 	KASSERT((TD_ON_RUNQ(td)), ("adjustrunqueue: Bad state on run queue"));
285 
286 	ke = td->td_kse;
287 	CTR1(KTR_RUNQ, "adjustrunqueue: td%p", td);
288 	/*
289 	 * If it is not a threaded process, take the shortcut.
290 	 */
291 	if ((td->td_proc->p_flag & P_HADTHREADS) == 0) {
292 		/* We only care about the kse in the run queue. */
293 		td->td_priority = newpri;
294 		if (ke->ke_rqindex != (newpri / RQ_PPQ)) {
295 			sched_rem(td);
296 			sched_add(td, SRQ_BORING);
297 		}
298 		return;
299 	}
300 
301 	/* It is a threaded process */
302 	kg = td->td_ksegrp;
303 	if (ke->ke_state == KES_ONRUNQ) {
304 		if (kg->kg_last_assigned == td) {
305 			kg->kg_last_assigned =
306 			    TAILQ_PREV(td, threadqueue, td_runq);
307 		}
308 		sched_rem(td);
309 	}
310 	TAILQ_REMOVE(&kg->kg_runq, td, td_runq);
311 	TD_SET_CAN_RUN(td);
312 	td->td_priority = newpri;
313 	setrunqueue(td, SRQ_BORING);
314 }
315 
316 /*
317  * This function is called when a thread is about to be put on a
318  * ksegrp run queue because it has been made runnable or its
319  * priority has been adjusted and the ksegrp does not have a
320  * free kse slot.  It determines if a thread from the same ksegrp
321  * should be preempted.  If so, it tries to switch threads
322  * if the thread is on the same cpu or notifies another cpu that
323  * it should switch threads.
324  */
325 
326 static void
327 maybe_preempt_in_ksegrp(struct thread *td)
328 #if  !defined(SMP)
329 {
330 	struct thread *running_thread;
331 
332 #ifndef FULL_PREEMPTION
333 	int pri;
334 	pri = td->td_priority;
335 	if (!(pri >= PRI_MIN_ITHD && pri <= PRI_MAX_ITHD))
336 		return;
337 #endif
338 	mtx_assert(&sched_lock, MA_OWNED);
339 	running_thread = curthread;
340 
341 	if (running_thread->td_ksegrp != td->td_ksegrp)
342 		return;
343 
344 	if (td->td_priority > running_thread->td_priority)
345 		return;
346 #ifdef PREEMPTION
347 	if (running_thread->td_critnest > 1)
348 		running_thread->td_pflags |= TDP_OWEPREEMPT;
349 	 else
350 		 mi_switch(SW_INVOL, NULL);
351 
352 #else
353 	running_thread->td_flags |= TDF_NEEDRESCHED;
354 #endif
355 	return;
356 }
357 
358 #else /* SMP */
359 {
360 	struct thread *running_thread;
361 	int worst_pri;
362 	struct ksegrp *kg;
363 	cpumask_t cpumask,dontuse;
364 	struct pcpu *pc;
365 	struct pcpu *best_pcpu;
366 	struct thread *cputhread;
367 
368 #ifndef FULL_PREEMPTION
369 	int pri;
370 	pri = td->td_priority;
371 	if (!(pri >= PRI_MIN_ITHD && pri <= PRI_MAX_ITHD))
372 		return;
373 #endif
374 
375 	mtx_assert(&sched_lock, MA_OWNED);
376 
377 	running_thread = curthread;
378 
379 #if !defined(KSEG_PEEMPT_BEST_CPU)
380 	if (running_thread->td_ksegrp != td->td_ksegrp) {
381 #endif
382 		kg = td->td_ksegrp;
383 
384 		/* if someone is ahead of this thread, wait our turn */
385 		if (td != TAILQ_FIRST(&kg->kg_runq))
386 			return;
387 
388 		worst_pri = td->td_priority;
389 		best_pcpu = NULL;
390 		dontuse   = stopped_cpus | idle_cpus_mask;
391 
392 		/*
393 		 * Find a cpu with the worst priority that runs at thread from
394 		 * the same  ksegrp - if multiple exist give first the last run
395 		 * cpu and then the current cpu priority
396 		 */
397 
398 		SLIST_FOREACH(pc, &cpuhead, pc_allcpu) {
399 			cpumask   = pc->pc_cpumask;
400 			cputhread = pc->pc_curthread;
401 
402 			if ((cpumask & dontuse)  ||
403 			    cputhread->td_ksegrp != kg)
404 				continue;
405 
406 			if (cputhread->td_priority > worst_pri) {
407 				worst_pri = cputhread->td_priority;
408 				best_pcpu = pc;
409 				continue;
410 			}
411 
412 			if (cputhread->td_priority == worst_pri &&
413 			    best_pcpu != NULL &&
414 			    (td->td_lastcpu == pc->pc_cpuid ||
415 				(PCPU_GET(cpumask) == cpumask &&
416 				    td->td_lastcpu != best_pcpu->pc_cpuid)))
417 			    best_pcpu = pc;
418 		}
419 
420 		/* Check if we need to preempt someone */
421 		if (best_pcpu == NULL)
422 			return;
423 
424 		if (PCPU_GET(cpuid) != best_pcpu->pc_cpuid) {
425 			best_pcpu->pc_curthread->td_flags |= TDF_NEEDRESCHED;
426 			ipi_selected(best_pcpu->pc_cpumask, IPI_AST);
427 			return;
428 		}
429 #if !defined(KSEG_PEEMPT_BEST_CPU)
430 	}
431 #endif
432 
433 	if (td->td_priority > running_thread->td_priority)
434 		return;
435 #ifdef PREEMPTION
436 	if (running_thread->td_critnest > 1)
437 		running_thread->td_pflags |= TDP_OWEPREEMPT;
438 	 else
439 		 mi_switch(SW_INVOL, NULL);
440 
441 #else
442 	running_thread->td_flags |= TDF_NEEDRESCHED;
443 #endif
444 	return;
445 }
446 #endif /* !SMP */
447 
448 
449 int limitcount;
450 void
451 setrunqueue(struct thread *td, int flags)
452 {
453 	struct ksegrp *kg;
454 	struct thread *td2;
455 	struct thread *tda;
456 
457 	CTR3(KTR_RUNQ, "setrunqueue: td:%p kg:%p pid:%d",
458 	    td, td->td_ksegrp, td->td_proc->p_pid);
459 	CTR5(KTR_SCHED, "setrunqueue: %p(%s) prio %d by %p(%s)",
460             td, td->td_proc->p_comm, td->td_priority, curthread,
461             curthread->td_proc->p_comm);
462 	mtx_assert(&sched_lock, MA_OWNED);
463 	KASSERT((td->td_inhibitors == 0),
464 			("setrunqueue: trying to run inhibitted thread"));
465 	KASSERT((TD_CAN_RUN(td) || TD_IS_RUNNING(td)),
466 	    ("setrunqueue: bad thread state"));
467 	TD_SET_RUNQ(td);
468 	kg = td->td_ksegrp;
469 	if ((td->td_proc->p_flag & P_HADTHREADS) == 0) {
470 		/*
471 		 * Common path optimisation: Only one of everything
472 		 * and the KSE is always already attached.
473 		 * Totally ignore the ksegrp run queue.
474 		 */
475 		if (kg->kg_avail_opennings != 1) {
476 			if (limitcount < 1) {
477 				limitcount++;
478 				printf("pid %d: corrected slot count (%d->1)\n",
479 				    td->td_proc->p_pid, kg->kg_avail_opennings);
480 
481 			}
482 			kg->kg_avail_opennings = 1;
483 		}
484 		sched_add(td, flags);
485 		return;
486 	}
487 
488 	/*
489 	 * If the concurrency has reduced, and we would go in the
490 	 * assigned section, then keep removing entries from the
491 	 * system run queue, until we are not in that section
492 	 * or there is room for us to be put in that section.
493 	 * What we MUST avoid is the case where there are threads of less
494 	 * priority than the new one scheduled, but it can not
495 	 * be scheduled itself. That would lead to a non contiguous set
496 	 * of scheduled threads, and everything would break.
497 	 */
498 	tda = kg->kg_last_assigned;
499 	while ((kg->kg_avail_opennings <= 0) &&
500 	    (tda && (tda->td_priority > td->td_priority))) {
501 		/*
502 		 * None free, but there is one we can commandeer.
503 		 */
504 		CTR2(KTR_RUNQ,
505 		    "setrunqueue: kg:%p: take slot from td: %p", kg, tda);
506 		sched_rem(tda);
507 		tda = kg->kg_last_assigned =
508 		    TAILQ_PREV(tda, threadqueue, td_runq);
509 	}
510 
511 	/*
512 	 * Add the thread to the ksegrp's run queue at
513 	 * the appropriate place.
514 	 */
515 	TAILQ_FOREACH(td2, &kg->kg_runq, td_runq) {
516 		if (td2->td_priority > td->td_priority) {
517 			TAILQ_INSERT_BEFORE(td2, td, td_runq);
518 			break;
519 		}
520 	}
521 	if (td2 == NULL) {
522 		/* We ran off the end of the TAILQ or it was empty. */
523 		TAILQ_INSERT_TAIL(&kg->kg_runq, td, td_runq);
524 	}
525 
526 	/*
527 	 * If we have a slot to use, then put the thread on the system
528 	 * run queue and if needed, readjust the last_assigned pointer.
529 	 * it may be that we need to schedule something anyhow
530 	 * even if the availabel slots are -ve so that
531 	 * all the items < last_assigned are scheduled.
532 	 */
533 	if (kg->kg_avail_opennings > 0) {
534 		if (tda == NULL) {
535 			/*
536 			 * No pre-existing last assigned so whoever is first
537 			 * gets the slot.. (maybe us)
538 			 */
539 			td2 = TAILQ_FIRST(&kg->kg_runq);
540 			kg->kg_last_assigned = td2;
541 		} else if (tda->td_priority > td->td_priority) {
542 			td2 = td;
543 		} else {
544 			/*
545 			 * We are past last_assigned, so
546 			 * give the next slot to whatever is next,
547 			 * which may or may not be us.
548 			 */
549 			td2 = TAILQ_NEXT(tda, td_runq);
550 			kg->kg_last_assigned = td2;
551 		}
552 		sched_add(td2, flags);
553 	} else {
554 		CTR3(KTR_RUNQ, "setrunqueue: held: td%p kg%p pid%d",
555 			td, td->td_ksegrp, td->td_proc->p_pid);
556 		if ((flags & SRQ_YIELDING) == 0)
557 			maybe_preempt_in_ksegrp(td);
558 	}
559 }
560 
561 /*
562  * Kernel thread preemption implementation.  Critical sections mark
563  * regions of code in which preemptions are not allowed.
564  */
565 void
566 critical_enter(void)
567 {
568 	struct thread *td;
569 
570 	td = curthread;
571 	if (td->td_critnest == 0)
572 		cpu_critical_enter(td);
573 	td->td_critnest++;
574 	CTR4(KTR_CRITICAL, "critical_enter by thread %p (%ld, %s) to %d", td,
575 	    (long)td->td_proc->p_pid, td->td_proc->p_comm, td->td_critnest);
576 }
577 
578 void
579 critical_exit(void)
580 {
581 	struct thread *td;
582 
583 	td = curthread;
584 	KASSERT(td->td_critnest != 0,
585 	    ("critical_exit: td_critnest == 0"));
586 	if (td->td_critnest == 1) {
587 		if (td->td_pflags & TDP_WAKEPROC0) {
588 			td->td_pflags &= ~TDP_WAKEPROC0;
589 			wakeup(&proc0);
590 		}
591 #ifdef PREEMPTION
592 		mtx_assert(&sched_lock, MA_NOTOWNED);
593 		if (td->td_pflags & TDP_OWEPREEMPT) {
594 			mtx_lock_spin(&sched_lock);
595 			mi_switch(SW_INVOL, NULL);
596 			mtx_unlock_spin(&sched_lock);
597 		}
598 #endif
599 		td->td_critnest = 0;
600 		cpu_critical_exit(td);
601 	} else {
602 		td->td_critnest--;
603 	}
604 	CTR4(KTR_CRITICAL, "critical_exit by thread %p (%ld, %s) to %d", td,
605 	    (long)td->td_proc->p_pid, td->td_proc->p_comm, td->td_critnest);
606 }
607 
608 /*
609  * This function is called when a thread is about to be put on run queue
610  * because it has been made runnable or its priority has been adjusted.  It
611  * determines if the new thread should be immediately preempted to.  If so,
612  * it switches to it and eventually returns true.  If not, it returns false
613  * so that the caller may place the thread on an appropriate run queue.
614  */
615 int
616 maybe_preempt(struct thread *td)
617 {
618 #ifdef PREEMPTION
619 	struct thread *ctd;
620 	int cpri, pri;
621 #endif
622 
623 	mtx_assert(&sched_lock, MA_OWNED);
624 #ifdef PREEMPTION
625 	/*
626 	 * The new thread should not preempt the current thread if any of the
627 	 * following conditions are true:
628 	 *
629 	 *  - The kernel is in the throes of crashing (panicstr).
630 	 *  - The current thread has a higher (numerically lower) or
631 	 *    equivalent priority.  Note that this prevents curthread from
632 	 *    trying to preempt to itself.
633 	 *  - It is too early in the boot for context switches (cold is set).
634 	 *  - The current thread has an inhibitor set or is in the process of
635 	 *    exiting.  In this case, the current thread is about to switch
636 	 *    out anyways, so there's no point in preempting.  If we did,
637 	 *    the current thread would not be properly resumed as well, so
638 	 *    just avoid that whole landmine.
639 	 *  - If the new thread's priority is not a realtime priority and
640 	 *    the current thread's priority is not an idle priority and
641 	 *    FULL_PREEMPTION is disabled.
642 	 *
643 	 * If all of these conditions are false, but the current thread is in
644 	 * a nested critical section, then we have to defer the preemption
645 	 * until we exit the critical section.  Otherwise, switch immediately
646 	 * to the new thread.
647 	 */
648 	ctd = curthread;
649 	KASSERT ((ctd->td_kse != NULL && ctd->td_kse->ke_thread == ctd),
650 	  ("thread has no (or wrong) sched-private part."));
651 	KASSERT((td->td_inhibitors == 0),
652 			("maybe_preempt: trying to run inhibitted thread"));
653 	pri = td->td_priority;
654 	cpri = ctd->td_priority;
655 	if (panicstr != NULL || pri >= cpri || cold /* || dumping */ ||
656 	    TD_IS_INHIBITED(ctd) || td->td_kse->ke_state != KES_THREAD)
657 		return (0);
658 #ifndef FULL_PREEMPTION
659 	if (!(pri >= PRI_MIN_ITHD && pri <= PRI_MAX_ITHD) &&
660 	    !(cpri >= PRI_MIN_IDLE))
661 		return (0);
662 #endif
663 	if (ctd->td_critnest > 1) {
664 		CTR1(KTR_PROC, "maybe_preempt: in critical section %d",
665 		    ctd->td_critnest);
666 		ctd->td_pflags |= TDP_OWEPREEMPT;
667 		return (0);
668 	}
669 
670 	/*
671 	 * Thread is runnable but not yet put on system run queue.
672 	 */
673 	MPASS(TD_ON_RUNQ(td));
674 	MPASS(td->td_sched->ke_state != KES_ONRUNQ);
675 	if (td->td_proc->p_flag & P_HADTHREADS) {
676 		/*
677 		 * If this is a threaded process we actually ARE on the
678 		 * ksegrp run queue so take it off that first.
679 		 * Also undo any damage done to the last_assigned pointer.
680 		 * XXX Fix setrunqueue so this isn't needed
681 		 */
682 		struct ksegrp *kg;
683 
684 		kg = td->td_ksegrp;
685 		if (kg->kg_last_assigned == td)
686 			kg->kg_last_assigned =
687 			    TAILQ_PREV(td, threadqueue, td_runq);
688 		TAILQ_REMOVE(&kg->kg_runq, td, td_runq);
689 	}
690 
691 	TD_SET_RUNNING(td);
692 	CTR3(KTR_PROC, "preempting to thread %p (pid %d, %s)\n", td,
693 	    td->td_proc->p_pid, td->td_proc->p_comm);
694 	mi_switch(SW_INVOL|SW_PREEMPT, td);
695 	return (1);
696 #else
697 	return (0);
698 #endif
699 }
700 
701 #if 0
702 #ifndef PREEMPTION
703 /* XXX: There should be a non-static version of this. */
704 static void
705 printf_caddr_t(void *data)
706 {
707 	printf("%s", (char *)data);
708 }
709 static char preempt_warning[] =
710     "WARNING: Kernel preemption is disabled, expect reduced performance.\n";
711 SYSINIT(preempt_warning, SI_SUB_COPYRIGHT, SI_ORDER_ANY, printf_caddr_t,
712     preempt_warning)
713 #endif
714 #endif
715 
716 /************************************************************************
717  * SYSTEM RUN QUEUE manipulations and tests				*
718  ************************************************************************/
719 /*
720  * Initialize a run structure.
721  */
722 void
723 runq_init(struct runq *rq)
724 {
725 	int i;
726 
727 	bzero(rq, sizeof *rq);
728 	for (i = 0; i < RQ_NQS; i++)
729 		TAILQ_INIT(&rq->rq_queues[i]);
730 }
731 
732 /*
733  * Clear the status bit of the queue corresponding to priority level pri,
734  * indicating that it is empty.
735  */
736 static __inline void
737 runq_clrbit(struct runq *rq, int pri)
738 {
739 	struct rqbits *rqb;
740 
741 	rqb = &rq->rq_status;
742 	CTR4(KTR_RUNQ, "runq_clrbit: bits=%#x %#x bit=%#x word=%d",
743 	    rqb->rqb_bits[RQB_WORD(pri)],
744 	    rqb->rqb_bits[RQB_WORD(pri)] & ~RQB_BIT(pri),
745 	    RQB_BIT(pri), RQB_WORD(pri));
746 	rqb->rqb_bits[RQB_WORD(pri)] &= ~RQB_BIT(pri);
747 }
748 
749 /*
750  * Find the index of the first non-empty run queue.  This is done by
751  * scanning the status bits, a set bit indicates a non-empty queue.
752  */
753 static __inline int
754 runq_findbit(struct runq *rq)
755 {
756 	struct rqbits *rqb;
757 	int pri;
758 	int i;
759 
760 	rqb = &rq->rq_status;
761 	for (i = 0; i < RQB_LEN; i++)
762 		if (rqb->rqb_bits[i]) {
763 			pri = RQB_FFS(rqb->rqb_bits[i]) + (i << RQB_L2BPW);
764 			CTR3(KTR_RUNQ, "runq_findbit: bits=%#x i=%d pri=%d",
765 			    rqb->rqb_bits[i], i, pri);
766 			return (pri);
767 		}
768 
769 	return (-1);
770 }
771 
772 /*
773  * Set the status bit of the queue corresponding to priority level pri,
774  * indicating that it is non-empty.
775  */
776 static __inline void
777 runq_setbit(struct runq *rq, int pri)
778 {
779 	struct rqbits *rqb;
780 
781 	rqb = &rq->rq_status;
782 	CTR4(KTR_RUNQ, "runq_setbit: bits=%#x %#x bit=%#x word=%d",
783 	    rqb->rqb_bits[RQB_WORD(pri)],
784 	    rqb->rqb_bits[RQB_WORD(pri)] | RQB_BIT(pri),
785 	    RQB_BIT(pri), RQB_WORD(pri));
786 	rqb->rqb_bits[RQB_WORD(pri)] |= RQB_BIT(pri);
787 }
788 
789 /*
790  * Add the KSE to the queue specified by its priority, and set the
791  * corresponding status bit.
792  */
793 void
794 runq_add(struct runq *rq, struct kse *ke, int flags)
795 {
796 	struct rqhead *rqh;
797 	int pri;
798 
799 	pri = ke->ke_thread->td_priority / RQ_PPQ;
800 	ke->ke_rqindex = pri;
801 	runq_setbit(rq, pri);
802 	rqh = &rq->rq_queues[pri];
803 	CTR5(KTR_RUNQ, "runq_add: td=%p ke=%p pri=%d %d rqh=%p",
804 	    ke->ke_thread, ke, ke->ke_thread->td_priority, pri, rqh);
805 	if (flags & SRQ_PREEMPTED) {
806 		TAILQ_INSERT_HEAD(rqh, ke, ke_procq);
807 	} else {
808 		TAILQ_INSERT_TAIL(rqh, ke, ke_procq);
809 	}
810 }
811 
812 /*
813  * Return true if there are runnable processes of any priority on the run
814  * queue, false otherwise.  Has no side effects, does not modify the run
815  * queue structure.
816  */
817 int
818 runq_check(struct runq *rq)
819 {
820 	struct rqbits *rqb;
821 	int i;
822 
823 	rqb = &rq->rq_status;
824 	for (i = 0; i < RQB_LEN; i++)
825 		if (rqb->rqb_bits[i]) {
826 			CTR2(KTR_RUNQ, "runq_check: bits=%#x i=%d",
827 			    rqb->rqb_bits[i], i);
828 			return (1);
829 		}
830 	CTR0(KTR_RUNQ, "runq_check: empty");
831 
832 	return (0);
833 }
834 
835 #if defined(SMP) && defined(SCHED_4BSD)
836 int runq_fuzz = 1;
837 SYSCTL_INT(_kern_sched, OID_AUTO, runq_fuzz, CTLFLAG_RW, &runq_fuzz, 0, "");
838 #endif
839 
840 /*
841  * Find the highest priority process on the run queue.
842  */
843 struct kse *
844 runq_choose(struct runq *rq)
845 {
846 	struct rqhead *rqh;
847 	struct kse *ke;
848 	int pri;
849 
850 	mtx_assert(&sched_lock, MA_OWNED);
851 	while ((pri = runq_findbit(rq)) != -1) {
852 		rqh = &rq->rq_queues[pri];
853 #if defined(SMP) && defined(SCHED_4BSD)
854 		/* fuzz == 1 is normal.. 0 or less are ignored */
855 		if (runq_fuzz > 1) {
856 			/*
857 			 * In the first couple of entries, check if
858 			 * there is one for our CPU as a preference.
859 			 */
860 			int count = runq_fuzz;
861 			int cpu = PCPU_GET(cpuid);
862 			struct kse *ke2;
863 			ke2 = ke = TAILQ_FIRST(rqh);
864 
865 			while (count-- && ke2) {
866 				if (ke->ke_thread->td_lastcpu == cpu) {
867 					ke = ke2;
868 					break;
869 				}
870 				ke2 = TAILQ_NEXT(ke2, ke_procq);
871 			}
872 		} else
873 #endif
874 			ke = TAILQ_FIRST(rqh);
875 		KASSERT(ke != NULL, ("runq_choose: no proc on busy queue"));
876 		CTR3(KTR_RUNQ,
877 		    "runq_choose: pri=%d kse=%p rqh=%p", pri, ke, rqh);
878 		return (ke);
879 	}
880 	CTR1(KTR_RUNQ, "runq_choose: idleproc pri=%d", pri);
881 
882 	return (NULL);
883 }
884 
885 /*
886  * Remove the KSE from the queue specified by its priority, and clear the
887  * corresponding status bit if the queue becomes empty.
888  * Caller must set ke->ke_state afterwards.
889  */
890 void
891 runq_remove(struct runq *rq, struct kse *ke)
892 {
893 	struct rqhead *rqh;
894 	int pri;
895 
896 	KASSERT(ke->ke_proc->p_sflag & PS_INMEM,
897 		("runq_remove: process swapped out"));
898 	pri = ke->ke_rqindex;
899 	rqh = &rq->rq_queues[pri];
900 	CTR5(KTR_RUNQ, "runq_remove: td=%p, ke=%p pri=%d %d rqh=%p",
901 	    ke->ke_thread, ke, ke->ke_thread->td_priority, pri, rqh);
902 	KASSERT(ke != NULL, ("runq_remove: no proc on busy queue"));
903 	TAILQ_REMOVE(rqh, ke, ke_procq);
904 	if (TAILQ_EMPTY(rqh)) {
905 		CTR0(KTR_RUNQ, "runq_remove: empty");
906 		runq_clrbit(rq, pri);
907 	}
908 }
909 
910 /****** functions that are temporarily here ***********/
911 #include <vm/uma.h>
912 extern struct mtx kse_zombie_lock;
913 
914 /*
915  *  Allocate scheduler specific per-process resources.
916  * The thread and ksegrp have already been linked in.
917  * In this case just set the default concurrency value.
918  *
919  * Called from:
920  *  proc_init() (UMA init method)
921  */
922 void
923 sched_newproc(struct proc *p, struct ksegrp *kg, struct thread *td)
924 {
925 
926 	/* This can go in sched_fork */
927 	sched_init_concurrency(kg);
928 }
929 
930 /*
931  * thread is being either created or recycled.
932  * Fix up the per-scheduler resources associated with it.
933  * Called from:
934  *  sched_fork_thread()
935  *  thread_dtor()  (*may go away)
936  *  thread_init()  (*may go away)
937  */
938 void
939 sched_newthread(struct thread *td)
940 {
941 	struct td_sched *ke;
942 
943 	ke = (struct td_sched *) (td + 1);
944 	bzero(ke, sizeof(*ke));
945 	td->td_sched     = ke;
946 	ke->ke_thread	= td;
947 	ke->ke_state	= KES_THREAD;
948 }
949 
950 /*
951  * Set up an initial concurrency of 1
952  * and set the given thread (if given) to be using that
953  * concurrency slot.
954  * May be used "offline"..before the ksegrp is attached to the world
955  * and thus wouldn't need schedlock in that case.
956  * Called from:
957  *  thr_create()
958  *  proc_init() (UMA) via sched_newproc()
959  */
960 void
961 sched_init_concurrency(struct ksegrp *kg)
962 {
963 
964 	CTR1(KTR_RUNQ,"kg %p init slots and concurrency to 1", kg);
965 	kg->kg_concurrency = 1;
966 	kg->kg_avail_opennings = 1;
967 }
968 
969 /*
970  * Change the concurrency of an existing ksegrp to N
971  * Called from:
972  *  kse_create()
973  *  kse_exit()
974  *  thread_exit()
975  *  thread_single()
976  */
977 void
978 sched_set_concurrency(struct ksegrp *kg, int concurrency)
979 {
980 
981 	CTR4(KTR_RUNQ,"kg %p set concurrency to %d, slots %d -> %d",
982 	    kg,
983 	    concurrency,
984 	    kg->kg_avail_opennings,
985 	    kg->kg_avail_opennings + (concurrency - kg->kg_concurrency));
986 	kg->kg_avail_opennings += (concurrency - kg->kg_concurrency);
987 	kg->kg_concurrency = concurrency;
988 }
989 
990 /*
991  * Called from thread_exit() for all exiting thread
992  *
993  * Not to be confused with sched_exit_thread()
994  * that is only called from thread_exit() for threads exiting
995  * without the rest of the process exiting because it is also called from
996  * sched_exit() and we wouldn't want to call it twice.
997  * XXX This can probably be fixed.
998  */
999 void
1000 sched_thread_exit(struct thread *td)
1001 {
1002 
1003 	SLOT_RELEASE(td->td_ksegrp);
1004 	slot_fill(td->td_ksegrp);
1005 }
1006 
1007 #endif /* KERN_SWITCH_INCLUDE */
1008