xref: /freebsd/sys/kern/kern_switch.c (revision c6a37e84139a1c73d4ef46ce4fdf8598a0ebbf45)
1 /*-
2  * Copyright (c) 2001 Jake Burkholder <jake@FreeBSD.org>
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  */
26 
27 /***
28 Here is the logic..
29 
30 If there are N processors, then there are at most N KSEs (kernel
31 schedulable entities) working to process threads that belong to a
32 KSEGROUP (kg). If there are X of these KSEs actually running at the
33 moment in question, then there are at most M (N-X) of these KSEs on
34 the run queue, as running KSEs are not on the queue.
35 
36 Runnable threads are queued off the KSEGROUP in priority order.
37 If there are M or more threads runnable, the top M threads
38 (by priority) are 'preassigned' to the M KSEs not running. The KSEs take
39 their priority from those threads and are put on the run queue.
40 
41 The last thread that had a priority high enough to have a KSE associated
42 with it, AND IS ON THE RUN QUEUE is pointed to by
43 kg->kg_last_assigned. If no threads queued off the KSEGROUP have KSEs
44 assigned as all the available KSEs are activly running, or because there
45 are no threads queued, that pointer is NULL.
46 
47 When a KSE is removed from the run queue to become runnable, we know
48 it was associated with the highest priority thread in the queue (at the head
49 of the queue). If it is also the last assigned we know M was 1 and must
50 now be 0. Since the thread is no longer queued that pointer must be
51 removed from it. Since we know there were no more KSEs available,
52 (M was 1 and is now 0) and since we are not FREEING our KSE
53 but using it, we know there are STILL no more KSEs available, we can prove
54 that the next thread in the ksegrp list will not have a KSE to assign to
55 it, so we can show that the pointer must be made 'invalid' (NULL).
56 
57 The pointer exists so that when a new thread is made runnable, it can
58 have its priority compared with the last assigned thread to see if
59 it should 'steal' its KSE or not.. i.e. is it 'earlier'
60 on the list than that thread or later.. If it's earlier, then the KSE is
61 removed from the last assigned (which is now not assigned a KSE)
62 and reassigned to the new thread, which is placed earlier in the list.
63 The pointer is then backed up to the previous thread (which may or may not
64 be the new thread).
65 
66 When a thread sleeps or is removed, the KSE becomes available and if there
67 are queued threads that are not assigned KSEs, the highest priority one of
68 them is assigned the KSE, which is then placed back on the run queue at
69 the approipriate place, and the kg->kg_last_assigned pointer is adjusted down
70 to point to it.
71 
72 The following diagram shows 2 KSEs and 3 threads from a single process.
73 
74  RUNQ: --->KSE---KSE--...    (KSEs queued at priorities from threads)
75               \    \____
76                \        \
77     KSEGROUP---thread--thread--thread    (queued in priority order)
78         \                 /
79          \_______________/
80           (last_assigned)
81 
82 The result of this scheme is that the M available KSEs are always
83 queued at the priorities they have inherrited from the M highest priority
84 threads for that KSEGROUP. If this situation changes, the KSEs are
85 reassigned to keep this true.
86 ***/
87 
88 #include <sys/cdefs.h>
89 __FBSDID("$FreeBSD$");
90 
91 #include "opt_sched.h"
92 
93 #ifndef KERN_SWITCH_INCLUDE
94 #include <sys/param.h>
95 #include <sys/systm.h>
96 #include <sys/kdb.h>
97 #include <sys/kernel.h>
98 #include <sys/ktr.h>
99 #include <sys/lock.h>
100 #include <sys/mutex.h>
101 #include <sys/proc.h>
102 #include <sys/queue.h>
103 #include <sys/sched.h>
104 #else  /* KERN_SWITCH_INCLUDE */
105 #if defined(SMP) && (defined(__i386__) || defined(__amd64__))
106 #include <sys/smp.h>
107 #endif
108 #if defined(SMP) && defined(SCHED_4BSD)
109 #include <sys/sysctl.h>
110 #endif
111 
112 #ifdef FULL_PREEMPTION
113 #ifndef PREEMPTION
114 #error "The FULL_PREEMPTION option requires the PREEMPTION option"
115 #endif
116 #endif
117 
118 CTASSERT((RQB_BPW * RQB_LEN) == RQ_NQS);
119 
120 #define td_kse td_sched
121 
122 /*
123  * kern.sched.preemption allows user space to determine if preemption support
124  * is compiled in or not.  It is not currently a boot or runtime flag that
125  * can be changed.
126  */
127 #ifdef PREEMPTION
128 static int kern_sched_preemption = 1;
129 #else
130 static int kern_sched_preemption = 0;
131 #endif
132 SYSCTL_INT(_kern_sched, OID_AUTO, preemption, CTLFLAG_RD,
133     &kern_sched_preemption, 0, "Kernel preemption enabled");
134 
135 /************************************************************************
136  * Functions that manipulate runnability from a thread perspective.	*
137  ************************************************************************/
138 /*
139  * Select the KSE that will be run next.  From that find the thread, and
140  * remove it from the KSEGRP's run queue.  If there is thread clustering,
141  * this will be what does it.
142  */
143 struct thread *
144 choosethread(void)
145 {
146 	struct kse *ke;
147 	struct thread *td;
148 	struct ksegrp *kg;
149 
150 #if defined(SMP) && (defined(__i386__) || defined(__amd64__))
151 	if (smp_active == 0 && PCPU_GET(cpuid) != 0) {
152 		/* Shutting down, run idlethread on AP's */
153 		td = PCPU_GET(idlethread);
154 		ke = td->td_kse;
155 		CTR1(KTR_RUNQ, "choosethread: td=%p (idle)", td);
156 		ke->ke_flags |= KEF_DIDRUN;
157 		TD_SET_RUNNING(td);
158 		return (td);
159 	}
160 #endif
161 
162 retry:
163 	ke = sched_choose();
164 	if (ke) {
165 		td = ke->ke_thread;
166 		KASSERT((td->td_kse == ke), ("kse/thread mismatch"));
167 		kg = ke->ke_ksegrp;
168 		if (td->td_proc->p_flag & P_HADTHREADS) {
169 			if (kg->kg_last_assigned == td) {
170 				kg->kg_last_assigned = TAILQ_PREV(td,
171 				    threadqueue, td_runq);
172 			}
173 			TAILQ_REMOVE(&kg->kg_runq, td, td_runq);
174 		}
175 		CTR2(KTR_RUNQ, "choosethread: td=%p pri=%d",
176 		    td, td->td_priority);
177 	} else {
178 		/* Simulate runq_choose() having returned the idle thread */
179 		td = PCPU_GET(idlethread);
180 		ke = td->td_kse;
181 		CTR1(KTR_RUNQ, "choosethread: td=%p (idle)", td);
182 	}
183 	ke->ke_flags |= KEF_DIDRUN;
184 
185 	/*
186 	 * If we are in panic, only allow system threads,
187 	 * plus the one we are running in, to be run.
188 	 */
189 	if (panicstr && ((td->td_proc->p_flag & P_SYSTEM) == 0 &&
190 	    (td->td_flags & TDF_INPANIC) == 0)) {
191 		/* note that it is no longer on the run queue */
192 		TD_SET_CAN_RUN(td);
193 		goto retry;
194 	}
195 
196 	TD_SET_RUNNING(td);
197 	return (td);
198 }
199 
200 /*
201  * Given a surplus system slot, try assign a new runnable thread to it.
202  * Called from:
203  *  sched_thread_exit()  (local)
204  *  sched_switch()  (local)
205  *  sched_thread_exit()  (local)
206  *  remrunqueue()  (local)  (not at the moment)
207  */
208 static void
209 slot_fill(struct ksegrp *kg)
210 {
211 	struct thread *td;
212 
213 	mtx_assert(&sched_lock, MA_OWNED);
214 	while (kg->kg_avail_opennings > 0) {
215 		/*
216 		 * Find the first unassigned thread
217 		 */
218 		if ((td = kg->kg_last_assigned) != NULL)
219 			td = TAILQ_NEXT(td, td_runq);
220 		else
221 			td = TAILQ_FIRST(&kg->kg_runq);
222 
223 		/*
224 		 * If we found one, send it to the system scheduler.
225 		 */
226 		if (td) {
227 			kg->kg_last_assigned = td;
228 			sched_add(td, SRQ_YIELDING);
229 			CTR2(KTR_RUNQ, "slot_fill: td%p -> kg%p", td, kg);
230 		} else {
231 			/* no threads to use up the slots. quit now */
232 			break;
233 		}
234 	}
235 }
236 
237 #ifdef	SCHED_4BSD
238 /*
239  * Remove a thread from its KSEGRP's run queue.
240  * This in turn may remove it from a KSE if it was already assigned
241  * to one, possibly causing a new thread to be assigned to the KSE
242  * and the KSE getting a new priority.
243  */
244 static void
245 remrunqueue(struct thread *td)
246 {
247 	struct thread *td2, *td3;
248 	struct ksegrp *kg;
249 	struct kse *ke;
250 
251 	mtx_assert(&sched_lock, MA_OWNED);
252 	KASSERT((TD_ON_RUNQ(td)), ("remrunqueue: Bad state on run queue"));
253 	kg = td->td_ksegrp;
254 	ke = td->td_kse;
255 	CTR1(KTR_RUNQ, "remrunqueue: td%p", td);
256 	TD_SET_CAN_RUN(td);
257 	/*
258 	 * If it is not a threaded process, take the shortcut.
259 	 */
260 	if ((td->td_proc->p_flag & P_HADTHREADS) == 0) {
261 		/* remve from sys run queue and free up a slot */
262 		sched_rem(td);
263 		ke->ke_state = KES_THREAD;
264 		return;
265 	}
266    	td3 = TAILQ_PREV(td, threadqueue, td_runq);
267 	TAILQ_REMOVE(&kg->kg_runq, td, td_runq);
268 	if (ke->ke_state == KES_ONRUNQ) {
269 		/*
270 		 * This thread has been assigned to the system run queue.
271 		 * We need to dissociate it and try assign the
272 		 * KSE to the next available thread. Then, we should
273 		 * see if we need to move the KSE in the run queues.
274 		 */
275 		sched_rem(td);
276 		ke->ke_state = KES_THREAD;
277 		td2 = kg->kg_last_assigned;
278 		KASSERT((td2 != NULL), ("last assigned has wrong value"));
279 		if (td2 == td)
280 			kg->kg_last_assigned = td3;
281 		/* slot_fill(kg); */ /* will replace it with another */
282 	}
283 }
284 #endif
285 
286 /*
287  * Change the priority of a thread that is on the run queue.
288  */
289 void
290 adjustrunqueue( struct thread *td, int newpri)
291 {
292 	struct ksegrp *kg;
293 	struct kse *ke;
294 
295 	mtx_assert(&sched_lock, MA_OWNED);
296 	KASSERT((TD_ON_RUNQ(td)), ("adjustrunqueue: Bad state on run queue"));
297 
298 	ke = td->td_kse;
299 	CTR1(KTR_RUNQ, "adjustrunqueue: td%p", td);
300 	/*
301 	 * If it is not a threaded process, take the shortcut.
302 	 */
303 	if ((td->td_proc->p_flag & P_HADTHREADS) == 0) {
304 		/* We only care about the kse in the run queue. */
305 		td->td_priority = newpri;
306 		if (ke->ke_rqindex != (newpri / RQ_PPQ)) {
307 			sched_rem(td);
308 			sched_add(td, SRQ_BORING);
309 		}
310 		return;
311 	}
312 
313 	/* It is a threaded process */
314 	kg = td->td_ksegrp;
315 	if (ke->ke_state == KES_ONRUNQ) {
316 		if (kg->kg_last_assigned == td) {
317 			kg->kg_last_assigned =
318 			    TAILQ_PREV(td, threadqueue, td_runq);
319 		}
320 		sched_rem(td);
321 	}
322 	TAILQ_REMOVE(&kg->kg_runq, td, td_runq);
323 	TD_SET_CAN_RUN(td);
324 	td->td_priority = newpri;
325 	setrunqueue(td, SRQ_BORING);
326 }
327 
328 /*
329  * This function is called when a thread is about to be put on a
330  * ksegrp run queue because it has been made runnable or its
331  * priority has been adjusted and the ksegrp does not have a
332  * free kse slot.  It determines if a thread from the same ksegrp
333  * should be preempted.  If so, it tries to switch threads
334  * if the thread is on the same cpu or notifies another cpu that
335  * it should switch threads.
336  */
337 
338 static void
339 maybe_preempt_in_ksegrp(struct thread *td)
340 #if  !defined(SMP)
341 {
342 	struct thread *running_thread;
343 
344 #ifndef FULL_PREEMPTION
345 	int pri;
346 	pri = td->td_priority;
347 	if (!(pri >= PRI_MIN_ITHD && pri <= PRI_MAX_ITHD))
348 		return;
349 #endif
350 	mtx_assert(&sched_lock, MA_OWNED);
351 	running_thread = curthread;
352 
353 	if (running_thread->td_ksegrp != td->td_ksegrp)
354 		return;
355 
356 	if (td->td_priority > running_thread->td_priority)
357 		return;
358 #ifdef PREEMPTION
359 	if (running_thread->td_critnest > 1)
360 		running_thread->td_pflags |= TDP_OWEPREEMPT;
361 	 else
362 		 mi_switch(SW_INVOL, NULL);
363 
364 #else
365 	running_thread->td_flags |= TDF_NEEDRESCHED;
366 #endif
367 	return;
368 }
369 
370 #else /* SMP */
371 {
372 	struct thread *running_thread;
373 	int worst_pri;
374 	struct ksegrp *kg;
375 	cpumask_t cpumask,dontuse;
376 	struct pcpu *pc;
377 	struct pcpu *best_pcpu;
378 	struct thread *cputhread;
379 
380 #ifndef FULL_PREEMPTION
381 	int pri;
382 	pri = td->td_priority;
383 	if (!(pri >= PRI_MIN_ITHD && pri <= PRI_MAX_ITHD))
384 		return;
385 #endif
386 
387 	mtx_assert(&sched_lock, MA_OWNED);
388 
389 	running_thread = curthread;
390 
391 #if !defined(KSEG_PEEMPT_BEST_CPU)
392 	if (running_thread->td_ksegrp != td->td_ksegrp) {
393 #endif
394 		kg = td->td_ksegrp;
395 
396 		/* if someone is ahead of this thread, wait our turn */
397 		if (td != TAILQ_FIRST(&kg->kg_runq))
398 			return;
399 
400 		worst_pri = td->td_priority;
401 		best_pcpu = NULL;
402 		dontuse   = stopped_cpus | idle_cpus_mask;
403 
404 		/*
405 		 * Find a cpu with the worst priority that runs at thread from
406 		 * the same  ksegrp - if multiple exist give first the last run
407 		 * cpu and then the current cpu priority
408 		 */
409 
410 		SLIST_FOREACH(pc, &cpuhead, pc_allcpu) {
411 			cpumask   = pc->pc_cpumask;
412 			cputhread = pc->pc_curthread;
413 
414 			if ((cpumask & dontuse)  ||
415 			    cputhread->td_ksegrp != kg)
416 				continue;
417 
418 			if (cputhread->td_priority > worst_pri) {
419 				worst_pri = cputhread->td_priority;
420 				best_pcpu = pc;
421 				continue;
422 			}
423 
424 			if (cputhread->td_priority == worst_pri &&
425 			    best_pcpu != NULL &&
426 			    (td->td_lastcpu == pc->pc_cpuid ||
427 				(PCPU_GET(cpumask) == cpumask &&
428 				    td->td_lastcpu != best_pcpu->pc_cpuid)))
429 			    best_pcpu = pc;
430 		}
431 
432 		/* Check if we need to preempt someone */
433 		if (best_pcpu == NULL)
434 			return;
435 
436 		if (PCPU_GET(cpuid) != best_pcpu->pc_cpuid) {
437 			best_pcpu->pc_curthread->td_flags |= TDF_NEEDRESCHED;
438 			ipi_selected(best_pcpu->pc_cpumask, IPI_AST);
439 			return;
440 		}
441 #if !defined(KSEG_PEEMPT_BEST_CPU)
442 	}
443 #endif
444 
445 	if (td->td_priority > running_thread->td_priority)
446 		return;
447 #ifdef PREEMPTION
448 	if (running_thread->td_critnest > 1)
449 		running_thread->td_pflags |= TDP_OWEPREEMPT;
450 	 else
451 		 mi_switch(SW_INVOL, NULL);
452 
453 #else
454 	running_thread->td_flags |= TDF_NEEDRESCHED;
455 #endif
456 	return;
457 }
458 #endif /* !SMP */
459 
460 
461 int limitcount;
462 void
463 setrunqueue(struct thread *td, int flags)
464 {
465 	struct ksegrp *kg;
466 	struct thread *td2;
467 	struct thread *tda;
468 
469 	CTR3(KTR_RUNQ, "setrunqueue: td:%p kg:%p pid:%d",
470 	    td, td->td_ksegrp, td->td_proc->p_pid);
471 	CTR5(KTR_SCHED, "setrunqueue: %p(%s) prio %d by %p(%s)",
472             td, td->td_proc->p_comm, td->td_priority, curthread,
473             curthread->td_proc->p_comm);
474 	mtx_assert(&sched_lock, MA_OWNED);
475 	KASSERT((td->td_inhibitors == 0),
476 			("setrunqueue: trying to run inhibitted thread"));
477 	KASSERT((TD_CAN_RUN(td) || TD_IS_RUNNING(td)),
478 	    ("setrunqueue: bad thread state"));
479 	TD_SET_RUNQ(td);
480 	kg = td->td_ksegrp;
481 	if ((td->td_proc->p_flag & P_HADTHREADS) == 0) {
482 		/*
483 		 * Common path optimisation: Only one of everything
484 		 * and the KSE is always already attached.
485 		 * Totally ignore the ksegrp run queue.
486 		 */
487 		if (kg->kg_avail_opennings != 1) {
488 			if (limitcount < 1) {
489 				limitcount++;
490 				printf("pid %d: corrected slot count (%d->1)\n",
491 				    td->td_proc->p_pid, kg->kg_avail_opennings);
492 
493 			}
494 			kg->kg_avail_opennings = 1;
495 		}
496 		sched_add(td, flags);
497 		return;
498 	}
499 
500 	/*
501 	 * If the concurrency has reduced, and we would go in the
502 	 * assigned section, then keep removing entries from the
503 	 * system run queue, until we are not in that section
504 	 * or there is room for us to be put in that section.
505 	 * What we MUST avoid is the case where there are threads of less
506 	 * priority than the new one scheduled, but it can not
507 	 * be scheduled itself. That would lead to a non contiguous set
508 	 * of scheduled threads, and everything would break.
509 	 */
510 	tda = kg->kg_last_assigned;
511 	while ((kg->kg_avail_opennings <= 0) &&
512 	    (tda && (tda->td_priority > td->td_priority))) {
513 		/*
514 		 * None free, but there is one we can commandeer.
515 		 */
516 		CTR2(KTR_RUNQ,
517 		    "setrunqueue: kg:%p: take slot from td: %p", kg, tda);
518 		sched_rem(tda);
519 		tda = kg->kg_last_assigned =
520 		    TAILQ_PREV(tda, threadqueue, td_runq);
521 	}
522 
523 	/*
524 	 * Add the thread to the ksegrp's run queue at
525 	 * the appropriate place.
526 	 */
527 	TAILQ_FOREACH(td2, &kg->kg_runq, td_runq) {
528 		if (td2->td_priority > td->td_priority) {
529 			TAILQ_INSERT_BEFORE(td2, td, td_runq);
530 			break;
531 		}
532 	}
533 	if (td2 == NULL) {
534 		/* We ran off the end of the TAILQ or it was empty. */
535 		TAILQ_INSERT_TAIL(&kg->kg_runq, td, td_runq);
536 	}
537 
538 	/*
539 	 * If we have a slot to use, then put the thread on the system
540 	 * run queue and if needed, readjust the last_assigned pointer.
541 	 * it may be that we need to schedule something anyhow
542 	 * even if the availabel slots are -ve so that
543 	 * all the items < last_assigned are scheduled.
544 	 */
545 	if (kg->kg_avail_opennings > 0) {
546 		if (tda == NULL) {
547 			/*
548 			 * No pre-existing last assigned so whoever is first
549 			 * gets the slot.. (maybe us)
550 			 */
551 			td2 = TAILQ_FIRST(&kg->kg_runq);
552 			kg->kg_last_assigned = td2;
553 		} else if (tda->td_priority > td->td_priority) {
554 			td2 = td;
555 		} else {
556 			/*
557 			 * We are past last_assigned, so
558 			 * give the next slot to whatever is next,
559 			 * which may or may not be us.
560 			 */
561 			td2 = TAILQ_NEXT(tda, td_runq);
562 			kg->kg_last_assigned = td2;
563 		}
564 		sched_add(td2, flags);
565 	} else {
566 		CTR3(KTR_RUNQ, "setrunqueue: held: td%p kg%p pid%d",
567 			td, td->td_ksegrp, td->td_proc->p_pid);
568 		if ((flags & SRQ_YIELDING) == 0)
569 			maybe_preempt_in_ksegrp(td);
570 	}
571 }
572 
573 /*
574  * Kernel thread preemption implementation.  Critical sections mark
575  * regions of code in which preemptions are not allowed.
576  */
577 void
578 critical_enter(void)
579 {
580 	struct thread *td;
581 
582 	td = curthread;
583 	td->td_critnest++;
584 	CTR4(KTR_CRITICAL, "critical_enter by thread %p (%ld, %s) to %d", td,
585 	    (long)td->td_proc->p_pid, td->td_proc->p_comm, td->td_critnest);
586 }
587 
588 void
589 critical_exit(void)
590 {
591 	struct thread *td;
592 
593 	td = curthread;
594 	KASSERT(td->td_critnest != 0,
595 	    ("critical_exit: td_critnest == 0"));
596 	if (td->td_critnest == 1) {
597 		if (td->td_pflags & TDP_WAKEPROC0) {
598 			td->td_pflags &= ~TDP_WAKEPROC0;
599 			wakeup(&proc0);
600 		}
601 #ifdef PREEMPTION
602 		mtx_assert(&sched_lock, MA_NOTOWNED);
603 		if (td->td_pflags & TDP_OWEPREEMPT) {
604 			mtx_lock_spin(&sched_lock);
605 			mi_switch(SW_INVOL, NULL);
606 			mtx_unlock_spin(&sched_lock);
607 		}
608 #endif
609 		td->td_critnest = 0;
610 	} else {
611 		td->td_critnest--;
612 	}
613 	CTR4(KTR_CRITICAL, "critical_exit by thread %p (%ld, %s) to %d", td,
614 	    (long)td->td_proc->p_pid, td->td_proc->p_comm, td->td_critnest);
615 }
616 
617 /*
618  * This function is called when a thread is about to be put on run queue
619  * because it has been made runnable or its priority has been adjusted.  It
620  * determines if the new thread should be immediately preempted to.  If so,
621  * it switches to it and eventually returns true.  If not, it returns false
622  * so that the caller may place the thread on an appropriate run queue.
623  */
624 int
625 maybe_preempt(struct thread *td)
626 {
627 #ifdef PREEMPTION
628 	struct thread *ctd;
629 	int cpri, pri;
630 #endif
631 
632 	mtx_assert(&sched_lock, MA_OWNED);
633 #ifdef PREEMPTION
634 	/*
635 	 * The new thread should not preempt the current thread if any of the
636 	 * following conditions are true:
637 	 *
638 	 *  - The kernel is in the throes of crashing (panicstr).
639 	 *  - The current thread has a higher (numerically lower) or
640 	 *    equivalent priority.  Note that this prevents curthread from
641 	 *    trying to preempt to itself.
642 	 *  - It is too early in the boot for context switches (cold is set).
643 	 *  - The current thread has an inhibitor set or is in the process of
644 	 *    exiting.  In this case, the current thread is about to switch
645 	 *    out anyways, so there's no point in preempting.  If we did,
646 	 *    the current thread would not be properly resumed as well, so
647 	 *    just avoid that whole landmine.
648 	 *  - If the new thread's priority is not a realtime priority and
649 	 *    the current thread's priority is not an idle priority and
650 	 *    FULL_PREEMPTION is disabled.
651 	 *
652 	 * If all of these conditions are false, but the current thread is in
653 	 * a nested critical section, then we have to defer the preemption
654 	 * until we exit the critical section.  Otherwise, switch immediately
655 	 * to the new thread.
656 	 */
657 	ctd = curthread;
658 	KASSERT ((ctd->td_kse != NULL && ctd->td_kse->ke_thread == ctd),
659 	  ("thread has no (or wrong) sched-private part."));
660 	KASSERT((td->td_inhibitors == 0),
661 			("maybe_preempt: trying to run inhibitted thread"));
662 	pri = td->td_priority;
663 	cpri = ctd->td_priority;
664 	if (panicstr != NULL || pri >= cpri || cold /* || dumping */ ||
665 	    TD_IS_INHIBITED(ctd) || td->td_kse->ke_state != KES_THREAD)
666 		return (0);
667 #ifndef FULL_PREEMPTION
668 	if (!(pri >= PRI_MIN_ITHD && pri <= PRI_MAX_ITHD) &&
669 	    !(cpri >= PRI_MIN_IDLE))
670 		return (0);
671 #endif
672 	if (ctd->td_critnest > 1) {
673 		CTR1(KTR_PROC, "maybe_preempt: in critical section %d",
674 		    ctd->td_critnest);
675 		ctd->td_pflags |= TDP_OWEPREEMPT;
676 		return (0);
677 	}
678 
679 	/*
680 	 * Thread is runnable but not yet put on system run queue.
681 	 */
682 	MPASS(TD_ON_RUNQ(td));
683 	MPASS(td->td_sched->ke_state != KES_ONRUNQ);
684 	if (td->td_proc->p_flag & P_HADTHREADS) {
685 		/*
686 		 * If this is a threaded process we actually ARE on the
687 		 * ksegrp run queue so take it off that first.
688 		 * Also undo any damage done to the last_assigned pointer.
689 		 * XXX Fix setrunqueue so this isn't needed
690 		 */
691 		struct ksegrp *kg;
692 
693 		kg = td->td_ksegrp;
694 		if (kg->kg_last_assigned == td)
695 			kg->kg_last_assigned =
696 			    TAILQ_PREV(td, threadqueue, td_runq);
697 		TAILQ_REMOVE(&kg->kg_runq, td, td_runq);
698 	}
699 
700 	TD_SET_RUNNING(td);
701 	CTR3(KTR_PROC, "preempting to thread %p (pid %d, %s)\n", td,
702 	    td->td_proc->p_pid, td->td_proc->p_comm);
703 	mi_switch(SW_INVOL|SW_PREEMPT, td);
704 	return (1);
705 #else
706 	return (0);
707 #endif
708 }
709 
710 #if 0
711 #ifndef PREEMPTION
712 /* XXX: There should be a non-static version of this. */
713 static void
714 printf_caddr_t(void *data)
715 {
716 	printf("%s", (char *)data);
717 }
718 static char preempt_warning[] =
719     "WARNING: Kernel preemption is disabled, expect reduced performance.\n";
720 SYSINIT(preempt_warning, SI_SUB_COPYRIGHT, SI_ORDER_ANY, printf_caddr_t,
721     preempt_warning)
722 #endif
723 #endif
724 
725 /************************************************************************
726  * SYSTEM RUN QUEUE manipulations and tests				*
727  ************************************************************************/
728 /*
729  * Initialize a run structure.
730  */
731 void
732 runq_init(struct runq *rq)
733 {
734 	int i;
735 
736 	bzero(rq, sizeof *rq);
737 	for (i = 0; i < RQ_NQS; i++)
738 		TAILQ_INIT(&rq->rq_queues[i]);
739 }
740 
741 /*
742  * Clear the status bit of the queue corresponding to priority level pri,
743  * indicating that it is empty.
744  */
745 static __inline void
746 runq_clrbit(struct runq *rq, int pri)
747 {
748 	struct rqbits *rqb;
749 
750 	rqb = &rq->rq_status;
751 	CTR4(KTR_RUNQ, "runq_clrbit: bits=%#x %#x bit=%#x word=%d",
752 	    rqb->rqb_bits[RQB_WORD(pri)],
753 	    rqb->rqb_bits[RQB_WORD(pri)] & ~RQB_BIT(pri),
754 	    RQB_BIT(pri), RQB_WORD(pri));
755 	rqb->rqb_bits[RQB_WORD(pri)] &= ~RQB_BIT(pri);
756 }
757 
758 /*
759  * Find the index of the first non-empty run queue.  This is done by
760  * scanning the status bits, a set bit indicates a non-empty queue.
761  */
762 static __inline int
763 runq_findbit(struct runq *rq)
764 {
765 	struct rqbits *rqb;
766 	int pri;
767 	int i;
768 
769 	rqb = &rq->rq_status;
770 	for (i = 0; i < RQB_LEN; i++)
771 		if (rqb->rqb_bits[i]) {
772 			pri = RQB_FFS(rqb->rqb_bits[i]) + (i << RQB_L2BPW);
773 			CTR3(KTR_RUNQ, "runq_findbit: bits=%#x i=%d pri=%d",
774 			    rqb->rqb_bits[i], i, pri);
775 			return (pri);
776 		}
777 
778 	return (-1);
779 }
780 
781 /*
782  * Set the status bit of the queue corresponding to priority level pri,
783  * indicating that it is non-empty.
784  */
785 static __inline void
786 runq_setbit(struct runq *rq, int pri)
787 {
788 	struct rqbits *rqb;
789 
790 	rqb = &rq->rq_status;
791 	CTR4(KTR_RUNQ, "runq_setbit: bits=%#x %#x bit=%#x word=%d",
792 	    rqb->rqb_bits[RQB_WORD(pri)],
793 	    rqb->rqb_bits[RQB_WORD(pri)] | RQB_BIT(pri),
794 	    RQB_BIT(pri), RQB_WORD(pri));
795 	rqb->rqb_bits[RQB_WORD(pri)] |= RQB_BIT(pri);
796 }
797 
798 /*
799  * Add the KSE to the queue specified by its priority, and set the
800  * corresponding status bit.
801  */
802 void
803 runq_add(struct runq *rq, struct kse *ke, int flags)
804 {
805 	struct rqhead *rqh;
806 	int pri;
807 
808 	pri = ke->ke_thread->td_priority / RQ_PPQ;
809 	ke->ke_rqindex = pri;
810 	runq_setbit(rq, pri);
811 	rqh = &rq->rq_queues[pri];
812 	CTR5(KTR_RUNQ, "runq_add: td=%p ke=%p pri=%d %d rqh=%p",
813 	    ke->ke_thread, ke, ke->ke_thread->td_priority, pri, rqh);
814 	if (flags & SRQ_PREEMPTED) {
815 		TAILQ_INSERT_HEAD(rqh, ke, ke_procq);
816 	} else {
817 		TAILQ_INSERT_TAIL(rqh, ke, ke_procq);
818 	}
819 }
820 
821 /*
822  * Return true if there are runnable processes of any priority on the run
823  * queue, false otherwise.  Has no side effects, does not modify the run
824  * queue structure.
825  */
826 int
827 runq_check(struct runq *rq)
828 {
829 	struct rqbits *rqb;
830 	int i;
831 
832 	rqb = &rq->rq_status;
833 	for (i = 0; i < RQB_LEN; i++)
834 		if (rqb->rqb_bits[i]) {
835 			CTR2(KTR_RUNQ, "runq_check: bits=%#x i=%d",
836 			    rqb->rqb_bits[i], i);
837 			return (1);
838 		}
839 	CTR0(KTR_RUNQ, "runq_check: empty");
840 
841 	return (0);
842 }
843 
844 #if defined(SMP) && defined(SCHED_4BSD)
845 int runq_fuzz = 1;
846 SYSCTL_INT(_kern_sched, OID_AUTO, runq_fuzz, CTLFLAG_RW, &runq_fuzz, 0, "");
847 #endif
848 
849 /*
850  * Find the highest priority process on the run queue.
851  */
852 struct kse *
853 runq_choose(struct runq *rq)
854 {
855 	struct rqhead *rqh;
856 	struct kse *ke;
857 	int pri;
858 
859 	mtx_assert(&sched_lock, MA_OWNED);
860 	while ((pri = runq_findbit(rq)) != -1) {
861 		rqh = &rq->rq_queues[pri];
862 #if defined(SMP) && defined(SCHED_4BSD)
863 		/* fuzz == 1 is normal.. 0 or less are ignored */
864 		if (runq_fuzz > 1) {
865 			/*
866 			 * In the first couple of entries, check if
867 			 * there is one for our CPU as a preference.
868 			 */
869 			int count = runq_fuzz;
870 			int cpu = PCPU_GET(cpuid);
871 			struct kse *ke2;
872 			ke2 = ke = TAILQ_FIRST(rqh);
873 
874 			while (count-- && ke2) {
875 				if (ke->ke_thread->td_lastcpu == cpu) {
876 					ke = ke2;
877 					break;
878 				}
879 				ke2 = TAILQ_NEXT(ke2, ke_procq);
880 			}
881 		} else
882 #endif
883 			ke = TAILQ_FIRST(rqh);
884 		KASSERT(ke != NULL, ("runq_choose: no proc on busy queue"));
885 		CTR3(KTR_RUNQ,
886 		    "runq_choose: pri=%d kse=%p rqh=%p", pri, ke, rqh);
887 		return (ke);
888 	}
889 	CTR1(KTR_RUNQ, "runq_choose: idleproc pri=%d", pri);
890 
891 	return (NULL);
892 }
893 
894 /*
895  * Remove the KSE from the queue specified by its priority, and clear the
896  * corresponding status bit if the queue becomes empty.
897  * Caller must set ke->ke_state afterwards.
898  */
899 void
900 runq_remove(struct runq *rq, struct kse *ke)
901 {
902 	struct rqhead *rqh;
903 	int pri;
904 
905 	KASSERT(ke->ke_proc->p_sflag & PS_INMEM,
906 		("runq_remove: process swapped out"));
907 	pri = ke->ke_rqindex;
908 	rqh = &rq->rq_queues[pri];
909 	CTR5(KTR_RUNQ, "runq_remove: td=%p, ke=%p pri=%d %d rqh=%p",
910 	    ke->ke_thread, ke, ke->ke_thread->td_priority, pri, rqh);
911 	KASSERT(ke != NULL, ("runq_remove: no proc on busy queue"));
912 	TAILQ_REMOVE(rqh, ke, ke_procq);
913 	if (TAILQ_EMPTY(rqh)) {
914 		CTR0(KTR_RUNQ, "runq_remove: empty");
915 		runq_clrbit(rq, pri);
916 	}
917 }
918 
919 /****** functions that are temporarily here ***********/
920 #include <vm/uma.h>
921 extern struct mtx kse_zombie_lock;
922 
923 /*
924  *  Allocate scheduler specific per-process resources.
925  * The thread and ksegrp have already been linked in.
926  * In this case just set the default concurrency value.
927  *
928  * Called from:
929  *  proc_init() (UMA init method)
930  */
931 void
932 sched_newproc(struct proc *p, struct ksegrp *kg, struct thread *td)
933 {
934 
935 	/* This can go in sched_fork */
936 	sched_init_concurrency(kg);
937 }
938 
939 /*
940  * thread is being either created or recycled.
941  * Fix up the per-scheduler resources associated with it.
942  * Called from:
943  *  sched_fork_thread()
944  *  thread_dtor()  (*may go away)
945  *  thread_init()  (*may go away)
946  */
947 void
948 sched_newthread(struct thread *td)
949 {
950 	struct td_sched *ke;
951 
952 	ke = (struct td_sched *) (td + 1);
953 	bzero(ke, sizeof(*ke));
954 	td->td_sched     = ke;
955 	ke->ke_thread	= td;
956 	ke->ke_state	= KES_THREAD;
957 }
958 
959 /*
960  * Set up an initial concurrency of 1
961  * and set the given thread (if given) to be using that
962  * concurrency slot.
963  * May be used "offline"..before the ksegrp is attached to the world
964  * and thus wouldn't need schedlock in that case.
965  * Called from:
966  *  thr_create()
967  *  proc_init() (UMA) via sched_newproc()
968  */
969 void
970 sched_init_concurrency(struct ksegrp *kg)
971 {
972 
973 	CTR1(KTR_RUNQ,"kg %p init slots and concurrency to 1", kg);
974 	kg->kg_concurrency = 1;
975 	kg->kg_avail_opennings = 1;
976 }
977 
978 /*
979  * Change the concurrency of an existing ksegrp to N
980  * Called from:
981  *  kse_create()
982  *  kse_exit()
983  *  thread_exit()
984  *  thread_single()
985  */
986 void
987 sched_set_concurrency(struct ksegrp *kg, int concurrency)
988 {
989 
990 	CTR4(KTR_RUNQ,"kg %p set concurrency to %d, slots %d -> %d",
991 	    kg,
992 	    concurrency,
993 	    kg->kg_avail_opennings,
994 	    kg->kg_avail_opennings + (concurrency - kg->kg_concurrency));
995 	kg->kg_avail_opennings += (concurrency - kg->kg_concurrency);
996 	kg->kg_concurrency = concurrency;
997 }
998 
999 /*
1000  * Called from thread_exit() for all exiting thread
1001  *
1002  * Not to be confused with sched_exit_thread()
1003  * that is only called from thread_exit() for threads exiting
1004  * without the rest of the process exiting because it is also called from
1005  * sched_exit() and we wouldn't want to call it twice.
1006  * XXX This can probably be fixed.
1007  */
1008 void
1009 sched_thread_exit(struct thread *td)
1010 {
1011 
1012 	SLOT_RELEASE(td->td_ksegrp);
1013 	slot_fill(td->td_ksegrp);
1014 }
1015 
1016 #endif /* KERN_SWITCH_INCLUDE */
1017