xref: /freebsd/sys/kern/kern_switch.c (revision b96741f4108226fb365b05c6b4a179dd8f43a68f)
1 /*
2  * Copyright (c) 2001 Jake Burkholder <jake@FreeBSD.org>
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  */
26 
27 /***
28 Here is the logic..
29 
30 If there are N processors, then there are at most N KSEs (kernel
31 schedulable entities) working to process threads that belong to a
32 KSEGROUP (kg). If there are X of these KSEs actually running at the
33 moment in question, then there are at most M (N-X) of these KSEs on
34 the run queue, as running KSEs are not on the queue.
35 
36 Runnable threads are queued off the KSEGROUP in priority order.
37 If there are M or more threads runnable, the top M threads
38 (by priority) are 'preassigned' to the M KSEs not running. The KSEs take
39 their priority from those threads and are put on the run queue.
40 
41 The last thread that had a priority high enough to have a KSE associated
42 with it, AND IS ON THE RUN QUEUE is pointed to by
43 kg->kg_last_assigned. If no threads queued off the KSEGROUP have KSEs
44 assigned as all the available KSEs are activly running, or because there
45 are no threads queued, that pointer is NULL.
46 
47 When a KSE is removed from the run queue to become runnable, we know
48 it was associated with the highest priority thread in the queue (at the head
49 of the queue). If it is also the last assigned we know M was 1 and must
50 now be 0. Since the thread is no longer queued that pointer must be
51 removed from it. Since we know there were no more KSEs available,
52 (M was 1 and is now 0) and since we are not FREEING our KSE
53 but using it, we know there are STILL no more KSEs available, we can prove
54 that the next thread in the ksegrp list will not have a KSE to assign to
55 it, so we can show that the pointer must be made 'invalid' (NULL).
56 
57 The pointer exists so that when a new thread is made runnable, it can
58 have its priority compared with the last assigned thread to see if
59 it should 'steal' its KSE or not.. i.e. is it 'earlier'
60 on the list than that thread or later.. If it's earlier, then the KSE is
61 removed from the last assigned (which is now not assigned a KSE)
62 and reassigned to the new thread, which is placed earlier in the list.
63 The pointer is then backed up to the previous thread (which may or may not
64 be the new thread).
65 
66 When a thread sleeps or is removed, the KSE becomes available and if there
67 are queued threads that are not assigned KSEs, the highest priority one of
68 them is assigned the KSE, which is then placed back on the run queue at
69 the approipriate place, and the kg->kg_last_assigned pointer is adjusted down
70 to point to it.
71 
72 The following diagram shows 2 KSEs and 3 threads from a single process.
73 
74  RUNQ: --->KSE---KSE--...    (KSEs queued at priorities from threads)
75               \    \____
76                \        \
77     KSEGROUP---thread--thread--thread    (queued in priority order)
78         \                 /
79          \_______________/
80           (last_assigned)
81 
82 The result of this scheme is that the M available KSEs are always
83 queued at the priorities they have inherrited from the M highest priority
84 threads for that KSEGROUP. If this situation changes, the KSEs are
85 reassigned to keep this true.
86 ***/
87 
88 #include <sys/cdefs.h>
89 __FBSDID("$FreeBSD$");
90 
91 #include "opt_sched.h"
92 
93 #ifndef KERN_SWITCH_INCLUDE
94 #include <sys/param.h>
95 #include <sys/systm.h>
96 #include <sys/kdb.h>
97 #include <sys/kernel.h>
98 #include <sys/ktr.h>
99 #include <sys/lock.h>
100 #include <sys/mutex.h>
101 #include <sys/proc.h>
102 #include <sys/queue.h>
103 #include <sys/sched.h>
104 #else  /* KERN_SWITCH_INCLUDE */
105 #if defined(SMP) && (defined(__i386__) || defined(__amd64__))
106 #include <sys/smp.h>
107 #endif
108 #include <machine/critical.h>
109 #if defined(SMP) && defined(SCHED_4BSD)
110 #include <sys/sysctl.h>
111 #endif
112 
113 #ifdef FULL_PREEMPTION
114 #ifndef PREEMPTION
115 #error "The FULL_PREEMPTION option requires the PREEMPTION option"
116 #endif
117 #endif
118 
119 CTASSERT((RQB_BPW * RQB_LEN) == RQ_NQS);
120 
121 #define td_kse td_sched
122 
123 /************************************************************************
124  * Functions that manipulate runnability from a thread perspective.	*
125  ************************************************************************/
126 /*
127  * Select the KSE that will be run next.  From that find the thread, and
128  * remove it from the KSEGRP's run queue.  If there is thread clustering,
129  * this will be what does it.
130  */
131 struct thread *
132 choosethread(void)
133 {
134 	struct kse *ke;
135 	struct thread *td;
136 	struct ksegrp *kg;
137 
138 #if defined(SMP) && (defined(__i386__) || defined(__amd64__))
139 	if (smp_active == 0 && PCPU_GET(cpuid) != 0) {
140 		/* Shutting down, run idlethread on AP's */
141 		td = PCPU_GET(idlethread);
142 		ke = td->td_kse;
143 		CTR1(KTR_RUNQ, "choosethread: td=%p (idle)", td);
144 		ke->ke_flags |= KEF_DIDRUN;
145 		TD_SET_RUNNING(td);
146 		return (td);
147 	}
148 #endif
149 
150 retry:
151 	ke = sched_choose();
152 	if (ke) {
153 		td = ke->ke_thread;
154 		KASSERT((td->td_kse == ke), ("kse/thread mismatch"));
155 		kg = ke->ke_ksegrp;
156 		if (td->td_proc->p_flag & P_HADTHREADS) {
157 			if (kg->kg_last_assigned == td) {
158 				kg->kg_last_assigned = TAILQ_PREV(td,
159 				    threadqueue, td_runq);
160 			}
161 			TAILQ_REMOVE(&kg->kg_runq, td, td_runq);
162 			kg->kg_runnable--;
163 		}
164 		CTR2(KTR_RUNQ, "choosethread: td=%p pri=%d",
165 		    td, td->td_priority);
166 	} else {
167 		/* Simulate runq_choose() having returned the idle thread */
168 		td = PCPU_GET(idlethread);
169 		ke = td->td_kse;
170 		CTR1(KTR_RUNQ, "choosethread: td=%p (idle)", td);
171 	}
172 	ke->ke_flags |= KEF_DIDRUN;
173 
174 	/*
175 	 * If we are in panic, only allow system threads,
176 	 * plus the one we are running in, to be run.
177 	 */
178 	if (panicstr && ((td->td_proc->p_flag & P_SYSTEM) == 0 &&
179 	    (td->td_flags & TDF_INPANIC) == 0)) {
180 		/* note that it is no longer on the run queue */
181 		TD_SET_CAN_RUN(td);
182 		goto retry;
183 	}
184 
185 	TD_SET_RUNNING(td);
186 	return (td);
187 }
188 
189 /*
190  * Given a surplus system slot, try assign a new runnable thread to it.
191  * Called from:
192  *  sched_thread_exit()  (local)
193  *  sched_switch()  (local)
194  *  sched_thread_exit()  (local)
195  *  remrunqueue()  (local)  (not at the moment)
196  */
197 static void
198 slot_fill(struct ksegrp *kg)
199 {
200 	struct thread *td;
201 
202 	mtx_assert(&sched_lock, MA_OWNED);
203 	while (kg->kg_avail_opennings > 0) {
204 		/*
205 		 * Find the first unassigned thread
206 		 */
207 		if ((td = kg->kg_last_assigned) != NULL)
208 			td = TAILQ_NEXT(td, td_runq);
209 		else
210 			td = TAILQ_FIRST(&kg->kg_runq);
211 
212 		/*
213 		 * If we found one, send it to the system scheduler.
214 		 */
215 		if (td) {
216 			kg->kg_last_assigned = td;
217 			sched_add(td, SRQ_YIELDING);
218 			CTR2(KTR_RUNQ, "slot_fill: td%p -> kg%p", td, kg);
219 		} else {
220 			/* no threads to use up the slots. quit now */
221 			break;
222 		}
223 	}
224 }
225 
226 #ifdef	SCHED_4BSD
227 /*
228  * Remove a thread from its KSEGRP's run queue.
229  * This in turn may remove it from a KSE if it was already assigned
230  * to one, possibly causing a new thread to be assigned to the KSE
231  * and the KSE getting a new priority.
232  */
233 static void
234 remrunqueue(struct thread *td)
235 {
236 	struct thread *td2, *td3;
237 	struct ksegrp *kg;
238 	struct kse *ke;
239 
240 	mtx_assert(&sched_lock, MA_OWNED);
241 	KASSERT((TD_ON_RUNQ(td)), ("remrunqueue: Bad state on run queue"));
242 	kg = td->td_ksegrp;
243 	ke = td->td_kse;
244 	CTR1(KTR_RUNQ, "remrunqueue: td%p", td);
245 	TD_SET_CAN_RUN(td);
246 	/*
247 	 * If it is not a threaded process, take the shortcut.
248 	 */
249 	if ((td->td_proc->p_flag & P_HADTHREADS) == 0) {
250 		/* remve from sys run queue and free up a slot */
251 		sched_rem(td);
252 		ke->ke_state = KES_THREAD;
253 		return;
254 	}
255    	td3 = TAILQ_PREV(td, threadqueue, td_runq);
256 	TAILQ_REMOVE(&kg->kg_runq, td, td_runq);
257 	kg->kg_runnable--;
258 	if (ke->ke_state == KES_ONRUNQ) {
259 		/*
260 		 * This thread has been assigned to the system run queue.
261 		 * We need to dissociate it and try assign the
262 		 * KSE to the next available thread. Then, we should
263 		 * see if we need to move the KSE in the run queues.
264 		 */
265 		sched_rem(td);
266 		ke->ke_state = KES_THREAD;
267 		td2 = kg->kg_last_assigned;
268 		KASSERT((td2 != NULL), ("last assigned has wrong value"));
269 		if (td2 == td)
270 			kg->kg_last_assigned = td3;
271 		/* slot_fill(kg); */ /* will replace it with another */
272 	}
273 }
274 #endif
275 
276 /*
277  * Change the priority of a thread that is on the run queue.
278  */
279 void
280 adjustrunqueue( struct thread *td, int newpri)
281 {
282 	struct ksegrp *kg;
283 	struct kse *ke;
284 
285 	mtx_assert(&sched_lock, MA_OWNED);
286 	KASSERT((TD_ON_RUNQ(td)), ("adjustrunqueue: Bad state on run queue"));
287 
288 	ke = td->td_kse;
289 	CTR1(KTR_RUNQ, "adjustrunqueue: td%p", td);
290 	/*
291 	 * If it is not a threaded process, take the shortcut.
292 	 */
293 	if ((td->td_proc->p_flag & P_HADTHREADS) == 0) {
294 		/* We only care about the kse in the run queue. */
295 		td->td_priority = newpri;
296 		if (ke->ke_rqindex != (newpri / RQ_PPQ)) {
297 			sched_rem(td);
298 			sched_add(td, SRQ_BORING);
299 		}
300 		return;
301 	}
302 
303 	/* It is a threaded process */
304 	kg = td->td_ksegrp;
305 	if (ke->ke_state == KES_ONRUNQ) {
306 		if (kg->kg_last_assigned == td) {
307 			kg->kg_last_assigned =
308 			    TAILQ_PREV(td, threadqueue, td_runq);
309 		}
310 		sched_rem(td);
311 	}
312 	TAILQ_REMOVE(&kg->kg_runq, td, td_runq);
313 	kg->kg_runnable--;
314 	TD_SET_CAN_RUN(td);
315 	td->td_priority = newpri;
316 	setrunqueue(td, SRQ_BORING);
317 }
318 
319 /*
320  * This function is called when a thread is about to be put on a
321  * ksegrp run queue because it has been made runnable or its
322  * priority has been adjusted and the ksegrp does not have a
323  * free kse slot.  It determines if a thread from the same ksegrp
324  * should be preempted.  If so, it tries to switch threads
325  * if the thread is on the same cpu or notifies another cpu that
326  * it should switch threads.
327  */
328 
329 static void
330 maybe_preempt_in_ksegrp(struct thread *td)
331 #if  !defined(SMP)
332 {
333 	struct thread *running_thread;
334 
335 #ifndef FULL_PREEMPTION
336 	int pri;
337 	pri = td->td_priority;
338 	if (!(pri >= PRI_MIN_ITHD && pri <= PRI_MAX_ITHD))
339 		return;
340 #endif
341 	mtx_assert(&sched_lock, MA_OWNED);
342 	running_thread = curthread;
343 
344 	if (running_thread->td_ksegrp != td->td_ksegrp)
345 		return;
346 
347 	if (td->td_priority > running_thread->td_priority)
348 		return;
349 #ifdef PREEMPTION
350 	if (running_thread->td_critnest > 1)
351 		running_thread->td_pflags |= TDP_OWEPREEMPT;
352 	 else
353 		 mi_switch(SW_INVOL, NULL);
354 
355 #else
356 	running_thread->td_flags |= TDF_NEEDRESCHED;
357 #endif
358 	return;
359 }
360 
361 #else /* SMP */
362 {
363 	struct thread *running_thread;
364 	int worst_pri;
365 	struct ksegrp *kg;
366 	cpumask_t cpumask,dontuse;
367 	struct pcpu *pc;
368 	struct pcpu *best_pcpu;
369 	struct thread *cputhread;
370 
371 #ifndef FULL_PREEMPTION
372 	int pri;
373 	pri = td->td_priority;
374 	if (!(pri >= PRI_MIN_ITHD && pri <= PRI_MAX_ITHD))
375 		return;
376 #endif
377 
378 	mtx_assert(&sched_lock, MA_OWNED);
379 
380 	running_thread = curthread;
381 
382 #if !defined(KSEG_PEEMPT_BEST_CPU)
383 	if (running_thread->td_ksegrp != td->td_ksegrp) {
384 #endif
385 		kg = td->td_ksegrp;
386 
387 		/* if someone is ahead of this thread, wait our turn */
388 		if (td != TAILQ_FIRST(&kg->kg_runq))
389 			return;
390 
391 		worst_pri = td->td_priority;
392 		best_pcpu = NULL;
393 		dontuse   = stopped_cpus | idle_cpus_mask;
394 
395 		/*
396 		 * Find a cpu with the worst priority that runs at thread from
397 		 * the same  ksegrp - if multiple exist give first the last run
398 		 * cpu and then the current cpu priority
399 		 */
400 
401 		SLIST_FOREACH(pc, &cpuhead, pc_allcpu) {
402 			cpumask   = pc->pc_cpumask;
403 			cputhread = pc->pc_curthread;
404 
405 			if ((cpumask & dontuse)  ||
406 			    cputhread->td_ksegrp != kg)
407 				continue;
408 
409 			if (cputhread->td_priority > worst_pri) {
410 				worst_pri = cputhread->td_priority;
411 				best_pcpu = pc;
412 				continue;
413 			}
414 
415 			if (cputhread->td_priority == worst_pri &&
416 			    best_pcpu != NULL &&
417 			    (td->td_lastcpu == pc->pc_cpuid ||
418 				(PCPU_GET(cpumask) == cpumask &&
419 				    td->td_lastcpu != best_pcpu->pc_cpuid)))
420 			    best_pcpu = pc;
421 		}
422 
423 		/* Check if we need to preempt someone */
424 		if (best_pcpu == NULL)
425 			return;
426 
427 		if (PCPU_GET(cpuid) != best_pcpu->pc_cpuid) {
428 			best_pcpu->pc_curthread->td_flags |= TDF_NEEDRESCHED;
429 			ipi_selected(best_pcpu->pc_cpumask, IPI_AST);
430 			return;
431 		}
432 #if !defined(KSEG_PEEMPT_BEST_CPU)
433 	}
434 #endif
435 
436 	if (td->td_priority > running_thread->td_priority)
437 		return;
438 #ifdef PREEMPTION
439 	if (running_thread->td_critnest > 1)
440 		running_thread->td_pflags |= TDP_OWEPREEMPT;
441 	 else
442 		 mi_switch(SW_INVOL, NULL);
443 
444 #else
445 	running_thread->td_flags |= TDF_NEEDRESCHED;
446 #endif
447 	return;
448 }
449 #endif /* !SMP */
450 
451 
452 int limitcount;
453 void
454 setrunqueue(struct thread *td, int flags)
455 {
456 	struct ksegrp *kg;
457 	struct thread *td2;
458 	struct thread *tda;
459 
460 	CTR3(KTR_RUNQ, "setrunqueue: td:%p kg:%p pid:%d",
461 	    td, td->td_ksegrp, td->td_proc->p_pid);
462 	mtx_assert(&sched_lock, MA_OWNED);
463 	KASSERT((td->td_inhibitors == 0),
464 			("setrunqueue: trying to run inhibitted thread"));
465 	KASSERT((TD_CAN_RUN(td) || TD_IS_RUNNING(td)),
466 	    ("setrunqueue: bad thread state"));
467 	TD_SET_RUNQ(td);
468 	kg = td->td_ksegrp;
469 	if ((td->td_proc->p_flag & P_HADTHREADS) == 0) {
470 		/*
471 		 * Common path optimisation: Only one of everything
472 		 * and the KSE is always already attached.
473 		 * Totally ignore the ksegrp run queue.
474 		 */
475 		if (kg->kg_avail_opennings != 1) {
476 			if (limitcount < 1) {
477 				limitcount++;
478 				printf("pid %d: corrected slot count (%d->1)\n",
479 				    td->td_proc->p_pid, kg->kg_avail_opennings);
480 
481 			}
482 			kg->kg_avail_opennings = 1;
483 		}
484 		sched_add(td, flags);
485 		return;
486 	}
487 
488 	/*
489 	 * If the concurrency has reduced, and we would go in the
490 	 * assigned section, then keep removing entries from the
491 	 * system run queue, until we are not in that section
492 	 * or there is room for us to be put in that section.
493 	 * What we MUST avoid is the case where there are threads of less
494 	 * priority than the new one scheduled, but it can not
495 	 * be scheduled itself. That would lead to a non contiguous set
496 	 * of scheduled threads, and everything would break.
497 	 */
498 	tda = kg->kg_last_assigned;
499 	while ((kg->kg_avail_opennings <= 0) &&
500 	    (tda && (tda->td_priority > td->td_priority))) {
501 		/*
502 		 * None free, but there is one we can commandeer.
503 		 */
504 		CTR2(KTR_RUNQ,
505 		    "setrunqueue: kg:%p: take slot from td: %p", kg, tda);
506 		sched_rem(tda);
507 		tda = kg->kg_last_assigned =
508 		    TAILQ_PREV(tda, threadqueue, td_runq);
509 	}
510 
511 	/*
512 	 * Add the thread to the ksegrp's run queue at
513 	 * the appropriate place.
514 	 */
515 	TAILQ_FOREACH(td2, &kg->kg_runq, td_runq) {
516 		if (td2->td_priority > td->td_priority) {
517 			kg->kg_runnable++;
518 			TAILQ_INSERT_BEFORE(td2, td, td_runq);
519 			break;
520 		}
521 	}
522 	if (td2 == NULL) {
523 		/* We ran off the end of the TAILQ or it was empty. */
524 		kg->kg_runnable++;
525 		TAILQ_INSERT_TAIL(&kg->kg_runq, td, td_runq);
526 	}
527 
528 	/*
529 	 * If we have a slot to use, then put the thread on the system
530 	 * run queue and if needed, readjust the last_assigned pointer.
531 	 * it may be that we need to schedule something anyhow
532 	 * even if the availabel slots are -ve so that
533 	 * all the items < last_assigned are scheduled.
534 	 */
535 	if (kg->kg_avail_opennings > 0) {
536 		if (tda == NULL) {
537 			/*
538 			 * No pre-existing last assigned so whoever is first
539 			 * gets the slot.. (maybe us)
540 			 */
541 			td2 = TAILQ_FIRST(&kg->kg_runq);
542 			kg->kg_last_assigned = td2;
543 		} else if (tda->td_priority > td->td_priority) {
544 			td2 = td;
545 		} else {
546 			/*
547 			 * We are past last_assigned, so
548 			 * give the next slot to whatever is next,
549 			 * which may or may not be us.
550 			 */
551 			td2 = TAILQ_NEXT(tda, td_runq);
552 			kg->kg_last_assigned = td2;
553 		}
554 		sched_add(td2, flags);
555 	} else {
556 		CTR3(KTR_RUNQ, "setrunqueue: held: td%p kg%p pid%d",
557 			td, td->td_ksegrp, td->td_proc->p_pid);
558 		if ((flags & SRQ_YIELDING) == 0)
559 			maybe_preempt_in_ksegrp(td);
560 	}
561 }
562 
563 /*
564  * Kernel thread preemption implementation.  Critical sections mark
565  * regions of code in which preemptions are not allowed.
566  */
567 void
568 critical_enter(void)
569 {
570 	struct thread *td;
571 
572 	td = curthread;
573 	if (td->td_critnest == 0)
574 		cpu_critical_enter(td);
575 	td->td_critnest++;
576 }
577 
578 void
579 critical_exit(void)
580 {
581 	struct thread *td;
582 
583 	td = curthread;
584 	KASSERT(td->td_critnest != 0,
585 	    ("critical_exit: td_critnest == 0"));
586 	if (td->td_critnest == 1) {
587 		if (td->td_pflags & TDP_WAKEPROC0) {
588 			td->td_pflags &= ~TDP_WAKEPROC0;
589 			wakeup(&proc0);
590 		}
591 #ifdef PREEMPTION
592 		mtx_assert(&sched_lock, MA_NOTOWNED);
593 		if (td->td_pflags & TDP_OWEPREEMPT) {
594 			mtx_lock_spin(&sched_lock);
595 			mi_switch(SW_INVOL, NULL);
596 			mtx_unlock_spin(&sched_lock);
597 		}
598 #endif
599 		td->td_critnest = 0;
600 		cpu_critical_exit(td);
601 	} else {
602 		td->td_critnest--;
603 	}
604 }
605 
606 /*
607  * This function is called when a thread is about to be put on run queue
608  * because it has been made runnable or its priority has been adjusted.  It
609  * determines if the new thread should be immediately preempted to.  If so,
610  * it switches to it and eventually returns true.  If not, it returns false
611  * so that the caller may place the thread on an appropriate run queue.
612  */
613 int
614 maybe_preempt(struct thread *td)
615 {
616 #ifdef PREEMPTION
617 	struct thread *ctd;
618 	int cpri, pri;
619 #endif
620 
621 	mtx_assert(&sched_lock, MA_OWNED);
622 #ifdef PREEMPTION
623 	/*
624 	 * The new thread should not preempt the current thread if any of the
625 	 * following conditions are true:
626 	 *
627 	 *  - The current thread has a higher (numerically lower) or
628 	 *    equivalent priority.  Note that this prevents curthread from
629 	 *    trying to preempt to itself.
630 	 *  - It is too early in the boot for context switches (cold is set).
631 	 *  - The current thread has an inhibitor set or is in the process of
632 	 *    exiting.  In this case, the current thread is about to switch
633 	 *    out anyways, so there's no point in preempting.  If we did,
634 	 *    the current thread would not be properly resumed as well, so
635 	 *    just avoid that whole landmine.
636 	 *  - If the new thread's priority is not a realtime priority and
637 	 *    the current thread's priority is not an idle priority and
638 	 *    FULL_PREEMPTION is disabled.
639 	 *
640 	 * If all of these conditions are false, but the current thread is in
641 	 * a nested critical section, then we have to defer the preemption
642 	 * until we exit the critical section.  Otherwise, switch immediately
643 	 * to the new thread.
644 	 */
645 	ctd = curthread;
646 	KASSERT ((ctd->td_kse != NULL && ctd->td_kse->ke_thread == ctd),
647 	  ("thread has no (or wrong) sched-private part."));
648 	KASSERT((td->td_inhibitors == 0),
649 			("maybe_preempt: trying to run inhibitted thread"));
650 	pri = td->td_priority;
651 	cpri = ctd->td_priority;
652 	if (pri >= cpri || cold /* || dumping */ || TD_IS_INHIBITED(ctd) ||
653 	    td->td_kse->ke_state != KES_THREAD)
654 		return (0);
655 #ifndef FULL_PREEMPTION
656 	if (!(pri >= PRI_MIN_ITHD && pri <= PRI_MAX_ITHD) &&
657 	    !(cpri >= PRI_MIN_IDLE))
658 		return (0);
659 #endif
660 	if (ctd->td_critnest > 1) {
661 		CTR1(KTR_PROC, "maybe_preempt: in critical section %d",
662 		    ctd->td_critnest);
663 		ctd->td_pflags |= TDP_OWEPREEMPT;
664 		return (0);
665 	}
666 
667 	/*
668 	 * Thread is runnable but not yet put on system run queue.
669 	 */
670 	MPASS(TD_ON_RUNQ(td));
671 	MPASS(td->td_sched->ke_state != KES_ONRUNQ);
672 	if (td->td_proc->p_flag & P_HADTHREADS) {
673 		/*
674 		 * If this is a threaded process we actually ARE on the
675 		 * ksegrp run queue so take it off that first.
676 		 * Also undo any damage done to the last_assigned pointer.
677 		 * XXX Fix setrunqueue so this isn't needed
678 		 */
679 		struct ksegrp *kg;
680 
681 		kg = td->td_ksegrp;
682 		if (kg->kg_last_assigned == td)
683 			kg->kg_last_assigned =
684 			    TAILQ_PREV(td, threadqueue, td_runq);
685 		TAILQ_REMOVE(&kg->kg_runq, td, td_runq);
686 	}
687 
688 	TD_SET_RUNNING(td);
689 	CTR3(KTR_PROC, "preempting to thread %p (pid %d, %s)\n", td,
690 	    td->td_proc->p_pid, td->td_proc->p_comm);
691 	mi_switch(SW_INVOL|SW_PREEMPT, td);
692 	return (1);
693 #else
694 	return (0);
695 #endif
696 }
697 
698 #if 0
699 #ifndef PREEMPTION
700 /* XXX: There should be a non-static version of this. */
701 static void
702 printf_caddr_t(void *data)
703 {
704 	printf("%s", (char *)data);
705 }
706 static char preempt_warning[] =
707     "WARNING: Kernel preemption is disabled, expect reduced performance.\n";
708 SYSINIT(preempt_warning, SI_SUB_COPYRIGHT, SI_ORDER_ANY, printf_caddr_t,
709     preempt_warning)
710 #endif
711 #endif
712 
713 /************************************************************************
714  * SYSTEM RUN QUEUE manipulations and tests				*
715  ************************************************************************/
716 /*
717  * Initialize a run structure.
718  */
719 void
720 runq_init(struct runq *rq)
721 {
722 	int i;
723 
724 	bzero(rq, sizeof *rq);
725 	for (i = 0; i < RQ_NQS; i++)
726 		TAILQ_INIT(&rq->rq_queues[i]);
727 }
728 
729 /*
730  * Clear the status bit of the queue corresponding to priority level pri,
731  * indicating that it is empty.
732  */
733 static __inline void
734 runq_clrbit(struct runq *rq, int pri)
735 {
736 	struct rqbits *rqb;
737 
738 	rqb = &rq->rq_status;
739 	CTR4(KTR_RUNQ, "runq_clrbit: bits=%#x %#x bit=%#x word=%d",
740 	    rqb->rqb_bits[RQB_WORD(pri)],
741 	    rqb->rqb_bits[RQB_WORD(pri)] & ~RQB_BIT(pri),
742 	    RQB_BIT(pri), RQB_WORD(pri));
743 	rqb->rqb_bits[RQB_WORD(pri)] &= ~RQB_BIT(pri);
744 }
745 
746 /*
747  * Find the index of the first non-empty run queue.  This is done by
748  * scanning the status bits, a set bit indicates a non-empty queue.
749  */
750 static __inline int
751 runq_findbit(struct runq *rq)
752 {
753 	struct rqbits *rqb;
754 	int pri;
755 	int i;
756 
757 	rqb = &rq->rq_status;
758 	for (i = 0; i < RQB_LEN; i++)
759 		if (rqb->rqb_bits[i]) {
760 			pri = RQB_FFS(rqb->rqb_bits[i]) + (i << RQB_L2BPW);
761 			CTR3(KTR_RUNQ, "runq_findbit: bits=%#x i=%d pri=%d",
762 			    rqb->rqb_bits[i], i, pri);
763 			return (pri);
764 		}
765 
766 	return (-1);
767 }
768 
769 /*
770  * Set the status bit of the queue corresponding to priority level pri,
771  * indicating that it is non-empty.
772  */
773 static __inline void
774 runq_setbit(struct runq *rq, int pri)
775 {
776 	struct rqbits *rqb;
777 
778 	rqb = &rq->rq_status;
779 	CTR4(KTR_RUNQ, "runq_setbit: bits=%#x %#x bit=%#x word=%d",
780 	    rqb->rqb_bits[RQB_WORD(pri)],
781 	    rqb->rqb_bits[RQB_WORD(pri)] | RQB_BIT(pri),
782 	    RQB_BIT(pri), RQB_WORD(pri));
783 	rqb->rqb_bits[RQB_WORD(pri)] |= RQB_BIT(pri);
784 }
785 
786 /*
787  * Add the KSE to the queue specified by its priority, and set the
788  * corresponding status bit.
789  */
790 void
791 runq_add(struct runq *rq, struct kse *ke, int flags)
792 {
793 	struct rqhead *rqh;
794 	int pri;
795 
796 	pri = ke->ke_thread->td_priority / RQ_PPQ;
797 	ke->ke_rqindex = pri;
798 	runq_setbit(rq, pri);
799 	rqh = &rq->rq_queues[pri];
800 	CTR5(KTR_RUNQ, "runq_add: td=%p ke=%p pri=%d %d rqh=%p",
801 	    ke->ke_thread, ke, ke->ke_thread->td_priority, pri, rqh);
802 	if (flags & SRQ_PREEMPTED) {
803 		TAILQ_INSERT_HEAD(rqh, ke, ke_procq);
804 	} else {
805 		TAILQ_INSERT_TAIL(rqh, ke, ke_procq);
806 	}
807 }
808 
809 /*
810  * Return true if there are runnable processes of any priority on the run
811  * queue, false otherwise.  Has no side effects, does not modify the run
812  * queue structure.
813  */
814 int
815 runq_check(struct runq *rq)
816 {
817 	struct rqbits *rqb;
818 	int i;
819 
820 	rqb = &rq->rq_status;
821 	for (i = 0; i < RQB_LEN; i++)
822 		if (rqb->rqb_bits[i]) {
823 			CTR2(KTR_RUNQ, "runq_check: bits=%#x i=%d",
824 			    rqb->rqb_bits[i], i);
825 			return (1);
826 		}
827 	CTR0(KTR_RUNQ, "runq_check: empty");
828 
829 	return (0);
830 }
831 
832 #if defined(SMP) && defined(SCHED_4BSD)
833 int runq_fuzz = 1;
834 SYSCTL_INT(_kern_sched, OID_AUTO, runq_fuzz, CTLFLAG_RW, &runq_fuzz, 0, "");
835 #endif
836 
837 /*
838  * Find the highest priority process on the run queue.
839  */
840 struct kse *
841 runq_choose(struct runq *rq)
842 {
843 	struct rqhead *rqh;
844 	struct kse *ke;
845 	int pri;
846 
847 	mtx_assert(&sched_lock, MA_OWNED);
848 	while ((pri = runq_findbit(rq)) != -1) {
849 		rqh = &rq->rq_queues[pri];
850 #if defined(SMP) && defined(SCHED_4BSD)
851 		/* fuzz == 1 is normal.. 0 or less are ignored */
852 		if (runq_fuzz > 1) {
853 			/*
854 			 * In the first couple of entries, check if
855 			 * there is one for our CPU as a preference.
856 			 */
857 			int count = runq_fuzz;
858 			int cpu = PCPU_GET(cpuid);
859 			struct kse *ke2;
860 			ke2 = ke = TAILQ_FIRST(rqh);
861 
862 			while (count-- && ke2) {
863 				if (ke->ke_thread->td_lastcpu == cpu) {
864 					ke = ke2;
865 					break;
866 				}
867 				ke2 = TAILQ_NEXT(ke2, ke_procq);
868 			}
869 		} else
870 #endif
871 			ke = TAILQ_FIRST(rqh);
872 		KASSERT(ke != NULL, ("runq_choose: no proc on busy queue"));
873 		CTR3(KTR_RUNQ,
874 		    "runq_choose: pri=%d kse=%p rqh=%p", pri, ke, rqh);
875 		return (ke);
876 	}
877 	CTR1(KTR_RUNQ, "runq_choose: idleproc pri=%d", pri);
878 
879 	return (NULL);
880 }
881 
882 /*
883  * Remove the KSE from the queue specified by its priority, and clear the
884  * corresponding status bit if the queue becomes empty.
885  * Caller must set ke->ke_state afterwards.
886  */
887 void
888 runq_remove(struct runq *rq, struct kse *ke)
889 {
890 	struct rqhead *rqh;
891 	int pri;
892 
893 	KASSERT(ke->ke_proc->p_sflag & PS_INMEM,
894 		("runq_remove: process swapped out"));
895 	pri = ke->ke_rqindex;
896 	rqh = &rq->rq_queues[pri];
897 	CTR5(KTR_RUNQ, "runq_remove: td=%p, ke=%p pri=%d %d rqh=%p",
898 	    ke->ke_thread, ke, ke->ke_thread->td_priority, pri, rqh);
899 	KASSERT(ke != NULL, ("runq_remove: no proc on busy queue"));
900 	TAILQ_REMOVE(rqh, ke, ke_procq);
901 	if (TAILQ_EMPTY(rqh)) {
902 		CTR0(KTR_RUNQ, "runq_remove: empty");
903 		runq_clrbit(rq, pri);
904 	}
905 }
906 
907 /****** functions that are temporarily here ***********/
908 #include <vm/uma.h>
909 #define RANGEOF(type, start, end) (offsetof(type, end) - offsetof(type, start))
910 extern struct mtx kse_zombie_lock;
911 
912 /*
913  *  Allocate scheduler specific per-process resources.
914  * The thread and ksegrp have already been linked in.
915  * In this case just set the default concurrency value.
916  *
917  * Called from:
918  *  proc_init() (UMA init method)
919  */
920 void
921 sched_newproc(struct proc *p, struct ksegrp *kg, struct thread *td)
922 {
923 
924 	/* This can go in sched_fork */
925 	sched_init_concurrency(kg);
926 }
927 
928 #define RANGEOF(type, start, end) (offsetof(type, end) - offsetof(type, start))
929 /*
930  * thread is being either created or recycled.
931  * Fix up the per-scheduler resources associated with it.
932  * Called from:
933  *  sched_fork_thread()
934  *  thread_dtor()  (*may go away)
935  *  thread_init()  (*may go away)
936  */
937 void
938 sched_newthread(struct thread *td)
939 {
940 	struct td_sched *ke;
941 
942 	ke = (struct td_sched *) (td + 1);
943 	bzero(ke, sizeof(*ke));
944 	td->td_sched     = ke;
945 	ke->ke_thread	= td;
946 	ke->ke_oncpu	= NOCPU;
947 	ke->ke_state	= KES_THREAD;
948 }
949 
950 /*
951  * Set up an initial concurrency of 1
952  * and set the given thread (if given) to be using that
953  * concurrency slot.
954  * May be used "offline"..before the ksegrp is attached to the world
955  * and thus wouldn't need schedlock in that case.
956  * Called from:
957  *  thr_create()
958  *  proc_init() (UMA) via sched_newproc()
959  */
960 void
961 sched_init_concurrency(struct ksegrp *kg)
962 {
963 
964 	CTR1(KTR_RUNQ,"kg %p init slots and concurrency to 1", kg);
965 	kg->kg_concurrency = 1;
966 	kg->kg_avail_opennings = 1;
967 }
968 
969 /*
970  * Change the concurrency of an existing ksegrp to N
971  * Called from:
972  *  kse_create()
973  *  kse_exit()
974  *  thread_exit()
975  *  thread_single()
976  */
977 void
978 sched_set_concurrency(struct ksegrp *kg, int concurrency)
979 {
980 
981 	CTR4(KTR_RUNQ,"kg %p set concurrency to %d, slots %d -> %d",
982 	    kg,
983 	    concurrency,
984 	    kg->kg_avail_opennings,
985 	    kg->kg_avail_opennings + (concurrency - kg->kg_concurrency));
986 	kg->kg_avail_opennings += (concurrency - kg->kg_concurrency);
987 	kg->kg_concurrency = concurrency;
988 }
989 
990 /*
991  * Called from thread_exit() for all exiting thread
992  *
993  * Not to be confused with sched_exit_thread()
994  * that is only called from thread_exit() for threads exiting
995  * without the rest of the process exiting because it is also called from
996  * sched_exit() and we wouldn't want to call it twice.
997  * XXX This can probably be fixed.
998  */
999 void
1000 sched_thread_exit(struct thread *td)
1001 {
1002 
1003 	SLOT_RELEASE(td->td_ksegrp);
1004 	slot_fill(td->td_ksegrp);
1005 }
1006 
1007 #endif /* KERN_SWITCH_INCLUDE */
1008