xref: /freebsd/sys/kern/kern_switch.c (revision acd3428b7d3e94cef0e1881c868cb4b131d4ff41)
1 /*-
2  * Copyright (c) 2001 Jake Burkholder <jake@FreeBSD.org>
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  */
26 
27 #ifdef KSE
28 /***
29 Here is the logic..
30 
31 If there are N processors, then there are at most N KSEs (kernel
32 schedulable entities) working to process threads that belong to a
33 KSEGROUP (kg). If there are X of these KSEs actually running at the
34 moment in question, then there are at most M (N-X) of these KSEs on
35 the run queue, as running KSEs are not on the queue.
36 
37 Runnable threads are queued off the KSEGROUP in priority order.
38 If there are M or more threads runnable, the top M threads
39 (by priority) are 'preassigned' to the M KSEs not running. The KSEs take
40 their priority from those threads and are put on the run queue.
41 
42 The last thread that had a priority high enough to have a KSE associated
43 with it, AND IS ON THE RUN QUEUE is pointed to by
44 kg->kg_last_assigned. If no threads queued off the KSEGROUP have KSEs
45 assigned as all the available KSEs are activly running, or because there
46 are no threads queued, that pointer is NULL.
47 
48 When a KSE is removed from the run queue to become runnable, we know
49 it was associated with the highest priority thread in the queue (at the head
50 of the queue). If it is also the last assigned we know M was 1 and must
51 now be 0. Since the thread is no longer queued that pointer must be
52 removed from it. Since we know there were no more KSEs available,
53 (M was 1 and is now 0) and since we are not FREEING our KSE
54 but using it, we know there are STILL no more KSEs available, we can prove
55 that the next thread in the ksegrp list will not have a KSE to assign to
56 it, so we can show that the pointer must be made 'invalid' (NULL).
57 
58 The pointer exists so that when a new thread is made runnable, it can
59 have its priority compared with the last assigned thread to see if
60 it should 'steal' its KSE or not.. i.e. is it 'earlier'
61 on the list than that thread or later.. If it's earlier, then the KSE is
62 removed from the last assigned (which is now not assigned a KSE)
63 and reassigned to the new thread, which is placed earlier in the list.
64 The pointer is then backed up to the previous thread (which may or may not
65 be the new thread).
66 
67 When a thread sleeps or is removed, the KSE becomes available and if there
68 are queued threads that are not assigned KSEs, the highest priority one of
69 them is assigned the KSE, which is then placed back on the run queue at
70 the approipriate place, and the kg->kg_last_assigned pointer is adjusted down
71 to point to it.
72 
73 The following diagram shows 2 KSEs and 3 threads from a single process.
74 
75  RUNQ: --->KSE---KSE--...    (KSEs queued at priorities from threads)
76               \    \____
77                \        \
78     KSEGROUP---thread--thread--thread    (queued in priority order)
79         \                 /
80          \_______________/
81           (last_assigned)
82 
83 The result of this scheme is that the M available KSEs are always
84 queued at the priorities they have inherrited from the M highest priority
85 threads for that KSEGROUP. If this situation changes, the KSEs are
86 reassigned to keep this true.
87 ***/
88 #endif
89 
90 #include <sys/cdefs.h>
91 __FBSDID("$FreeBSD$");
92 
93 #include "opt_sched.h"
94 
95 #ifndef KERN_SWITCH_INCLUDE
96 #include <sys/param.h>
97 #include <sys/systm.h>
98 #include <sys/kdb.h>
99 #include <sys/kernel.h>
100 #include <sys/ktr.h>
101 #include <sys/lock.h>
102 #include <sys/mutex.h>
103 #include <sys/proc.h>
104 #include <sys/queue.h>
105 #include <sys/sched.h>
106 #else  /* KERN_SWITCH_INCLUDE */
107 #if defined(SMP) && (defined(__i386__) || defined(__amd64__))
108 #include <sys/smp.h>
109 #endif
110 #if defined(SMP) && defined(SCHED_4BSD)
111 #include <sys/sysctl.h>
112 #endif
113 
114 /* Uncomment this to enable logging of critical_enter/exit. */
115 #if 0
116 #define	KTR_CRITICAL	KTR_SCHED
117 #else
118 #define	KTR_CRITICAL	0
119 #endif
120 
121 #ifdef FULL_PREEMPTION
122 #ifndef PREEMPTION
123 #error "The FULL_PREEMPTION option requires the PREEMPTION option"
124 #endif
125 #endif
126 
127 CTASSERT((RQB_BPW * RQB_LEN) == RQ_NQS);
128 
129 #define td_kse td_sched
130 
131 /*
132  * kern.sched.preemption allows user space to determine if preemption support
133  * is compiled in or not.  It is not currently a boot or runtime flag that
134  * can be changed.
135  */
136 #ifdef PREEMPTION
137 static int kern_sched_preemption = 1;
138 #else
139 static int kern_sched_preemption = 0;
140 #endif
141 SYSCTL_INT(_kern_sched, OID_AUTO, preemption, CTLFLAG_RD,
142     &kern_sched_preemption, 0, "Kernel preemption enabled");
143 
144 /************************************************************************
145  * Functions that manipulate runnability from a thread perspective.	*
146  ************************************************************************/
147 #ifdef KSE
148 /*
149  * Select the KSE that will be run next.  From that find the thread, and
150  * remove it from the KSEGRP's run queue.  If there is thread clustering,
151  * this will be what does it.
152  */
153 #else
154 /*
155  * Select the thread that will be run next.
156  */
157 #endif
158 struct thread *
159 choosethread(void)
160 {
161 #ifdef KSE
162 	struct kse *ke;
163 #endif
164 	struct thread *td;
165 #ifdef KSE
166 	struct ksegrp *kg;
167 #endif
168 
169 #if defined(SMP) && (defined(__i386__) || defined(__amd64__))
170 	if (smp_active == 0 && PCPU_GET(cpuid) != 0) {
171 		/* Shutting down, run idlethread on AP's */
172 		td = PCPU_GET(idlethread);
173 #ifdef KSE
174 		ke = td->td_kse;
175 #endif
176 		CTR1(KTR_RUNQ, "choosethread: td=%p (idle)", td);
177 #ifdef KSE
178 		ke->ke_flags |= KEF_DIDRUN;
179 #else
180 		td->td_kse->ke_flags |= KEF_DIDRUN;
181 #endif
182 		TD_SET_RUNNING(td);
183 		return (td);
184 	}
185 #endif
186 
187 retry:
188 #ifdef KSE
189 	ke = sched_choose();
190 	if (ke) {
191 		td = ke->ke_thread;
192 		KASSERT((td->td_kse == ke), ("kse/thread mismatch"));
193 		kg = ke->ke_ksegrp;
194 		if (td->td_proc->p_flag & P_HADTHREADS) {
195 			if (kg->kg_last_assigned == td) {
196 				kg->kg_last_assigned = TAILQ_PREV(td,
197 				    threadqueue, td_runq);
198 			}
199 			TAILQ_REMOVE(&kg->kg_runq, td, td_runq);
200 		}
201 #else
202 	td = sched_choose();
203 	if (td) {
204 #endif
205 		CTR2(KTR_RUNQ, "choosethread: td=%p pri=%d",
206 		    td, td->td_priority);
207 	} else {
208 		/* Simulate runq_choose() having returned the idle thread */
209 		td = PCPU_GET(idlethread);
210 #ifdef KSE
211 		ke = td->td_kse;
212 #endif
213 		CTR1(KTR_RUNQ, "choosethread: td=%p (idle)", td);
214 	}
215 #ifdef KSE
216 	ke->ke_flags |= KEF_DIDRUN;
217 #else
218 	td->td_kse->ke_flags |= KEF_DIDRUN;
219 #endif
220 
221 	/*
222 	 * If we are in panic, only allow system threads,
223 	 * plus the one we are running in, to be run.
224 	 */
225 	if (panicstr && ((td->td_proc->p_flag & P_SYSTEM) == 0 &&
226 	    (td->td_flags & TDF_INPANIC) == 0)) {
227 		/* note that it is no longer on the run queue */
228 		TD_SET_CAN_RUN(td);
229 		goto retry;
230 	}
231 
232 	TD_SET_RUNNING(td);
233 	return (td);
234 }
235 
236 #ifdef KSE
237 /*
238  * Given a surplus system slot, try assign a new runnable thread to it.
239  * Called from:
240  *  sched_thread_exit()  (local)
241  *  sched_switch()  (local)
242  *  sched_thread_exit()  (local)
243  *  remrunqueue()  (local)  (not at the moment)
244  */
245 static void
246 slot_fill(struct ksegrp *kg)
247 {
248 	struct thread *td;
249 
250 	mtx_assert(&sched_lock, MA_OWNED);
251 	while (kg->kg_avail_opennings > 0) {
252 		/*
253 		 * Find the first unassigned thread
254 		 */
255 		if ((td = kg->kg_last_assigned) != NULL)
256 			td = TAILQ_NEXT(td, td_runq);
257 		else
258 			td = TAILQ_FIRST(&kg->kg_runq);
259 
260 		/*
261 		 * If we found one, send it to the system scheduler.
262 		 */
263 		if (td) {
264 			kg->kg_last_assigned = td;
265 			sched_add(td, SRQ_YIELDING);
266 			CTR2(KTR_RUNQ, "slot_fill: td%p -> kg%p", td, kg);
267 		} else {
268 			/* no threads to use up the slots. quit now */
269 			break;
270 		}
271 	}
272 }
273 
274 #ifdef	SCHED_4BSD
275 /*
276  * Remove a thread from its KSEGRP's run queue.
277  * This in turn may remove it from a KSE if it was already assigned
278  * to one, possibly causing a new thread to be assigned to the KSE
279  * and the KSE getting a new priority.
280  */
281 static void
282 remrunqueue(struct thread *td)
283 {
284 	struct thread *td2, *td3;
285 	struct ksegrp *kg;
286 	struct kse *ke;
287 
288 	mtx_assert(&sched_lock, MA_OWNED);
289 	KASSERT((TD_ON_RUNQ(td)), ("remrunqueue: Bad state on run queue"));
290 	kg = td->td_ksegrp;
291 	ke = td->td_kse;
292 	CTR1(KTR_RUNQ, "remrunqueue: td%p", td);
293 	TD_SET_CAN_RUN(td);
294 	/*
295 	 * If it is not a threaded process, take the shortcut.
296 	 */
297 	if ((td->td_proc->p_flag & P_HADTHREADS) == 0) {
298 		/* remve from sys run queue and free up a slot */
299 		sched_rem(td);
300 		return;
301 	}
302    	td3 = TAILQ_PREV(td, threadqueue, td_runq);
303 	TAILQ_REMOVE(&kg->kg_runq, td, td_runq);
304 	if (ke->ke_state == KES_ONRUNQ) {
305 		/*
306 		 * This thread has been assigned to the system run queue.
307 		 * We need to dissociate it and try assign the
308 		 * KSE to the next available thread. Then, we should
309 		 * see if we need to move the KSE in the run queues.
310 		 */
311 		sched_rem(td);
312 		td2 = kg->kg_last_assigned;
313 		KASSERT((td2 != NULL), ("last assigned has wrong value"));
314 		if (td2 == td)
315 			kg->kg_last_assigned = td3;
316 		/* slot_fill(kg); */ /* will replace it with another */
317 	}
318 }
319 #endif
320 #endif
321 
322 /*
323  * Change the priority of a thread that is on the run queue.
324  */
325 void
326 adjustrunqueue( struct thread *td, int newpri)
327 {
328 #ifdef KSE
329 	struct ksegrp *kg;
330 #endif
331 	struct kse *ke;
332 
333 	mtx_assert(&sched_lock, MA_OWNED);
334 	KASSERT((TD_ON_RUNQ(td)), ("adjustrunqueue: Bad state on run queue"));
335 
336 	ke = td->td_kse;
337 	CTR1(KTR_RUNQ, "adjustrunqueue: td%p", td);
338 #ifdef KSE
339 	/*
340 	 * If it is not a threaded process, take the shortcut.
341 	 */
342 	if ((td->td_proc->p_flag & P_HADTHREADS) == 0) {
343 		/* We only care about the kse in the run queue. */
344 		td->td_priority = newpri;
345 #ifndef SCHED_CORE
346 		if (ke->ke_rqindex != (newpri / RQ_PPQ))
347 #else
348 		if (ke->ke_rqindex != newpri)
349 #endif
350 		{
351 			sched_rem(td);
352 			sched_add(td, SRQ_BORING);
353 		}
354 		return;
355 	}
356 
357 	/* It is a threaded process */
358 	kg = td->td_ksegrp;
359 	if (ke->ke_state == KES_ONRUNQ
360 #ifdef SCHED_ULE
361 	 || ((ke->ke_flags & KEF_ASSIGNED) != 0 &&
362 	     (ke->ke_flags & KEF_REMOVED) == 0)
363 #endif
364 	   ) {
365 		if (kg->kg_last_assigned == td) {
366 			kg->kg_last_assigned =
367 			    TAILQ_PREV(td, threadqueue, td_runq);
368 		}
369 		sched_rem(td);
370 	}
371 	TAILQ_REMOVE(&kg->kg_runq, td, td_runq);
372 	TD_SET_CAN_RUN(td);
373 	td->td_priority = newpri;
374 	setrunqueue(td, SRQ_BORING);
375 #else
376 	/* We only care about the kse in the run queue. */
377 	td->td_priority = newpri;
378 #ifndef SCHED_CORE
379 	if (ke->ke_rqindex != (newpri / RQ_PPQ))
380 #else
381 	if (ke->ke_rqindex != newpri)
382 #endif
383 	{
384 		sched_rem(td);
385 		sched_add(td, SRQ_BORING);
386 	}
387 #endif
388 }
389 
390 #ifdef KSE
391 /*
392  * This function is called when a thread is about to be put on a
393  * ksegrp run queue because it has been made runnable or its
394  * priority has been adjusted and the ksegrp does not have a
395  * free kse slot.  It determines if a thread from the same ksegrp
396  * should be preempted.  If so, it tries to switch threads
397  * if the thread is on the same cpu or notifies another cpu that
398  * it should switch threads.
399  */
400 
401 static void
402 maybe_preempt_in_ksegrp(struct thread *td)
403 #if  !defined(SMP)
404 {
405 	struct thread *running_thread;
406 
407 	mtx_assert(&sched_lock, MA_OWNED);
408 	running_thread = curthread;
409 
410 	if (running_thread->td_ksegrp != td->td_ksegrp)
411 		return;
412 
413 	if (td->td_priority >= running_thread->td_priority)
414 		return;
415 #ifdef PREEMPTION
416 #ifndef FULL_PREEMPTION
417 	if (td->td_priority > PRI_MAX_ITHD) {
418 		running_thread->td_flags |= TDF_NEEDRESCHED;
419 		return;
420 	}
421 #endif /* FULL_PREEMPTION */
422 
423 	if (running_thread->td_critnest > 1)
424 		running_thread->td_owepreempt = 1;
425 	 else
426 		 mi_switch(SW_INVOL, NULL);
427 
428 #else /* PREEMPTION */
429 	running_thread->td_flags |= TDF_NEEDRESCHED;
430 #endif /* PREEMPTION */
431 	return;
432 }
433 
434 #else /* SMP */
435 {
436 	struct thread *running_thread;
437 	int worst_pri;
438 	struct ksegrp *kg;
439 	cpumask_t cpumask,dontuse;
440 	struct pcpu *pc;
441 	struct pcpu *best_pcpu;
442 	struct thread *cputhread;
443 
444 	mtx_assert(&sched_lock, MA_OWNED);
445 
446 	running_thread = curthread;
447 
448 #if !defined(KSEG_PEEMPT_BEST_CPU)
449 	if (running_thread->td_ksegrp != td->td_ksegrp) {
450 #endif
451 		kg = td->td_ksegrp;
452 
453 		/* if someone is ahead of this thread, wait our turn */
454 		if (td != TAILQ_FIRST(&kg->kg_runq))
455 			return;
456 
457 		worst_pri = td->td_priority;
458 		best_pcpu = NULL;
459 		dontuse   = stopped_cpus | idle_cpus_mask;
460 
461 		/*
462 		 * Find a cpu with the worst priority that runs at thread from
463 		 * the same  ksegrp - if multiple exist give first the last run
464 		 * cpu and then the current cpu priority
465 		 */
466 
467 		SLIST_FOREACH(pc, &cpuhead, pc_allcpu) {
468 			cpumask   = pc->pc_cpumask;
469 			cputhread = pc->pc_curthread;
470 
471 			if ((cpumask & dontuse)  ||
472 			    cputhread->td_ksegrp != kg)
473 				continue;
474 
475 			if (cputhread->td_priority > worst_pri) {
476 				worst_pri = cputhread->td_priority;
477 				best_pcpu = pc;
478 				continue;
479 			}
480 
481 			if (cputhread->td_priority == worst_pri &&
482 			    best_pcpu != NULL &&
483 			    (td->td_lastcpu == pc->pc_cpuid ||
484 				(PCPU_GET(cpumask) == cpumask &&
485 				    td->td_lastcpu != best_pcpu->pc_cpuid)))
486 			    best_pcpu = pc;
487 		}
488 
489 		/* Check if we need to preempt someone */
490 		if (best_pcpu == NULL)
491 			return;
492 
493 #if defined(IPI_PREEMPTION) && defined(PREEMPTION)
494 #if !defined(FULL_PREEMPTION)
495 		if (td->td_priority <= PRI_MAX_ITHD)
496 #endif /* ! FULL_PREEMPTION */
497 			{
498 				ipi_selected(best_pcpu->pc_cpumask, IPI_PREEMPT);
499 				return;
500 			}
501 #endif /* defined(IPI_PREEMPTION) && defined(PREEMPTION) */
502 
503 		if (PCPU_GET(cpuid) != best_pcpu->pc_cpuid) {
504 			best_pcpu->pc_curthread->td_flags |= TDF_NEEDRESCHED;
505 			ipi_selected(best_pcpu->pc_cpumask, IPI_AST);
506 			return;
507 		}
508 #if !defined(KSEG_PEEMPT_BEST_CPU)
509 	}
510 #endif
511 
512 	if (td->td_priority >= running_thread->td_priority)
513 		return;
514 #ifdef PREEMPTION
515 
516 #if !defined(FULL_PREEMPTION)
517 	if (td->td_priority > PRI_MAX_ITHD) {
518 		running_thread->td_flags |= TDF_NEEDRESCHED;
519 	}
520 #endif /* ! FULL_PREEMPTION */
521 
522 	if (running_thread->td_critnest > 1)
523 		running_thread->td_owepreempt = 1;
524 	 else
525 		 mi_switch(SW_INVOL, NULL);
526 
527 #else /* PREEMPTION */
528 	running_thread->td_flags |= TDF_NEEDRESCHED;
529 #endif /* PREEMPTION */
530 	return;
531 }
532 #endif /* !SMP */
533 
534 
535 int limitcount;
536 #endif
537 void
538 setrunqueue(struct thread *td, int flags)
539 {
540 #ifdef KSE
541 	struct ksegrp *kg;
542 	struct thread *td2;
543 	struct thread *tda;
544 
545 	CTR3(KTR_RUNQ, "setrunqueue: td:%p kg:%p pid:%d",
546 	    td, td->td_ksegrp, td->td_proc->p_pid);
547 #else
548 	CTR2(KTR_RUNQ, "setrunqueue: td:%p pid:%d",
549 	    td, td->td_proc->p_pid);
550 #endif
551 	CTR5(KTR_SCHED, "setrunqueue: %p(%s) prio %d by %p(%s)",
552             td, td->td_proc->p_comm, td->td_priority, curthread,
553             curthread->td_proc->p_comm);
554 	mtx_assert(&sched_lock, MA_OWNED);
555 	KASSERT((td->td_inhibitors == 0),
556 			("setrunqueue: trying to run inhibitted thread"));
557 	KASSERT((TD_CAN_RUN(td) || TD_IS_RUNNING(td)),
558 	    ("setrunqueue: bad thread state"));
559 	TD_SET_RUNQ(td);
560 #ifdef KSE
561 	kg = td->td_ksegrp;
562 	if ((td->td_proc->p_flag & P_HADTHREADS) == 0) {
563 		/*
564 		 * Common path optimisation: Only one of everything
565 		 * and the KSE is always already attached.
566 		 * Totally ignore the ksegrp run queue.
567 		 */
568 		if (kg->kg_avail_opennings != 1) {
569 			if (limitcount < 1) {
570 				limitcount++;
571 				printf("pid %d: corrected slot count (%d->1)\n",
572 				    td->td_proc->p_pid, kg->kg_avail_opennings);
573 
574 			}
575 			kg->kg_avail_opennings = 1;
576 		}
577 		sched_add(td, flags);
578 		return;
579 	}
580 
581 	/*
582 	 * If the concurrency has reduced, and we would go in the
583 	 * assigned section, then keep removing entries from the
584 	 * system run queue, until we are not in that section
585 	 * or there is room for us to be put in that section.
586 	 * What we MUST avoid is the case where there are threads of less
587 	 * priority than the new one scheduled, but it can not
588 	 * be scheduled itself. That would lead to a non contiguous set
589 	 * of scheduled threads, and everything would break.
590 	 */
591 	tda = kg->kg_last_assigned;
592 	while ((kg->kg_avail_opennings <= 0) &&
593 	    (tda && (tda->td_priority > td->td_priority))) {
594 		/*
595 		 * None free, but there is one we can commandeer.
596 		 */
597 		CTR2(KTR_RUNQ,
598 		    "setrunqueue: kg:%p: take slot from td: %p", kg, tda);
599 		sched_rem(tda);
600 		tda = kg->kg_last_assigned =
601 		    TAILQ_PREV(tda, threadqueue, td_runq);
602 	}
603 
604 	/*
605 	 * Add the thread to the ksegrp's run queue at
606 	 * the appropriate place.
607 	 */
608 	TAILQ_FOREACH(td2, &kg->kg_runq, td_runq) {
609 		if (td2->td_priority > td->td_priority) {
610 			TAILQ_INSERT_BEFORE(td2, td, td_runq);
611 			break;
612 		}
613 	}
614 	if (td2 == NULL) {
615 		/* We ran off the end of the TAILQ or it was empty. */
616 		TAILQ_INSERT_TAIL(&kg->kg_runq, td, td_runq);
617 	}
618 
619 	/*
620 	 * If we have a slot to use, then put the thread on the system
621 	 * run queue and if needed, readjust the last_assigned pointer.
622 	 * it may be that we need to schedule something anyhow
623 	 * even if the availabel slots are -ve so that
624 	 * all the items < last_assigned are scheduled.
625 	 */
626 	if (kg->kg_avail_opennings > 0) {
627 		if (tda == NULL) {
628 			/*
629 			 * No pre-existing last assigned so whoever is first
630 			 * gets the slot.. (maybe us)
631 			 */
632 			td2 = TAILQ_FIRST(&kg->kg_runq);
633 			kg->kg_last_assigned = td2;
634 		} else if (tda->td_priority > td->td_priority) {
635 			td2 = td;
636 		} else {
637 			/*
638 			 * We are past last_assigned, so
639 			 * give the next slot to whatever is next,
640 			 * which may or may not be us.
641 			 */
642 			td2 = TAILQ_NEXT(tda, td_runq);
643 			kg->kg_last_assigned = td2;
644 		}
645 		sched_add(td2, flags);
646 	} else {
647 		CTR3(KTR_RUNQ, "setrunqueue: held: td%p kg%p pid%d",
648 			td, td->td_ksegrp, td->td_proc->p_pid);
649 		if ((flags & SRQ_YIELDING) == 0)
650 			maybe_preempt_in_ksegrp(td);
651 	}
652 #else
653 	sched_add(td, flags);
654 #endif
655 }
656 
657 /*
658  * Kernel thread preemption implementation.  Critical sections mark
659  * regions of code in which preemptions are not allowed.
660  */
661 void
662 critical_enter(void)
663 {
664 	struct thread *td;
665 
666 	td = curthread;
667 	td->td_critnest++;
668 	CTR4(KTR_CRITICAL, "critical_enter by thread %p (%ld, %s) to %d", td,
669 	    (long)td->td_proc->p_pid, td->td_proc->p_comm, td->td_critnest);
670 }
671 
672 void
673 critical_exit(void)
674 {
675 	struct thread *td;
676 
677 	td = curthread;
678 	KASSERT(td->td_critnest != 0,
679 	    ("critical_exit: td_critnest == 0"));
680 #ifdef PREEMPTION
681 	if (td->td_critnest == 1) {
682 		td->td_critnest = 0;
683 		mtx_assert(&sched_lock, MA_NOTOWNED);
684 		if (td->td_owepreempt) {
685 			td->td_critnest = 1;
686 			mtx_lock_spin(&sched_lock);
687 			td->td_critnest--;
688 			mi_switch(SW_INVOL, NULL);
689 			mtx_unlock_spin(&sched_lock);
690 		}
691 	} else
692 #endif
693 		td->td_critnest--;
694 
695 	CTR4(KTR_CRITICAL, "critical_exit by thread %p (%ld, %s) to %d", td,
696 	    (long)td->td_proc->p_pid, td->td_proc->p_comm, td->td_critnest);
697 }
698 
699 /*
700  * This function is called when a thread is about to be put on run queue
701  * because it has been made runnable or its priority has been adjusted.  It
702  * determines if the new thread should be immediately preempted to.  If so,
703  * it switches to it and eventually returns true.  If not, it returns false
704  * so that the caller may place the thread on an appropriate run queue.
705  */
706 int
707 maybe_preempt(struct thread *td)
708 {
709 #ifdef PREEMPTION
710 	struct thread *ctd;
711 	int cpri, pri;
712 #endif
713 
714 	mtx_assert(&sched_lock, MA_OWNED);
715 #ifdef PREEMPTION
716 	/*
717 	 * The new thread should not preempt the current thread if any of the
718 	 * following conditions are true:
719 	 *
720 	 *  - The kernel is in the throes of crashing (panicstr).
721 	 *  - The current thread has a higher (numerically lower) or
722 	 *    equivalent priority.  Note that this prevents curthread from
723 	 *    trying to preempt to itself.
724 	 *  - It is too early in the boot for context switches (cold is set).
725 	 *  - The current thread has an inhibitor set or is in the process of
726 	 *    exiting.  In this case, the current thread is about to switch
727 	 *    out anyways, so there's no point in preempting.  If we did,
728 	 *    the current thread would not be properly resumed as well, so
729 	 *    just avoid that whole landmine.
730 	 *  - If the new thread's priority is not a realtime priority and
731 	 *    the current thread's priority is not an idle priority and
732 	 *    FULL_PREEMPTION is disabled.
733 	 *
734 	 * If all of these conditions are false, but the current thread is in
735 	 * a nested critical section, then we have to defer the preemption
736 	 * until we exit the critical section.  Otherwise, switch immediately
737 	 * to the new thread.
738 	 */
739 	ctd = curthread;
740 	KASSERT ((ctd->td_kse != NULL && ctd->td_kse->ke_thread == ctd),
741 	  ("thread has no (or wrong) sched-private part."));
742 	KASSERT((td->td_inhibitors == 0),
743 			("maybe_preempt: trying to run inhibitted thread"));
744 	pri = td->td_priority;
745 	cpri = ctd->td_priority;
746 	if (panicstr != NULL || pri >= cpri || cold /* || dumping */ ||
747 	    TD_IS_INHIBITED(ctd) || td->td_kse->ke_state != KES_THREAD)
748 		return (0);
749 #ifndef FULL_PREEMPTION
750 	if (pri > PRI_MAX_ITHD && cpri < PRI_MIN_IDLE)
751 		return (0);
752 #endif
753 
754 	if (ctd->td_critnest > 1) {
755 		CTR1(KTR_PROC, "maybe_preempt: in critical section %d",
756 		    ctd->td_critnest);
757 		ctd->td_owepreempt = 1;
758 		return (0);
759 	}
760 
761 	/*
762 	 * Thread is runnable but not yet put on system run queue.
763 	 */
764 	MPASS(TD_ON_RUNQ(td));
765 	MPASS(td->td_sched->ke_state != KES_ONRUNQ);
766 #ifdef KSE
767 	if (td->td_proc->p_flag & P_HADTHREADS) {
768 		/*
769 		 * If this is a threaded process we actually ARE on the
770 		 * ksegrp run queue so take it off that first.
771 		 * Also undo any damage done to the last_assigned pointer.
772 		 * XXX Fix setrunqueue so this isn't needed
773 		 */
774 		struct ksegrp *kg;
775 
776 		kg = td->td_ksegrp;
777 		if (kg->kg_last_assigned == td)
778 			kg->kg_last_assigned =
779 			    TAILQ_PREV(td, threadqueue, td_runq);
780 		TAILQ_REMOVE(&kg->kg_runq, td, td_runq);
781 	}
782 
783 #endif
784 	TD_SET_RUNNING(td);
785 	CTR3(KTR_PROC, "preempting to thread %p (pid %d, %s)\n", td,
786 	    td->td_proc->p_pid, td->td_proc->p_comm);
787 	mi_switch(SW_INVOL|SW_PREEMPT, td);
788 	return (1);
789 #else
790 	return (0);
791 #endif
792 }
793 
794 #if 0
795 #ifndef PREEMPTION
796 /* XXX: There should be a non-static version of this. */
797 static void
798 printf_caddr_t(void *data)
799 {
800 	printf("%s", (char *)data);
801 }
802 static char preempt_warning[] =
803     "WARNING: Kernel preemption is disabled, expect reduced performance.\n";
804 SYSINIT(preempt_warning, SI_SUB_COPYRIGHT, SI_ORDER_ANY, printf_caddr_t,
805     preempt_warning)
806 #endif
807 #endif
808 
809 /************************************************************************
810  * SYSTEM RUN QUEUE manipulations and tests				*
811  ************************************************************************/
812 /*
813  * Initialize a run structure.
814  */
815 void
816 runq_init(struct runq *rq)
817 {
818 	int i;
819 
820 	bzero(rq, sizeof *rq);
821 	for (i = 0; i < RQ_NQS; i++)
822 		TAILQ_INIT(&rq->rq_queues[i]);
823 }
824 
825 /*
826  * Clear the status bit of the queue corresponding to priority level pri,
827  * indicating that it is empty.
828  */
829 static __inline void
830 runq_clrbit(struct runq *rq, int pri)
831 {
832 	struct rqbits *rqb;
833 
834 	rqb = &rq->rq_status;
835 	CTR4(KTR_RUNQ, "runq_clrbit: bits=%#x %#x bit=%#x word=%d",
836 	    rqb->rqb_bits[RQB_WORD(pri)],
837 	    rqb->rqb_bits[RQB_WORD(pri)] & ~RQB_BIT(pri),
838 	    RQB_BIT(pri), RQB_WORD(pri));
839 	rqb->rqb_bits[RQB_WORD(pri)] &= ~RQB_BIT(pri);
840 }
841 
842 /*
843  * Find the index of the first non-empty run queue.  This is done by
844  * scanning the status bits, a set bit indicates a non-empty queue.
845  */
846 static __inline int
847 runq_findbit(struct runq *rq)
848 {
849 	struct rqbits *rqb;
850 	int pri;
851 	int i;
852 
853 	rqb = &rq->rq_status;
854 	for (i = 0; i < RQB_LEN; i++)
855 		if (rqb->rqb_bits[i]) {
856 			pri = RQB_FFS(rqb->rqb_bits[i]) + (i << RQB_L2BPW);
857 			CTR3(KTR_RUNQ, "runq_findbit: bits=%#x i=%d pri=%d",
858 			    rqb->rqb_bits[i], i, pri);
859 			return (pri);
860 		}
861 
862 	return (-1);
863 }
864 
865 /*
866  * Set the status bit of the queue corresponding to priority level pri,
867  * indicating that it is non-empty.
868  */
869 static __inline void
870 runq_setbit(struct runq *rq, int pri)
871 {
872 	struct rqbits *rqb;
873 
874 	rqb = &rq->rq_status;
875 	CTR4(KTR_RUNQ, "runq_setbit: bits=%#x %#x bit=%#x word=%d",
876 	    rqb->rqb_bits[RQB_WORD(pri)],
877 	    rqb->rqb_bits[RQB_WORD(pri)] | RQB_BIT(pri),
878 	    RQB_BIT(pri), RQB_WORD(pri));
879 	rqb->rqb_bits[RQB_WORD(pri)] |= RQB_BIT(pri);
880 }
881 
882 /*
883  * Add the KSE to the queue specified by its priority, and set the
884  * corresponding status bit.
885  */
886 void
887 runq_add(struct runq *rq, struct kse *ke, int flags)
888 {
889 	struct rqhead *rqh;
890 	int pri;
891 
892 	pri = ke->ke_thread->td_priority / RQ_PPQ;
893 	ke->ke_rqindex = pri;
894 	runq_setbit(rq, pri);
895 	rqh = &rq->rq_queues[pri];
896 	CTR5(KTR_RUNQ, "runq_add: td=%p ke=%p pri=%d %d rqh=%p",
897 	    ke->ke_thread, ke, ke->ke_thread->td_priority, pri, rqh);
898 	if (flags & SRQ_PREEMPTED) {
899 		TAILQ_INSERT_HEAD(rqh, ke, ke_procq);
900 	} else {
901 		TAILQ_INSERT_TAIL(rqh, ke, ke_procq);
902 	}
903 }
904 
905 /*
906  * Return true if there are runnable processes of any priority on the run
907  * queue, false otherwise.  Has no side effects, does not modify the run
908  * queue structure.
909  */
910 int
911 runq_check(struct runq *rq)
912 {
913 	struct rqbits *rqb;
914 	int i;
915 
916 	rqb = &rq->rq_status;
917 	for (i = 0; i < RQB_LEN; i++)
918 		if (rqb->rqb_bits[i]) {
919 			CTR2(KTR_RUNQ, "runq_check: bits=%#x i=%d",
920 			    rqb->rqb_bits[i], i);
921 			return (1);
922 		}
923 	CTR0(KTR_RUNQ, "runq_check: empty");
924 
925 	return (0);
926 }
927 
928 #if defined(SMP) && defined(SCHED_4BSD)
929 int runq_fuzz = 1;
930 SYSCTL_INT(_kern_sched, OID_AUTO, runq_fuzz, CTLFLAG_RW, &runq_fuzz, 0, "");
931 #endif
932 
933 /*
934  * Find the highest priority process on the run queue.
935  */
936 struct kse *
937 runq_choose(struct runq *rq)
938 {
939 	struct rqhead *rqh;
940 	struct kse *ke;
941 	int pri;
942 
943 	mtx_assert(&sched_lock, MA_OWNED);
944 	while ((pri = runq_findbit(rq)) != -1) {
945 		rqh = &rq->rq_queues[pri];
946 #if defined(SMP) && defined(SCHED_4BSD)
947 		/* fuzz == 1 is normal.. 0 or less are ignored */
948 		if (runq_fuzz > 1) {
949 			/*
950 			 * In the first couple of entries, check if
951 			 * there is one for our CPU as a preference.
952 			 */
953 			int count = runq_fuzz;
954 			int cpu = PCPU_GET(cpuid);
955 			struct kse *ke2;
956 			ke2 = ke = TAILQ_FIRST(rqh);
957 
958 			while (count-- && ke2) {
959 				if (ke->ke_thread->td_lastcpu == cpu) {
960 					ke = ke2;
961 					break;
962 				}
963 				ke2 = TAILQ_NEXT(ke2, ke_procq);
964 			}
965 		} else
966 #endif
967 			ke = TAILQ_FIRST(rqh);
968 		KASSERT(ke != NULL, ("runq_choose: no proc on busy queue"));
969 		CTR3(KTR_RUNQ,
970 		    "runq_choose: pri=%d kse=%p rqh=%p", pri, ke, rqh);
971 		return (ke);
972 	}
973 	CTR1(KTR_RUNQ, "runq_choose: idleproc pri=%d", pri);
974 
975 	return (NULL);
976 }
977 
978 /*
979  * Remove the KSE from the queue specified by its priority, and clear the
980  * corresponding status bit if the queue becomes empty.
981  * Caller must set ke->ke_state afterwards.
982  */
983 void
984 runq_remove(struct runq *rq, struct kse *ke)
985 {
986 	struct rqhead *rqh;
987 	int pri;
988 
989 #ifdef KSE
990 	KASSERT(ke->ke_proc->p_sflag & PS_INMEM,
991 #else
992 	KASSERT(ke->ke_thread->td_proc->p_sflag & PS_INMEM,
993 #endif
994 		("runq_remove: process swapped out"));
995 	pri = ke->ke_rqindex;
996 	rqh = &rq->rq_queues[pri];
997 	CTR5(KTR_RUNQ, "runq_remove: td=%p, ke=%p pri=%d %d rqh=%p",
998 	    ke->ke_thread, ke, ke->ke_thread->td_priority, pri, rqh);
999 	KASSERT(ke != NULL, ("runq_remove: no proc on busy queue"));
1000 	TAILQ_REMOVE(rqh, ke, ke_procq);
1001 	if (TAILQ_EMPTY(rqh)) {
1002 		CTR0(KTR_RUNQ, "runq_remove: empty");
1003 		runq_clrbit(rq, pri);
1004 	}
1005 }
1006 
1007 /****** functions that are temporarily here ***********/
1008 #include <vm/uma.h>
1009 extern struct mtx kse_zombie_lock;
1010 
1011 #ifdef KSE
1012 /*
1013  *  Allocate scheduler specific per-process resources.
1014  * The thread and ksegrp have already been linked in.
1015  * In this case just set the default concurrency value.
1016  *
1017  * Called from:
1018  *  proc_init() (UMA init method)
1019  */
1020 void
1021 sched_newproc(struct proc *p, struct ksegrp *kg, struct thread *td)
1022 {
1023 
1024 	/* This can go in sched_fork */
1025 	sched_init_concurrency(kg);
1026 }
1027 #endif
1028 
1029 /*
1030  * thread is being either created or recycled.
1031  * Fix up the per-scheduler resources associated with it.
1032  * Called from:
1033  *  sched_fork_thread()
1034  *  thread_dtor()  (*may go away)
1035  *  thread_init()  (*may go away)
1036  */
1037 void
1038 sched_newthread(struct thread *td)
1039 {
1040 	struct td_sched *ke;
1041 
1042 	ke = (struct td_sched *) (td + 1);
1043 	bzero(ke, sizeof(*ke));
1044 	td->td_sched     = ke;
1045 	ke->ke_thread	= td;
1046 	ke->ke_state	= KES_THREAD;
1047 }
1048 
1049 #ifdef KSE
1050 /*
1051  * Set up an initial concurrency of 1
1052  * and set the given thread (if given) to be using that
1053  * concurrency slot.
1054  * May be used "offline"..before the ksegrp is attached to the world
1055  * and thus wouldn't need schedlock in that case.
1056  * Called from:
1057  *  thr_create()
1058  *  proc_init() (UMA) via sched_newproc()
1059  */
1060 void
1061 sched_init_concurrency(struct ksegrp *kg)
1062 {
1063 
1064 	CTR1(KTR_RUNQ,"kg %p init slots and concurrency to 1", kg);
1065 	kg->kg_concurrency = 1;
1066 	kg->kg_avail_opennings = 1;
1067 }
1068 
1069 /*
1070  * Change the concurrency of an existing ksegrp to N
1071  * Called from:
1072  *  kse_create()
1073  *  kse_exit()
1074  *  thread_exit()
1075  *  thread_single()
1076  */
1077 void
1078 sched_set_concurrency(struct ksegrp *kg, int concurrency)
1079 {
1080 
1081 	CTR4(KTR_RUNQ,"kg %p set concurrency to %d, slots %d -> %d",
1082 	    kg,
1083 	    concurrency,
1084 	    kg->kg_avail_opennings,
1085 	    kg->kg_avail_opennings + (concurrency - kg->kg_concurrency));
1086 	kg->kg_avail_opennings += (concurrency - kg->kg_concurrency);
1087 	kg->kg_concurrency = concurrency;
1088 }
1089 
1090 /*
1091  * Called from thread_exit() for all exiting thread
1092  *
1093  * Not to be confused with sched_exit_thread()
1094  * that is only called from thread_exit() for threads exiting
1095  * without the rest of the process exiting because it is also called from
1096  * sched_exit() and we wouldn't want to call it twice.
1097  * XXX This can probably be fixed.
1098  */
1099 void
1100 sched_thread_exit(struct thread *td)
1101 {
1102 
1103 	SLOT_RELEASE(td->td_ksegrp);
1104 	slot_fill(td->td_ksegrp);
1105 }
1106 #endif
1107 
1108 #endif /* KERN_SWITCH_INCLUDE */
1109