1 /*- 2 * Copyright (c) 2001 Jake Burkholder <jake@FreeBSD.org> 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 17 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 24 * SUCH DAMAGE. 25 */ 26 27 /*** 28 Here is the logic.. 29 30 If there are N processors, then there are at most N KSEs (kernel 31 schedulable entities) working to process threads that belong to a 32 KSEGROUP (kg). If there are X of these KSEs actually running at the 33 moment in question, then there are at most M (N-X) of these KSEs on 34 the run queue, as running KSEs are not on the queue. 35 36 Runnable threads are queued off the KSEGROUP in priority order. 37 If there are M or more threads runnable, the top M threads 38 (by priority) are 'preassigned' to the M KSEs not running. The KSEs take 39 their priority from those threads and are put on the run queue. 40 41 The last thread that had a priority high enough to have a KSE associated 42 with it, AND IS ON THE RUN QUEUE is pointed to by 43 kg->kg_last_assigned. If no threads queued off the KSEGROUP have KSEs 44 assigned as all the available KSEs are activly running, or because there 45 are no threads queued, that pointer is NULL. 46 47 When a KSE is removed from the run queue to become runnable, we know 48 it was associated with the highest priority thread in the queue (at the head 49 of the queue). If it is also the last assigned we know M was 1 and must 50 now be 0. Since the thread is no longer queued that pointer must be 51 removed from it. Since we know there were no more KSEs available, 52 (M was 1 and is now 0) and since we are not FREEING our KSE 53 but using it, we know there are STILL no more KSEs available, we can prove 54 that the next thread in the ksegrp list will not have a KSE to assign to 55 it, so we can show that the pointer must be made 'invalid' (NULL). 56 57 The pointer exists so that when a new thread is made runnable, it can 58 have its priority compared with the last assigned thread to see if 59 it should 'steal' its KSE or not.. i.e. is it 'earlier' 60 on the list than that thread or later.. If it's earlier, then the KSE is 61 removed from the last assigned (which is now not assigned a KSE) 62 and reassigned to the new thread, which is placed earlier in the list. 63 The pointer is then backed up to the previous thread (which may or may not 64 be the new thread). 65 66 When a thread sleeps or is removed, the KSE becomes available and if there 67 are queued threads that are not assigned KSEs, the highest priority one of 68 them is assigned the KSE, which is then placed back on the run queue at 69 the approipriate place, and the kg->kg_last_assigned pointer is adjusted down 70 to point to it. 71 72 The following diagram shows 2 KSEs and 3 threads from a single process. 73 74 RUNQ: --->KSE---KSE--... (KSEs queued at priorities from threads) 75 \ \____ 76 \ \ 77 KSEGROUP---thread--thread--thread (queued in priority order) 78 \ / 79 \_______________/ 80 (last_assigned) 81 82 The result of this scheme is that the M available KSEs are always 83 queued at the priorities they have inherrited from the M highest priority 84 threads for that KSEGROUP. If this situation changes, the KSEs are 85 reassigned to keep this true. 86 ***/ 87 88 #include <sys/cdefs.h> 89 __FBSDID("$FreeBSD$"); 90 91 #include "opt_sched.h" 92 93 #ifndef KERN_SWITCH_INCLUDE 94 #include <sys/param.h> 95 #include <sys/systm.h> 96 #include <sys/kdb.h> 97 #include <sys/kernel.h> 98 #include <sys/ktr.h> 99 #include <sys/lock.h> 100 #include <sys/mutex.h> 101 #include <sys/proc.h> 102 #include <sys/queue.h> 103 #include <sys/sched.h> 104 #else /* KERN_SWITCH_INCLUDE */ 105 #if defined(SMP) && (defined(__i386__) || defined(__amd64__)) 106 #include <sys/smp.h> 107 #endif 108 #if defined(SMP) && defined(SCHED_4BSD) 109 #include <sys/sysctl.h> 110 #endif 111 112 /* Uncomment this to enable logging of critical_enter/exit. */ 113 #if 0 114 #define KTR_CRITICAL KTR_SCHED 115 #else 116 #define KTR_CRITICAL 0 117 #endif 118 119 #ifdef FULL_PREEMPTION 120 #ifndef PREEMPTION 121 #error "The FULL_PREEMPTION option requires the PREEMPTION option" 122 #endif 123 #endif 124 125 CTASSERT((RQB_BPW * RQB_LEN) == RQ_NQS); 126 127 #define td_kse td_sched 128 129 /* 130 * kern.sched.preemption allows user space to determine if preemption support 131 * is compiled in or not. It is not currently a boot or runtime flag that 132 * can be changed. 133 */ 134 #ifdef PREEMPTION 135 static int kern_sched_preemption = 1; 136 #else 137 static int kern_sched_preemption = 0; 138 #endif 139 SYSCTL_INT(_kern_sched, OID_AUTO, preemption, CTLFLAG_RD, 140 &kern_sched_preemption, 0, "Kernel preemption enabled"); 141 142 /************************************************************************ 143 * Functions that manipulate runnability from a thread perspective. * 144 ************************************************************************/ 145 /* 146 * Select the KSE that will be run next. From that find the thread, and 147 * remove it from the KSEGRP's run queue. If there is thread clustering, 148 * this will be what does it. 149 */ 150 struct thread * 151 choosethread(void) 152 { 153 struct kse *ke; 154 struct thread *td; 155 struct ksegrp *kg; 156 157 #if defined(SMP) && (defined(__i386__) || defined(__amd64__)) 158 if (smp_active == 0 && PCPU_GET(cpuid) != 0) { 159 /* Shutting down, run idlethread on AP's */ 160 td = PCPU_GET(idlethread); 161 ke = td->td_kse; 162 CTR1(KTR_RUNQ, "choosethread: td=%p (idle)", td); 163 ke->ke_flags |= KEF_DIDRUN; 164 TD_SET_RUNNING(td); 165 return (td); 166 } 167 #endif 168 169 retry: 170 ke = sched_choose(); 171 if (ke) { 172 td = ke->ke_thread; 173 KASSERT((td->td_kse == ke), ("kse/thread mismatch")); 174 kg = ke->ke_ksegrp; 175 if (td->td_proc->p_flag & P_HADTHREADS) { 176 if (kg->kg_last_assigned == td) { 177 kg->kg_last_assigned = TAILQ_PREV(td, 178 threadqueue, td_runq); 179 } 180 TAILQ_REMOVE(&kg->kg_runq, td, td_runq); 181 } 182 CTR2(KTR_RUNQ, "choosethread: td=%p pri=%d", 183 td, td->td_priority); 184 } else { 185 /* Simulate runq_choose() having returned the idle thread */ 186 td = PCPU_GET(idlethread); 187 ke = td->td_kse; 188 CTR1(KTR_RUNQ, "choosethread: td=%p (idle)", td); 189 } 190 ke->ke_flags |= KEF_DIDRUN; 191 192 /* 193 * If we are in panic, only allow system threads, 194 * plus the one we are running in, to be run. 195 */ 196 if (panicstr && ((td->td_proc->p_flag & P_SYSTEM) == 0 && 197 (td->td_flags & TDF_INPANIC) == 0)) { 198 /* note that it is no longer on the run queue */ 199 TD_SET_CAN_RUN(td); 200 goto retry; 201 } 202 203 TD_SET_RUNNING(td); 204 return (td); 205 } 206 207 /* 208 * Given a surplus system slot, try assign a new runnable thread to it. 209 * Called from: 210 * sched_thread_exit() (local) 211 * sched_switch() (local) 212 * sched_thread_exit() (local) 213 * remrunqueue() (local) (not at the moment) 214 */ 215 static void 216 slot_fill(struct ksegrp *kg) 217 { 218 struct thread *td; 219 220 mtx_assert(&sched_lock, MA_OWNED); 221 while (kg->kg_avail_opennings > 0) { 222 /* 223 * Find the first unassigned thread 224 */ 225 if ((td = kg->kg_last_assigned) != NULL) 226 td = TAILQ_NEXT(td, td_runq); 227 else 228 td = TAILQ_FIRST(&kg->kg_runq); 229 230 /* 231 * If we found one, send it to the system scheduler. 232 */ 233 if (td) { 234 kg->kg_last_assigned = td; 235 sched_add(td, SRQ_YIELDING); 236 CTR2(KTR_RUNQ, "slot_fill: td%p -> kg%p", td, kg); 237 } else { 238 /* no threads to use up the slots. quit now */ 239 break; 240 } 241 } 242 } 243 244 #ifdef SCHED_4BSD 245 /* 246 * Remove a thread from its KSEGRP's run queue. 247 * This in turn may remove it from a KSE if it was already assigned 248 * to one, possibly causing a new thread to be assigned to the KSE 249 * and the KSE getting a new priority. 250 */ 251 static void 252 remrunqueue(struct thread *td) 253 { 254 struct thread *td2, *td3; 255 struct ksegrp *kg; 256 struct kse *ke; 257 258 mtx_assert(&sched_lock, MA_OWNED); 259 KASSERT((TD_ON_RUNQ(td)), ("remrunqueue: Bad state on run queue")); 260 kg = td->td_ksegrp; 261 ke = td->td_kse; 262 CTR1(KTR_RUNQ, "remrunqueue: td%p", td); 263 TD_SET_CAN_RUN(td); 264 /* 265 * If it is not a threaded process, take the shortcut. 266 */ 267 if ((td->td_proc->p_flag & P_HADTHREADS) == 0) { 268 /* remve from sys run queue and free up a slot */ 269 sched_rem(td); 270 ke->ke_state = KES_THREAD; 271 return; 272 } 273 td3 = TAILQ_PREV(td, threadqueue, td_runq); 274 TAILQ_REMOVE(&kg->kg_runq, td, td_runq); 275 if (ke->ke_state == KES_ONRUNQ) { 276 /* 277 * This thread has been assigned to the system run queue. 278 * We need to dissociate it and try assign the 279 * KSE to the next available thread. Then, we should 280 * see if we need to move the KSE in the run queues. 281 */ 282 sched_rem(td); 283 ke->ke_state = KES_THREAD; 284 td2 = kg->kg_last_assigned; 285 KASSERT((td2 != NULL), ("last assigned has wrong value")); 286 if (td2 == td) 287 kg->kg_last_assigned = td3; 288 /* slot_fill(kg); */ /* will replace it with another */ 289 } 290 } 291 #endif 292 293 /* 294 * Change the priority of a thread that is on the run queue. 295 */ 296 void 297 adjustrunqueue( struct thread *td, int newpri) 298 { 299 struct ksegrp *kg; 300 struct kse *ke; 301 302 mtx_assert(&sched_lock, MA_OWNED); 303 KASSERT((TD_ON_RUNQ(td)), ("adjustrunqueue: Bad state on run queue")); 304 305 ke = td->td_kse; 306 CTR1(KTR_RUNQ, "adjustrunqueue: td%p", td); 307 /* 308 * If it is not a threaded process, take the shortcut. 309 */ 310 if ((td->td_proc->p_flag & P_HADTHREADS) == 0) { 311 /* We only care about the kse in the run queue. */ 312 td->td_priority = newpri; 313 if (ke->ke_rqindex != (newpri / RQ_PPQ)) { 314 sched_rem(td); 315 sched_add(td, SRQ_BORING); 316 } 317 return; 318 } 319 320 /* It is a threaded process */ 321 kg = td->td_ksegrp; 322 if (ke->ke_state == KES_ONRUNQ 323 #ifdef SCHED_ULE 324 || ((ke->ke_flags & KEF_ASSIGNED) != 0 && 325 (ke->ke_flags & KEF_REMOVED) == 0) 326 #endif 327 ) { 328 if (kg->kg_last_assigned == td) { 329 kg->kg_last_assigned = 330 TAILQ_PREV(td, threadqueue, td_runq); 331 } 332 sched_rem(td); 333 } 334 TAILQ_REMOVE(&kg->kg_runq, td, td_runq); 335 TD_SET_CAN_RUN(td); 336 td->td_priority = newpri; 337 setrunqueue(td, SRQ_BORING); 338 } 339 340 /* 341 * This function is called when a thread is about to be put on a 342 * ksegrp run queue because it has been made runnable or its 343 * priority has been adjusted and the ksegrp does not have a 344 * free kse slot. It determines if a thread from the same ksegrp 345 * should be preempted. If so, it tries to switch threads 346 * if the thread is on the same cpu or notifies another cpu that 347 * it should switch threads. 348 */ 349 350 static void 351 maybe_preempt_in_ksegrp(struct thread *td) 352 #if !defined(SMP) 353 { 354 struct thread *running_thread; 355 356 mtx_assert(&sched_lock, MA_OWNED); 357 running_thread = curthread; 358 359 if (running_thread->td_ksegrp != td->td_ksegrp) 360 return; 361 362 if (td->td_priority >= running_thread->td_priority) 363 return; 364 #ifdef PREEMPTION 365 #ifndef FULL_PREEMPTION 366 if (td->td_priority > PRI_MAX_ITHD) { 367 running_thread->td_flags |= TDF_NEEDRESCHED; 368 return; 369 } 370 #endif /* FULL_PREEMPTION */ 371 372 if (running_thread->td_critnest > 1) 373 running_thread->td_owepreempt = 1; 374 else 375 mi_switch(SW_INVOL, NULL); 376 377 #else /* PREEMPTION */ 378 running_thread->td_flags |= TDF_NEEDRESCHED; 379 #endif /* PREEMPTION */ 380 return; 381 } 382 383 #else /* SMP */ 384 { 385 struct thread *running_thread; 386 int worst_pri; 387 struct ksegrp *kg; 388 cpumask_t cpumask,dontuse; 389 struct pcpu *pc; 390 struct pcpu *best_pcpu; 391 struct thread *cputhread; 392 393 mtx_assert(&sched_lock, MA_OWNED); 394 395 running_thread = curthread; 396 397 #if !defined(KSEG_PEEMPT_BEST_CPU) 398 if (running_thread->td_ksegrp != td->td_ksegrp) { 399 #endif 400 kg = td->td_ksegrp; 401 402 /* if someone is ahead of this thread, wait our turn */ 403 if (td != TAILQ_FIRST(&kg->kg_runq)) 404 return; 405 406 worst_pri = td->td_priority; 407 best_pcpu = NULL; 408 dontuse = stopped_cpus | idle_cpus_mask; 409 410 /* 411 * Find a cpu with the worst priority that runs at thread from 412 * the same ksegrp - if multiple exist give first the last run 413 * cpu and then the current cpu priority 414 */ 415 416 SLIST_FOREACH(pc, &cpuhead, pc_allcpu) { 417 cpumask = pc->pc_cpumask; 418 cputhread = pc->pc_curthread; 419 420 if ((cpumask & dontuse) || 421 cputhread->td_ksegrp != kg) 422 continue; 423 424 if (cputhread->td_priority > worst_pri) { 425 worst_pri = cputhread->td_priority; 426 best_pcpu = pc; 427 continue; 428 } 429 430 if (cputhread->td_priority == worst_pri && 431 best_pcpu != NULL && 432 (td->td_lastcpu == pc->pc_cpuid || 433 (PCPU_GET(cpumask) == cpumask && 434 td->td_lastcpu != best_pcpu->pc_cpuid))) 435 best_pcpu = pc; 436 } 437 438 /* Check if we need to preempt someone */ 439 if (best_pcpu == NULL) 440 return; 441 442 #if defined(IPI_PREEMPTION) && defined(PREEMPTION) 443 #if !defined(FULL_PREEMPTION) 444 if (td->td_priority <= PRI_MAX_ITHD) 445 #endif /* ! FULL_PREEMPTION */ 446 { 447 ipi_selected(best_pcpu->pc_cpumask, IPI_PREEMPT); 448 return; 449 } 450 #endif /* defined(IPI_PREEMPTION) && defined(PREEMPTION) */ 451 452 if (PCPU_GET(cpuid) != best_pcpu->pc_cpuid) { 453 best_pcpu->pc_curthread->td_flags |= TDF_NEEDRESCHED; 454 ipi_selected(best_pcpu->pc_cpumask, IPI_AST); 455 return; 456 } 457 #if !defined(KSEG_PEEMPT_BEST_CPU) 458 } 459 #endif 460 461 if (td->td_priority >= running_thread->td_priority) 462 return; 463 #ifdef PREEMPTION 464 465 #if !defined(FULL_PREEMPTION) 466 if (td->td_priority > PRI_MAX_ITHD) { 467 running_thread->td_flags |= TDF_NEEDRESCHED; 468 } 469 #endif /* ! FULL_PREEMPTION */ 470 471 if (running_thread->td_critnest > 1) 472 running_thread->td_owepreempt = 1; 473 else 474 mi_switch(SW_INVOL, NULL); 475 476 #else /* PREEMPTION */ 477 running_thread->td_flags |= TDF_NEEDRESCHED; 478 #endif /* PREEMPTION */ 479 return; 480 } 481 #endif /* !SMP */ 482 483 484 int limitcount; 485 void 486 setrunqueue(struct thread *td, int flags) 487 { 488 struct ksegrp *kg; 489 struct thread *td2; 490 struct thread *tda; 491 492 CTR3(KTR_RUNQ, "setrunqueue: td:%p kg:%p pid:%d", 493 td, td->td_ksegrp, td->td_proc->p_pid); 494 CTR5(KTR_SCHED, "setrunqueue: %p(%s) prio %d by %p(%s)", 495 td, td->td_proc->p_comm, td->td_priority, curthread, 496 curthread->td_proc->p_comm); 497 mtx_assert(&sched_lock, MA_OWNED); 498 KASSERT((td->td_inhibitors == 0), 499 ("setrunqueue: trying to run inhibitted thread")); 500 KASSERT((TD_CAN_RUN(td) || TD_IS_RUNNING(td)), 501 ("setrunqueue: bad thread state")); 502 TD_SET_RUNQ(td); 503 kg = td->td_ksegrp; 504 if ((td->td_proc->p_flag & P_HADTHREADS) == 0) { 505 /* 506 * Common path optimisation: Only one of everything 507 * and the KSE is always already attached. 508 * Totally ignore the ksegrp run queue. 509 */ 510 if (kg->kg_avail_opennings != 1) { 511 if (limitcount < 1) { 512 limitcount++; 513 printf("pid %d: corrected slot count (%d->1)\n", 514 td->td_proc->p_pid, kg->kg_avail_opennings); 515 516 } 517 kg->kg_avail_opennings = 1; 518 } 519 sched_add(td, flags); 520 return; 521 } 522 523 /* 524 * If the concurrency has reduced, and we would go in the 525 * assigned section, then keep removing entries from the 526 * system run queue, until we are not in that section 527 * or there is room for us to be put in that section. 528 * What we MUST avoid is the case where there are threads of less 529 * priority than the new one scheduled, but it can not 530 * be scheduled itself. That would lead to a non contiguous set 531 * of scheduled threads, and everything would break. 532 */ 533 tda = kg->kg_last_assigned; 534 while ((kg->kg_avail_opennings <= 0) && 535 (tda && (tda->td_priority > td->td_priority))) { 536 /* 537 * None free, but there is one we can commandeer. 538 */ 539 CTR2(KTR_RUNQ, 540 "setrunqueue: kg:%p: take slot from td: %p", kg, tda); 541 sched_rem(tda); 542 tda = kg->kg_last_assigned = 543 TAILQ_PREV(tda, threadqueue, td_runq); 544 } 545 546 /* 547 * Add the thread to the ksegrp's run queue at 548 * the appropriate place. 549 */ 550 TAILQ_FOREACH(td2, &kg->kg_runq, td_runq) { 551 if (td2->td_priority > td->td_priority) { 552 TAILQ_INSERT_BEFORE(td2, td, td_runq); 553 break; 554 } 555 } 556 if (td2 == NULL) { 557 /* We ran off the end of the TAILQ or it was empty. */ 558 TAILQ_INSERT_TAIL(&kg->kg_runq, td, td_runq); 559 } 560 561 /* 562 * If we have a slot to use, then put the thread on the system 563 * run queue and if needed, readjust the last_assigned pointer. 564 * it may be that we need to schedule something anyhow 565 * even if the availabel slots are -ve so that 566 * all the items < last_assigned are scheduled. 567 */ 568 if (kg->kg_avail_opennings > 0) { 569 if (tda == NULL) { 570 /* 571 * No pre-existing last assigned so whoever is first 572 * gets the slot.. (maybe us) 573 */ 574 td2 = TAILQ_FIRST(&kg->kg_runq); 575 kg->kg_last_assigned = td2; 576 } else if (tda->td_priority > td->td_priority) { 577 td2 = td; 578 } else { 579 /* 580 * We are past last_assigned, so 581 * give the next slot to whatever is next, 582 * which may or may not be us. 583 */ 584 td2 = TAILQ_NEXT(tda, td_runq); 585 kg->kg_last_assigned = td2; 586 } 587 sched_add(td2, flags); 588 } else { 589 CTR3(KTR_RUNQ, "setrunqueue: held: td%p kg%p pid%d", 590 td, td->td_ksegrp, td->td_proc->p_pid); 591 if ((flags & SRQ_YIELDING) == 0) 592 maybe_preempt_in_ksegrp(td); 593 } 594 } 595 596 /* 597 * Kernel thread preemption implementation. Critical sections mark 598 * regions of code in which preemptions are not allowed. 599 */ 600 void 601 critical_enter(void) 602 { 603 struct thread *td; 604 605 td = curthread; 606 td->td_critnest++; 607 CTR4(KTR_CRITICAL, "critical_enter by thread %p (%ld, %s) to %d", td, 608 (long)td->td_proc->p_pid, td->td_proc->p_comm, td->td_critnest); 609 } 610 611 void 612 critical_exit(void) 613 { 614 struct thread *td; 615 616 td = curthread; 617 KASSERT(td->td_critnest != 0, 618 ("critical_exit: td_critnest == 0")); 619 #ifdef PREEMPTION 620 if (td->td_critnest == 1) { 621 td->td_critnest = 0; 622 mtx_assert(&sched_lock, MA_NOTOWNED); 623 if (td->td_owepreempt) { 624 td->td_critnest = 1; 625 mtx_lock_spin(&sched_lock); 626 td->td_critnest--; 627 mi_switch(SW_INVOL, NULL); 628 mtx_unlock_spin(&sched_lock); 629 } 630 } else 631 #endif 632 td->td_critnest--; 633 634 CTR4(KTR_CRITICAL, "critical_exit by thread %p (%ld, %s) to %d", td, 635 (long)td->td_proc->p_pid, td->td_proc->p_comm, td->td_critnest); 636 } 637 638 /* 639 * This function is called when a thread is about to be put on run queue 640 * because it has been made runnable or its priority has been adjusted. It 641 * determines if the new thread should be immediately preempted to. If so, 642 * it switches to it and eventually returns true. If not, it returns false 643 * so that the caller may place the thread on an appropriate run queue. 644 */ 645 int 646 maybe_preempt(struct thread *td) 647 { 648 #ifdef PREEMPTION 649 struct thread *ctd; 650 int cpri, pri; 651 #endif 652 653 mtx_assert(&sched_lock, MA_OWNED); 654 #ifdef PREEMPTION 655 /* 656 * The new thread should not preempt the current thread if any of the 657 * following conditions are true: 658 * 659 * - The kernel is in the throes of crashing (panicstr). 660 * - The current thread has a higher (numerically lower) or 661 * equivalent priority. Note that this prevents curthread from 662 * trying to preempt to itself. 663 * - It is too early in the boot for context switches (cold is set). 664 * - The current thread has an inhibitor set or is in the process of 665 * exiting. In this case, the current thread is about to switch 666 * out anyways, so there's no point in preempting. If we did, 667 * the current thread would not be properly resumed as well, so 668 * just avoid that whole landmine. 669 * - If the new thread's priority is not a realtime priority and 670 * the current thread's priority is not an idle priority and 671 * FULL_PREEMPTION is disabled. 672 * 673 * If all of these conditions are false, but the current thread is in 674 * a nested critical section, then we have to defer the preemption 675 * until we exit the critical section. Otherwise, switch immediately 676 * to the new thread. 677 */ 678 ctd = curthread; 679 KASSERT ((ctd->td_kse != NULL && ctd->td_kse->ke_thread == ctd), 680 ("thread has no (or wrong) sched-private part.")); 681 KASSERT((td->td_inhibitors == 0), 682 ("maybe_preempt: trying to run inhibitted thread")); 683 pri = td->td_priority; 684 cpri = ctd->td_priority; 685 if (panicstr != NULL || pri >= cpri || cold /* || dumping */ || 686 TD_IS_INHIBITED(ctd) || td->td_kse->ke_state != KES_THREAD) 687 return (0); 688 #ifndef FULL_PREEMPTION 689 if (pri > PRI_MAX_ITHD && cpri < PRI_MIN_IDLE) 690 return (0); 691 #endif 692 693 if (ctd->td_critnest > 1) { 694 CTR1(KTR_PROC, "maybe_preempt: in critical section %d", 695 ctd->td_critnest); 696 ctd->td_owepreempt = 1; 697 return (0); 698 } 699 700 /* 701 * Thread is runnable but not yet put on system run queue. 702 */ 703 MPASS(TD_ON_RUNQ(td)); 704 MPASS(td->td_sched->ke_state != KES_ONRUNQ); 705 if (td->td_proc->p_flag & P_HADTHREADS) { 706 /* 707 * If this is a threaded process we actually ARE on the 708 * ksegrp run queue so take it off that first. 709 * Also undo any damage done to the last_assigned pointer. 710 * XXX Fix setrunqueue so this isn't needed 711 */ 712 struct ksegrp *kg; 713 714 kg = td->td_ksegrp; 715 if (kg->kg_last_assigned == td) 716 kg->kg_last_assigned = 717 TAILQ_PREV(td, threadqueue, td_runq); 718 TAILQ_REMOVE(&kg->kg_runq, td, td_runq); 719 } 720 721 TD_SET_RUNNING(td); 722 CTR3(KTR_PROC, "preempting to thread %p (pid %d, %s)\n", td, 723 td->td_proc->p_pid, td->td_proc->p_comm); 724 mi_switch(SW_INVOL|SW_PREEMPT, td); 725 return (1); 726 #else 727 return (0); 728 #endif 729 } 730 731 #if 0 732 #ifndef PREEMPTION 733 /* XXX: There should be a non-static version of this. */ 734 static void 735 printf_caddr_t(void *data) 736 { 737 printf("%s", (char *)data); 738 } 739 static char preempt_warning[] = 740 "WARNING: Kernel preemption is disabled, expect reduced performance.\n"; 741 SYSINIT(preempt_warning, SI_SUB_COPYRIGHT, SI_ORDER_ANY, printf_caddr_t, 742 preempt_warning) 743 #endif 744 #endif 745 746 /************************************************************************ 747 * SYSTEM RUN QUEUE manipulations and tests * 748 ************************************************************************/ 749 /* 750 * Initialize a run structure. 751 */ 752 void 753 runq_init(struct runq *rq) 754 { 755 int i; 756 757 bzero(rq, sizeof *rq); 758 for (i = 0; i < RQ_NQS; i++) 759 TAILQ_INIT(&rq->rq_queues[i]); 760 } 761 762 /* 763 * Clear the status bit of the queue corresponding to priority level pri, 764 * indicating that it is empty. 765 */ 766 static __inline void 767 runq_clrbit(struct runq *rq, int pri) 768 { 769 struct rqbits *rqb; 770 771 rqb = &rq->rq_status; 772 CTR4(KTR_RUNQ, "runq_clrbit: bits=%#x %#x bit=%#x word=%d", 773 rqb->rqb_bits[RQB_WORD(pri)], 774 rqb->rqb_bits[RQB_WORD(pri)] & ~RQB_BIT(pri), 775 RQB_BIT(pri), RQB_WORD(pri)); 776 rqb->rqb_bits[RQB_WORD(pri)] &= ~RQB_BIT(pri); 777 } 778 779 /* 780 * Find the index of the first non-empty run queue. This is done by 781 * scanning the status bits, a set bit indicates a non-empty queue. 782 */ 783 static __inline int 784 runq_findbit(struct runq *rq) 785 { 786 struct rqbits *rqb; 787 int pri; 788 int i; 789 790 rqb = &rq->rq_status; 791 for (i = 0; i < RQB_LEN; i++) 792 if (rqb->rqb_bits[i]) { 793 pri = RQB_FFS(rqb->rqb_bits[i]) + (i << RQB_L2BPW); 794 CTR3(KTR_RUNQ, "runq_findbit: bits=%#x i=%d pri=%d", 795 rqb->rqb_bits[i], i, pri); 796 return (pri); 797 } 798 799 return (-1); 800 } 801 802 /* 803 * Set the status bit of the queue corresponding to priority level pri, 804 * indicating that it is non-empty. 805 */ 806 static __inline void 807 runq_setbit(struct runq *rq, int pri) 808 { 809 struct rqbits *rqb; 810 811 rqb = &rq->rq_status; 812 CTR4(KTR_RUNQ, "runq_setbit: bits=%#x %#x bit=%#x word=%d", 813 rqb->rqb_bits[RQB_WORD(pri)], 814 rqb->rqb_bits[RQB_WORD(pri)] | RQB_BIT(pri), 815 RQB_BIT(pri), RQB_WORD(pri)); 816 rqb->rqb_bits[RQB_WORD(pri)] |= RQB_BIT(pri); 817 } 818 819 /* 820 * Add the KSE to the queue specified by its priority, and set the 821 * corresponding status bit. 822 */ 823 void 824 runq_add(struct runq *rq, struct kse *ke, int flags) 825 { 826 struct rqhead *rqh; 827 int pri; 828 829 pri = ke->ke_thread->td_priority / RQ_PPQ; 830 ke->ke_rqindex = pri; 831 runq_setbit(rq, pri); 832 rqh = &rq->rq_queues[pri]; 833 CTR5(KTR_RUNQ, "runq_add: td=%p ke=%p pri=%d %d rqh=%p", 834 ke->ke_thread, ke, ke->ke_thread->td_priority, pri, rqh); 835 if (flags & SRQ_PREEMPTED) { 836 TAILQ_INSERT_HEAD(rqh, ke, ke_procq); 837 } else { 838 TAILQ_INSERT_TAIL(rqh, ke, ke_procq); 839 } 840 } 841 842 /* 843 * Return true if there are runnable processes of any priority on the run 844 * queue, false otherwise. Has no side effects, does not modify the run 845 * queue structure. 846 */ 847 int 848 runq_check(struct runq *rq) 849 { 850 struct rqbits *rqb; 851 int i; 852 853 rqb = &rq->rq_status; 854 for (i = 0; i < RQB_LEN; i++) 855 if (rqb->rqb_bits[i]) { 856 CTR2(KTR_RUNQ, "runq_check: bits=%#x i=%d", 857 rqb->rqb_bits[i], i); 858 return (1); 859 } 860 CTR0(KTR_RUNQ, "runq_check: empty"); 861 862 return (0); 863 } 864 865 #if defined(SMP) && defined(SCHED_4BSD) 866 int runq_fuzz = 1; 867 SYSCTL_INT(_kern_sched, OID_AUTO, runq_fuzz, CTLFLAG_RW, &runq_fuzz, 0, ""); 868 #endif 869 870 /* 871 * Find the highest priority process on the run queue. 872 */ 873 struct kse * 874 runq_choose(struct runq *rq) 875 { 876 struct rqhead *rqh; 877 struct kse *ke; 878 int pri; 879 880 mtx_assert(&sched_lock, MA_OWNED); 881 while ((pri = runq_findbit(rq)) != -1) { 882 rqh = &rq->rq_queues[pri]; 883 #if defined(SMP) && defined(SCHED_4BSD) 884 /* fuzz == 1 is normal.. 0 or less are ignored */ 885 if (runq_fuzz > 1) { 886 /* 887 * In the first couple of entries, check if 888 * there is one for our CPU as a preference. 889 */ 890 int count = runq_fuzz; 891 int cpu = PCPU_GET(cpuid); 892 struct kse *ke2; 893 ke2 = ke = TAILQ_FIRST(rqh); 894 895 while (count-- && ke2) { 896 if (ke->ke_thread->td_lastcpu == cpu) { 897 ke = ke2; 898 break; 899 } 900 ke2 = TAILQ_NEXT(ke2, ke_procq); 901 } 902 } else 903 #endif 904 ke = TAILQ_FIRST(rqh); 905 KASSERT(ke != NULL, ("runq_choose: no proc on busy queue")); 906 CTR3(KTR_RUNQ, 907 "runq_choose: pri=%d kse=%p rqh=%p", pri, ke, rqh); 908 return (ke); 909 } 910 CTR1(KTR_RUNQ, "runq_choose: idleproc pri=%d", pri); 911 912 return (NULL); 913 } 914 915 /* 916 * Remove the KSE from the queue specified by its priority, and clear the 917 * corresponding status bit if the queue becomes empty. 918 * Caller must set ke->ke_state afterwards. 919 */ 920 void 921 runq_remove(struct runq *rq, struct kse *ke) 922 { 923 struct rqhead *rqh; 924 int pri; 925 926 KASSERT(ke->ke_proc->p_sflag & PS_INMEM, 927 ("runq_remove: process swapped out")); 928 pri = ke->ke_rqindex; 929 rqh = &rq->rq_queues[pri]; 930 CTR5(KTR_RUNQ, "runq_remove: td=%p, ke=%p pri=%d %d rqh=%p", 931 ke->ke_thread, ke, ke->ke_thread->td_priority, pri, rqh); 932 KASSERT(ke != NULL, ("runq_remove: no proc on busy queue")); 933 TAILQ_REMOVE(rqh, ke, ke_procq); 934 if (TAILQ_EMPTY(rqh)) { 935 CTR0(KTR_RUNQ, "runq_remove: empty"); 936 runq_clrbit(rq, pri); 937 } 938 } 939 940 /****** functions that are temporarily here ***********/ 941 #include <vm/uma.h> 942 extern struct mtx kse_zombie_lock; 943 944 /* 945 * Allocate scheduler specific per-process resources. 946 * The thread and ksegrp have already been linked in. 947 * In this case just set the default concurrency value. 948 * 949 * Called from: 950 * proc_init() (UMA init method) 951 */ 952 void 953 sched_newproc(struct proc *p, struct ksegrp *kg, struct thread *td) 954 { 955 956 /* This can go in sched_fork */ 957 sched_init_concurrency(kg); 958 } 959 960 /* 961 * thread is being either created or recycled. 962 * Fix up the per-scheduler resources associated with it. 963 * Called from: 964 * sched_fork_thread() 965 * thread_dtor() (*may go away) 966 * thread_init() (*may go away) 967 */ 968 void 969 sched_newthread(struct thread *td) 970 { 971 struct td_sched *ke; 972 973 ke = (struct td_sched *) (td + 1); 974 bzero(ke, sizeof(*ke)); 975 td->td_sched = ke; 976 ke->ke_thread = td; 977 ke->ke_state = KES_THREAD; 978 } 979 980 /* 981 * Set up an initial concurrency of 1 982 * and set the given thread (if given) to be using that 983 * concurrency slot. 984 * May be used "offline"..before the ksegrp is attached to the world 985 * and thus wouldn't need schedlock in that case. 986 * Called from: 987 * thr_create() 988 * proc_init() (UMA) via sched_newproc() 989 */ 990 void 991 sched_init_concurrency(struct ksegrp *kg) 992 { 993 994 CTR1(KTR_RUNQ,"kg %p init slots and concurrency to 1", kg); 995 kg->kg_concurrency = 1; 996 kg->kg_avail_opennings = 1; 997 } 998 999 /* 1000 * Change the concurrency of an existing ksegrp to N 1001 * Called from: 1002 * kse_create() 1003 * kse_exit() 1004 * thread_exit() 1005 * thread_single() 1006 */ 1007 void 1008 sched_set_concurrency(struct ksegrp *kg, int concurrency) 1009 { 1010 1011 CTR4(KTR_RUNQ,"kg %p set concurrency to %d, slots %d -> %d", 1012 kg, 1013 concurrency, 1014 kg->kg_avail_opennings, 1015 kg->kg_avail_opennings + (concurrency - kg->kg_concurrency)); 1016 kg->kg_avail_opennings += (concurrency - kg->kg_concurrency); 1017 kg->kg_concurrency = concurrency; 1018 } 1019 1020 /* 1021 * Called from thread_exit() for all exiting thread 1022 * 1023 * Not to be confused with sched_exit_thread() 1024 * that is only called from thread_exit() for threads exiting 1025 * without the rest of the process exiting because it is also called from 1026 * sched_exit() and we wouldn't want to call it twice. 1027 * XXX This can probably be fixed. 1028 */ 1029 void 1030 sched_thread_exit(struct thread *td) 1031 { 1032 1033 SLOT_RELEASE(td->td_ksegrp); 1034 slot_fill(td->td_ksegrp); 1035 } 1036 1037 #endif /* KERN_SWITCH_INCLUDE */ 1038