xref: /freebsd/sys/kern/kern_switch.c (revision 84f9d4b1372d9b4468cf6e7cc3c0d11509a51bd6)
1 /*
2  * Copyright (c) 2001 Jake Burkholder <jake@FreeBSD.org>
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  */
26 
27 /***
28 Here is the logic..
29 
30 If there are N processors, then there are at most N KSEs (kernel
31 schedulable entities) working to process threads that belong to a
32 KSEGROUP (kg). If there are X of these KSEs actually running at the
33 moment in question, then there are at most M (N-X) of these KSEs on
34 the run queue, as running KSEs are not on the queue.
35 
36 Runnable threads are queued off the KSEGROUP in priority order.
37 If there are M or more threads runnable, the top M threads
38 (by priority) are 'preassigned' to the M KSEs not running. The KSEs take
39 their priority from those threads and are put on the run queue.
40 
41 The last thread that had a priority high enough to have a KSE associated
42 with it, AND IS ON THE RUN QUEUE is pointed to by
43 kg->kg_last_assigned. If no threads queued off the KSEGROUP have KSEs
44 assigned as all the available KSEs are activly running, or because there
45 are no threads queued, that pointer is NULL.
46 
47 When a KSE is removed from the run queue to become runnable, we know
48 it was associated with the highest priority thread in the queue (at the head
49 of the queue). If it is also the last assigned we know M was 1 and must
50 now be 0. Since the thread is no longer queued that pointer must be
51 removed from it. Since we know there were no more KSEs available,
52 (M was 1 and is now 0) and since we are not FREEING our KSE
53 but using it, we know there are STILL no more KSEs available, we can prove
54 that the next thread in the ksegrp list will not have a KSE to assign to
55 it, so we can show that the pointer must be made 'invalid' (NULL).
56 
57 The pointer exists so that when a new thread is made runnable, it can
58 have its priority compared with the last assigned thread to see if
59 it should 'steal' its KSE or not.. i.e. is it 'earlier'
60 on the list than that thread or later.. If it's earlier, then the KSE is
61 removed from the last assigned (which is now not assigned a KSE)
62 and reassigned to the new thread, which is placed earlier in the list.
63 The pointer is then backed up to the previous thread (which may or may not
64 be the new thread).
65 
66 When a thread sleeps or is removed, the KSE becomes available and if there
67 are queued threads that are not assigned KSEs, the highest priority one of
68 them is assigned the KSE, which is then placed back on the run queue at
69 the approipriate place, and the kg->kg_last_assigned pointer is adjusted down
70 to point to it.
71 
72 The following diagram shows 2 KSEs and 3 threads from a single process.
73 
74  RUNQ: --->KSE---KSE--...    (KSEs queued at priorities from threads)
75               \    \____
76                \        \
77     KSEGROUP---thread--thread--thread    (queued in priority order)
78         \                 /
79          \_______________/
80           (last_assigned)
81 
82 The result of this scheme is that the M available KSEs are always
83 queued at the priorities they have inherrited from the M highest priority
84 threads for that KSEGROUP. If this situation changes, the KSEs are
85 reassigned to keep this true.
86 ***/
87 
88 #include <sys/cdefs.h>
89 __FBSDID("$FreeBSD$");
90 
91 #include "opt_sched.h"
92 
93 #ifndef KERN_SWITCH_INCLUDE
94 #include <sys/param.h>
95 #include <sys/systm.h>
96 #include <sys/kdb.h>
97 #include <sys/kernel.h>
98 #include <sys/ktr.h>
99 #include <sys/lock.h>
100 #include <sys/mutex.h>
101 #include <sys/proc.h>
102 #include <sys/queue.h>
103 #include <sys/sched.h>
104 #else  /* KERN_SWITCH_INCLUDE */
105 #if defined(SMP) && (defined(__i386__) || defined(__amd64__))
106 #include <sys/smp.h>
107 #endif
108 #include <machine/critical.h>
109 #if defined(SMP) && defined(SCHED_4BSD)
110 #include <sys/sysctl.h>
111 #endif
112 
113 #ifdef FULL_PREEMPTION
114 #ifndef PREEMPTION
115 #error "The FULL_PREEMPTION option requires the PREEMPTION option"
116 #endif
117 #endif
118 
119 CTASSERT((RQB_BPW * RQB_LEN) == RQ_NQS);
120 
121 #define td_kse td_sched
122 
123 /************************************************************************
124  * Functions that manipulate runnability from a thread perspective.	*
125  ************************************************************************/
126 /*
127  * Select the KSE that will be run next.  From that find the thread, and
128  * remove it from the KSEGRP's run queue.  If there is thread clustering,
129  * this will be what does it.
130  */
131 struct thread *
132 choosethread(void)
133 {
134 	struct kse *ke;
135 	struct thread *td;
136 	struct ksegrp *kg;
137 
138 #if defined(SMP) && (defined(__i386__) || defined(__amd64__))
139 	if (smp_active == 0 && PCPU_GET(cpuid) != 0) {
140 		/* Shutting down, run idlethread on AP's */
141 		td = PCPU_GET(idlethread);
142 		ke = td->td_kse;
143 		CTR1(KTR_RUNQ, "choosethread: td=%p (idle)", td);
144 		ke->ke_flags |= KEF_DIDRUN;
145 		TD_SET_RUNNING(td);
146 		return (td);
147 	}
148 #endif
149 
150 retry:
151 	ke = sched_choose();
152 	if (ke) {
153 		td = ke->ke_thread;
154 		KASSERT((td->td_kse == ke), ("kse/thread mismatch"));
155 		kg = ke->ke_ksegrp;
156 		if (td->td_proc->p_flag & P_HADTHREADS) {
157 			if (kg->kg_last_assigned == td) {
158 				kg->kg_last_assigned = TAILQ_PREV(td,
159 				    threadqueue, td_runq);
160 			}
161 			TAILQ_REMOVE(&kg->kg_runq, td, td_runq);
162 			kg->kg_runnable--;
163 		}
164 		CTR2(KTR_RUNQ, "choosethread: td=%p pri=%d",
165 		    td, td->td_priority);
166 	} else {
167 		/* Simulate runq_choose() having returned the idle thread */
168 		td = PCPU_GET(idlethread);
169 		ke = td->td_kse;
170 		CTR1(KTR_RUNQ, "choosethread: td=%p (idle)", td);
171 	}
172 	ke->ke_flags |= KEF_DIDRUN;
173 
174 	/*
175 	 * If we are in panic, only allow system threads,
176 	 * plus the one we are running in, to be run.
177 	 */
178 	if (panicstr && ((td->td_proc->p_flag & P_SYSTEM) == 0 &&
179 	    (td->td_flags & TDF_INPANIC) == 0)) {
180 		/* note that it is no longer on the run queue */
181 		TD_SET_CAN_RUN(td);
182 		goto retry;
183 	}
184 
185 	TD_SET_RUNNING(td);
186 	return (td);
187 }
188 
189 /*
190  * Given a surplus system slot, try assign a new runnable thread to it.
191  * Called from:
192  *  sched_thread_exit()  (local)
193  *  sched_switch()  (local)
194  *  sched_thread_exit()  (local)
195  *  remrunqueue()  (local)  (not at the moment)
196  */
197 static void
198 slot_fill(struct ksegrp *kg)
199 {
200 	struct thread *td;
201 
202 	mtx_assert(&sched_lock, MA_OWNED);
203 	while (kg->kg_avail_opennings > 0) {
204 		/*
205 		 * Find the first unassigned thread
206 		 */
207 		if ((td = kg->kg_last_assigned) != NULL)
208 			td = TAILQ_NEXT(td, td_runq);
209 		else
210 			td = TAILQ_FIRST(&kg->kg_runq);
211 
212 		/*
213 		 * If we found one, send it to the system scheduler.
214 		 */
215 		if (td) {
216 			kg->kg_last_assigned = td;
217 			sched_add(td, SRQ_YIELDING);
218 			CTR2(KTR_RUNQ, "slot_fill: td%p -> kg%p", td, kg);
219 		} else {
220 			/* no threads to use up the slots. quit now */
221 			break;
222 		}
223 	}
224 }
225 
226 #ifdef	SCHED_4BSD
227 /*
228  * Remove a thread from its KSEGRP's run queue.
229  * This in turn may remove it from a KSE if it was already assigned
230  * to one, possibly causing a new thread to be assigned to the KSE
231  * and the KSE getting a new priority.
232  */
233 static void
234 remrunqueue(struct thread *td)
235 {
236 	struct thread *td2, *td3;
237 	struct ksegrp *kg;
238 	struct kse *ke;
239 
240 	mtx_assert(&sched_lock, MA_OWNED);
241 	KASSERT((TD_ON_RUNQ(td)), ("remrunqueue: Bad state on run queue"));
242 	kg = td->td_ksegrp;
243 	ke = td->td_kse;
244 	CTR1(KTR_RUNQ, "remrunqueue: td%p", td);
245 	TD_SET_CAN_RUN(td);
246 	/*
247 	 * If it is not a threaded process, take the shortcut.
248 	 */
249 	if ((td->td_proc->p_flag & P_HADTHREADS) == 0) {
250 		/* remve from sys run queue and free up a slot */
251 		sched_rem(td);
252 		ke->ke_state = KES_THREAD;
253 		return;
254 	}
255    	td3 = TAILQ_PREV(td, threadqueue, td_runq);
256 	TAILQ_REMOVE(&kg->kg_runq, td, td_runq);
257 	kg->kg_runnable--;
258 	if (ke->ke_state == KES_ONRUNQ) {
259 		/*
260 		 * This thread has been assigned to the system run queue.
261 		 * We need to dissociate it and try assign the
262 		 * KSE to the next available thread. Then, we should
263 		 * see if we need to move the KSE in the run queues.
264 		 */
265 		sched_rem(td);
266 		ke->ke_state = KES_THREAD;
267 		td2 = kg->kg_last_assigned;
268 		KASSERT((td2 != NULL), ("last assigned has wrong value"));
269 		if (td2 == td)
270 			kg->kg_last_assigned = td3;
271 		/* slot_fill(kg); */ /* will replace it with another */
272 	}
273 }
274 #endif
275 
276 /*
277  * Change the priority of a thread that is on the run queue.
278  */
279 void
280 adjustrunqueue( struct thread *td, int newpri)
281 {
282 	struct ksegrp *kg;
283 	struct kse *ke;
284 
285 	mtx_assert(&sched_lock, MA_OWNED);
286 	KASSERT((TD_ON_RUNQ(td)), ("adjustrunqueue: Bad state on run queue"));
287 
288 	ke = td->td_kse;
289 	CTR1(KTR_RUNQ, "adjustrunqueue: td%p", td);
290 	/*
291 	 * If it is not a threaded process, take the shortcut.
292 	 */
293 	if ((td->td_proc->p_flag & P_HADTHREADS) == 0) {
294 		/* We only care about the kse in the run queue. */
295 		td->td_priority = newpri;
296 		if (ke->ke_rqindex != (newpri / RQ_PPQ)) {
297 			sched_rem(td);
298 			sched_add(td, SRQ_BORING);
299 		}
300 		return;
301 	}
302 
303 	/* It is a threaded process */
304 	kg = td->td_ksegrp;
305 	if (ke->ke_state == KES_ONRUNQ) {
306 		if (kg->kg_last_assigned == td) {
307 			kg->kg_last_assigned =
308 			    TAILQ_PREV(td, threadqueue, td_runq);
309 		}
310 		sched_rem(td);
311 	}
312 	TAILQ_REMOVE(&kg->kg_runq, td, td_runq);
313 	kg->kg_runnable--;
314 	TD_SET_CAN_RUN(td);
315 	td->td_priority = newpri;
316 	setrunqueue(td, SRQ_BORING);
317 }
318 
319 /*
320  * This function is called when a thread is about to be put on a
321  * ksegrp run queue because it has been made runnable or its
322  * priority has been adjusted and the ksegrp does not have a
323  * free kse slot.  It determines if a thread from the same ksegrp
324  * should be preempted.  If so, it tries to switch threads
325  * if the thread is on the same cpu or notifies another cpu that
326  * it should switch threads.
327  */
328 
329 static void
330 maybe_preempt_in_ksegrp(struct thread *td)
331 {
332 #if  defined(SMP)
333 	int worst_pri;
334 	struct ksegrp *kg;
335 	cpumask_t cpumask,dontuse;
336 	struct pcpu *pc;
337 	struct pcpu *best_pcpu;
338 	struct thread *running_thread;
339 	struct thread *cputhread;
340 
341 #ifndef FULL_PREEMPTION
342 	int pri;
343 	pri = td->td_priority;
344 	if (!(pri >= PRI_MIN_ITHD && pri <= PRI_MAX_ITHD))
345 		return;
346 #endif
347 
348 	mtx_assert(&sched_lock, MA_OWNED);
349 
350 	running_thread = curthread;
351 
352 #if !defined(KSEG_PEEMPT_BEST_CPU)
353 	if (running_thread->td_ksegrp != td->td_ksegrp) {
354 #endif
355 		kg = td->td_ksegrp;
356 
357 		/* if someone is ahead of this thread, wait our turn */
358 		if (td != TAILQ_FIRST(&kg->kg_runq))
359 			return;
360 
361 		worst_pri = td->td_priority;
362 		best_pcpu = NULL;
363 		dontuse   = stopped_cpus | idle_cpus_mask;
364 
365 		/*
366 		 * Find a cpu with the worst priority that runs at thread from
367 		 * the same  ksegrp - if multiple exist give first the last run
368 		 * cpu and then the current cpu priority
369 		 */
370 
371 		SLIST_FOREACH(pc, &cpuhead, pc_allcpu) {
372 			cpumask   = pc->pc_cpumask;
373 			cputhread = pc->pc_curthread;
374 
375 			if ((cpumask & dontuse)  ||
376 			    cputhread->td_ksegrp != kg)
377 				continue;
378 
379 			if (cputhread->td_priority > worst_pri) {
380 				worst_pri = cputhread->td_priority;
381 				best_pcpu = pc;
382 				continue;
383 			}
384 
385 			if (cputhread->td_priority == worst_pri &&
386 			    best_pcpu != NULL &&
387 			    (td->td_lastcpu == pc->pc_cpuid ||
388 				(PCPU_GET(cpumask) == cpumask &&
389 				    td->td_lastcpu != best_pcpu->pc_cpuid)))
390 			    best_pcpu = pc;
391 		}
392 
393 		/* Check if we need to preempt someone */
394 		if (best_pcpu == NULL)
395 			return;
396 
397 		if (PCPU_GET(cpuid) != best_pcpu->pc_cpuid) {
398 			best_pcpu->pc_curthread->td_flags |= TDF_NEEDRESCHED;
399 			ipi_selected(best_pcpu->pc_cpumask, IPI_AST);
400 			return;
401 		}
402 #if !defined(KSEG_PEEMPT_BEST_CPU)
403 	}
404 #endif
405 
406 #else
407 	KASSERT(running_thread->td_ksegrp == td->td_ksegrp,
408 	    ("maybe_preempt_in_ksegrp: No chance to run thread"));
409 #endif
410 
411 	if (td->td_priority > running_thread->td_priority)
412 		return;
413 #ifdef PREEMPTION
414 	if (running_thread->td_critnest > 1)
415 		running_thread->td_pflags |= TDP_OWEPREEMPT;
416 	 else
417 		 mi_switch(SW_INVOL, NULL);
418 
419 #else
420 	running_thread->td_flags |= TDF_NEEDRESCHED;
421 #endif
422 	return;
423 }
424 
425 int limitcount;
426 void
427 setrunqueue(struct thread *td, int flags)
428 {
429 	struct ksegrp *kg;
430 	struct thread *td2;
431 	struct thread *tda;
432 
433 	CTR3(KTR_RUNQ, "setrunqueue: td:%p kg:%p pid:%d",
434 	    td, td->td_ksegrp, td->td_proc->p_pid);
435 	mtx_assert(&sched_lock, MA_OWNED);
436 	KASSERT((td->td_inhibitors == 0),
437 			("setrunqueue: trying to run inhibitted thread"));
438 	KASSERT((TD_CAN_RUN(td) || TD_IS_RUNNING(td)),
439 	    ("setrunqueue: bad thread state"));
440 	TD_SET_RUNQ(td);
441 	kg = td->td_ksegrp;
442 	if ((td->td_proc->p_flag & P_HADTHREADS) == 0) {
443 		/*
444 		 * Common path optimisation: Only one of everything
445 		 * and the KSE is always already attached.
446 		 * Totally ignore the ksegrp run queue.
447 		 */
448 		if (kg->kg_avail_opennings != 1) {
449 			if (limitcount < 1) {
450 				limitcount++;
451 				printf("pid %d: corrected slot count (%d->1)\n",
452 				    td->td_proc->p_pid, kg->kg_avail_opennings);
453 
454 			}
455 			kg->kg_avail_opennings = 1;
456 		}
457 		sched_add(td, flags);
458 		return;
459 	}
460 
461 	/*
462 	 * If the concurrency has reduced, and we would go in the
463 	 * assigned section, then keep removing entries from the
464 	 * system run queue, until we are not in that section
465 	 * or there is room for us to be put in that section.
466 	 * What we MUST avoid is the case where there are threads of less
467 	 * priority than the new one scheduled, but it can not
468 	 * be scheduled itself. That would lead to a non contiguous set
469 	 * of scheduled threads, and everything would break.
470 	 */
471 	tda = kg->kg_last_assigned;
472 	while ((kg->kg_avail_opennings <= 0) &&
473 	    (tda && (tda->td_priority > td->td_priority))) {
474 		/*
475 		 * None free, but there is one we can commandeer.
476 		 */
477 		CTR2(KTR_RUNQ,
478 		    "setrunqueue: kg:%p: take slot from td: %p", kg, tda);
479 		sched_rem(tda);
480 		tda = kg->kg_last_assigned =
481 		    TAILQ_PREV(tda, threadqueue, td_runq);
482 	}
483 
484 	/*
485 	 * Add the thread to the ksegrp's run queue at
486 	 * the appropriate place.
487 	 */
488 	TAILQ_FOREACH(td2, &kg->kg_runq, td_runq) {
489 		if (td2->td_priority > td->td_priority) {
490 			kg->kg_runnable++;
491 			TAILQ_INSERT_BEFORE(td2, td, td_runq);
492 			break;
493 		}
494 	}
495 	if (td2 == NULL) {
496 		/* We ran off the end of the TAILQ or it was empty. */
497 		kg->kg_runnable++;
498 		TAILQ_INSERT_TAIL(&kg->kg_runq, td, td_runq);
499 	}
500 
501 	/*
502 	 * If we have a slot to use, then put the thread on the system
503 	 * run queue and if needed, readjust the last_assigned pointer.
504 	 * it may be that we need to schedule something anyhow
505 	 * even if the availabel slots are -ve so that
506 	 * all the items < last_assigned are scheduled.
507 	 */
508 	if (kg->kg_avail_opennings > 0) {
509 		if (tda == NULL) {
510 			/*
511 			 * No pre-existing last assigned so whoever is first
512 			 * gets the slot.. (maybe us)
513 			 */
514 			td2 = TAILQ_FIRST(&kg->kg_runq);
515 			kg->kg_last_assigned = td2;
516 		} else if (tda->td_priority > td->td_priority) {
517 			td2 = td;
518 		} else {
519 			/*
520 			 * We are past last_assigned, so
521 			 * give the next slot to whatever is next,
522 			 * which may or may not be us.
523 			 */
524 			td2 = TAILQ_NEXT(tda, td_runq);
525 			kg->kg_last_assigned = td2;
526 		}
527 		sched_add(td2, flags);
528 	} else {
529 		CTR3(KTR_RUNQ, "setrunqueue: held: td%p kg%p pid%d",
530 			td, td->td_ksegrp, td->td_proc->p_pid);
531 		if ((flags & SRQ_YIELDING) == 0)
532 			maybe_preempt_in_ksegrp(td);
533 	}
534 }
535 
536 /*
537  * Kernel thread preemption implementation.  Critical sections mark
538  * regions of code in which preemptions are not allowed.
539  */
540 void
541 critical_enter(void)
542 {
543 	struct thread *td;
544 
545 	td = curthread;
546 	if (td->td_critnest == 0)
547 		cpu_critical_enter(td);
548 	td->td_critnest++;
549 }
550 
551 void
552 critical_exit(void)
553 {
554 	struct thread *td;
555 
556 	td = curthread;
557 	KASSERT(td->td_critnest != 0,
558 	    ("critical_exit: td_critnest == 0"));
559 	if (td->td_critnest == 1) {
560 #ifdef PREEMPTION
561 		mtx_assert(&sched_lock, MA_NOTOWNED);
562 		if (td->td_pflags & TDP_OWEPREEMPT) {
563 			mtx_lock_spin(&sched_lock);
564 			mi_switch(SW_INVOL, NULL);
565 			mtx_unlock_spin(&sched_lock);
566 		}
567 #endif
568 		td->td_critnest = 0;
569 		cpu_critical_exit(td);
570 	} else {
571 		td->td_critnest--;
572 	}
573 }
574 
575 /*
576  * This function is called when a thread is about to be put on run queue
577  * because it has been made runnable or its priority has been adjusted.  It
578  * determines if the new thread should be immediately preempted to.  If so,
579  * it switches to it and eventually returns true.  If not, it returns false
580  * so that the caller may place the thread on an appropriate run queue.
581  */
582 int
583 maybe_preempt(struct thread *td)
584 {
585 #ifdef PREEMPTION
586 	struct thread *ctd;
587 	int cpri, pri;
588 #endif
589 
590 	mtx_assert(&sched_lock, MA_OWNED);
591 #ifdef PREEMPTION
592 	/*
593 	 * The new thread should not preempt the current thread if any of the
594 	 * following conditions are true:
595 	 *
596 	 *  - The current thread has a higher (numerically lower) or
597 	 *    equivalent priority.  Note that this prevents curthread from
598 	 *    trying to preempt to itself.
599 	 *  - It is too early in the boot for context switches (cold is set).
600 	 *  - The current thread has an inhibitor set or is in the process of
601 	 *    exiting.  In this case, the current thread is about to switch
602 	 *    out anyways, so there's no point in preempting.  If we did,
603 	 *    the current thread would not be properly resumed as well, so
604 	 *    just avoid that whole landmine.
605 	 *  - If the new thread's priority is not a realtime priority and
606 	 *    the current thread's priority is not an idle priority and
607 	 *    FULL_PREEMPTION is disabled.
608 	 *
609 	 * If all of these conditions are false, but the current thread is in
610 	 * a nested critical section, then we have to defer the preemption
611 	 * until we exit the critical section.  Otherwise, switch immediately
612 	 * to the new thread.
613 	 */
614 	ctd = curthread;
615 	KASSERT ((ctd->td_kse != NULL && ctd->td_kse->ke_thread == ctd),
616 	  ("thread has no (or wrong) sched-private part."));
617 	KASSERT((td->td_inhibitors == 0),
618 			("maybe_preempt: trying to run inhibitted thread"));
619 	pri = td->td_priority;
620 	cpri = ctd->td_priority;
621 	if (pri >= cpri || cold /* || dumping */ || TD_IS_INHIBITED(ctd) ||
622 	    td->td_kse->ke_state != KES_THREAD)
623 		return (0);
624 #ifndef FULL_PREEMPTION
625 	if (!(pri >= PRI_MIN_ITHD && pri <= PRI_MAX_ITHD) &&
626 	    !(cpri >= PRI_MIN_IDLE))
627 		return (0);
628 #endif
629 	if (ctd->td_critnest > 1) {
630 		CTR1(KTR_PROC, "maybe_preempt: in critical section %d",
631 		    ctd->td_critnest);
632 		ctd->td_pflags |= TDP_OWEPREEMPT;
633 		return (0);
634 	}
635 
636 	/*
637 	 * Thread is runnable but not yet put on system run queue.
638 	 */
639 	MPASS(TD_ON_RUNQ(td));
640 	MPASS(td->td_sched->ke_state != KES_ONRUNQ);
641 	if (td->td_proc->p_flag & P_HADTHREADS) {
642 		/*
643 		 * If this is a threaded process we actually ARE on the
644 		 * ksegrp run queue so take it off that first.
645 		 * Also undo any damage done to the last_assigned pointer.
646 		 * XXX Fix setrunqueue so this isn't needed
647 		 */
648 		struct ksegrp *kg;
649 
650 		kg = td->td_ksegrp;
651 		if (kg->kg_last_assigned == td)
652 			kg->kg_last_assigned =
653 			    TAILQ_PREV(td, threadqueue, td_runq);
654 		TAILQ_REMOVE(&kg->kg_runq, td, td_runq);
655 	}
656 
657 	TD_SET_RUNNING(td);
658 	CTR3(KTR_PROC, "preempting to thread %p (pid %d, %s)\n", td,
659 	    td->td_proc->p_pid, td->td_proc->p_comm);
660 	mi_switch(SW_INVOL|SW_PREEMPT, td);
661 	return (1);
662 #else
663 	return (0);
664 #endif
665 }
666 
667 #if 0
668 #ifndef PREEMPTION
669 /* XXX: There should be a non-static version of this. */
670 static void
671 printf_caddr_t(void *data)
672 {
673 	printf("%s", (char *)data);
674 }
675 static char preempt_warning[] =
676     "WARNING: Kernel preemption is disabled, expect reduced performance.\n";
677 SYSINIT(preempt_warning, SI_SUB_COPYRIGHT, SI_ORDER_ANY, printf_caddr_t,
678     preempt_warning)
679 #endif
680 #endif
681 
682 /************************************************************************
683  * SYSTEM RUN QUEUE manipulations and tests				*
684  ************************************************************************/
685 /*
686  * Initialize a run structure.
687  */
688 void
689 runq_init(struct runq *rq)
690 {
691 	int i;
692 
693 	bzero(rq, sizeof *rq);
694 	for (i = 0; i < RQ_NQS; i++)
695 		TAILQ_INIT(&rq->rq_queues[i]);
696 }
697 
698 /*
699  * Clear the status bit of the queue corresponding to priority level pri,
700  * indicating that it is empty.
701  */
702 static __inline void
703 runq_clrbit(struct runq *rq, int pri)
704 {
705 	struct rqbits *rqb;
706 
707 	rqb = &rq->rq_status;
708 	CTR4(KTR_RUNQ, "runq_clrbit: bits=%#x %#x bit=%#x word=%d",
709 	    rqb->rqb_bits[RQB_WORD(pri)],
710 	    rqb->rqb_bits[RQB_WORD(pri)] & ~RQB_BIT(pri),
711 	    RQB_BIT(pri), RQB_WORD(pri));
712 	rqb->rqb_bits[RQB_WORD(pri)] &= ~RQB_BIT(pri);
713 }
714 
715 /*
716  * Find the index of the first non-empty run queue.  This is done by
717  * scanning the status bits, a set bit indicates a non-empty queue.
718  */
719 static __inline int
720 runq_findbit(struct runq *rq)
721 {
722 	struct rqbits *rqb;
723 	int pri;
724 	int i;
725 
726 	rqb = &rq->rq_status;
727 	for (i = 0; i < RQB_LEN; i++)
728 		if (rqb->rqb_bits[i]) {
729 			pri = RQB_FFS(rqb->rqb_bits[i]) + (i << RQB_L2BPW);
730 			CTR3(KTR_RUNQ, "runq_findbit: bits=%#x i=%d pri=%d",
731 			    rqb->rqb_bits[i], i, pri);
732 			return (pri);
733 		}
734 
735 	return (-1);
736 }
737 
738 /*
739  * Set the status bit of the queue corresponding to priority level pri,
740  * indicating that it is non-empty.
741  */
742 static __inline void
743 runq_setbit(struct runq *rq, int pri)
744 {
745 	struct rqbits *rqb;
746 
747 	rqb = &rq->rq_status;
748 	CTR4(KTR_RUNQ, "runq_setbit: bits=%#x %#x bit=%#x word=%d",
749 	    rqb->rqb_bits[RQB_WORD(pri)],
750 	    rqb->rqb_bits[RQB_WORD(pri)] | RQB_BIT(pri),
751 	    RQB_BIT(pri), RQB_WORD(pri));
752 	rqb->rqb_bits[RQB_WORD(pri)] |= RQB_BIT(pri);
753 }
754 
755 /*
756  * Add the KSE to the queue specified by its priority, and set the
757  * corresponding status bit.
758  */
759 void
760 runq_add(struct runq *rq, struct kse *ke, int flags)
761 {
762 	struct rqhead *rqh;
763 	int pri;
764 
765 	pri = ke->ke_thread->td_priority / RQ_PPQ;
766 	ke->ke_rqindex = pri;
767 	runq_setbit(rq, pri);
768 	rqh = &rq->rq_queues[pri];
769 	CTR5(KTR_RUNQ, "runq_add: td=%p ke=%p pri=%d %d rqh=%p",
770 	    ke->ke_thread, ke, ke->ke_thread->td_priority, pri, rqh);
771 	if (flags & SRQ_PREEMPTED) {
772 		TAILQ_INSERT_HEAD(rqh, ke, ke_procq);
773 	} else {
774 		TAILQ_INSERT_TAIL(rqh, ke, ke_procq);
775 	}
776 }
777 
778 /*
779  * Return true if there are runnable processes of any priority on the run
780  * queue, false otherwise.  Has no side effects, does not modify the run
781  * queue structure.
782  */
783 int
784 runq_check(struct runq *rq)
785 {
786 	struct rqbits *rqb;
787 	int i;
788 
789 	rqb = &rq->rq_status;
790 	for (i = 0; i < RQB_LEN; i++)
791 		if (rqb->rqb_bits[i]) {
792 			CTR2(KTR_RUNQ, "runq_check: bits=%#x i=%d",
793 			    rqb->rqb_bits[i], i);
794 			return (1);
795 		}
796 	CTR0(KTR_RUNQ, "runq_check: empty");
797 
798 	return (0);
799 }
800 
801 #if defined(SMP) && defined(SCHED_4BSD)
802 int runq_fuzz = 1;
803 SYSCTL_INT(_kern_sched, OID_AUTO, runq_fuzz, CTLFLAG_RW, &runq_fuzz, 0, "");
804 #endif
805 
806 /*
807  * Find the highest priority process on the run queue.
808  */
809 struct kse *
810 runq_choose(struct runq *rq)
811 {
812 	struct rqhead *rqh;
813 	struct kse *ke;
814 	int pri;
815 
816 	mtx_assert(&sched_lock, MA_OWNED);
817 	while ((pri = runq_findbit(rq)) != -1) {
818 		rqh = &rq->rq_queues[pri];
819 #if defined(SMP) && defined(SCHED_4BSD)
820 		/* fuzz == 1 is normal.. 0 or less are ignored */
821 		if (runq_fuzz > 1) {
822 			/*
823 			 * In the first couple of entries, check if
824 			 * there is one for our CPU as a preference.
825 			 */
826 			int count = runq_fuzz;
827 			int cpu = PCPU_GET(cpuid);
828 			struct kse *ke2;
829 			ke2 = ke = TAILQ_FIRST(rqh);
830 
831 			while (count-- && ke2) {
832 				if (ke->ke_thread->td_lastcpu == cpu) {
833 					ke = ke2;
834 					break;
835 				}
836 				ke2 = TAILQ_NEXT(ke2, ke_procq);
837 			}
838 		} else
839 #endif
840 			ke = TAILQ_FIRST(rqh);
841 		KASSERT(ke != NULL, ("runq_choose: no proc on busy queue"));
842 		CTR3(KTR_RUNQ,
843 		    "runq_choose: pri=%d kse=%p rqh=%p", pri, ke, rqh);
844 		return (ke);
845 	}
846 	CTR1(KTR_RUNQ, "runq_choose: idleproc pri=%d", pri);
847 
848 	return (NULL);
849 }
850 
851 /*
852  * Remove the KSE from the queue specified by its priority, and clear the
853  * corresponding status bit if the queue becomes empty.
854  * Caller must set ke->ke_state afterwards.
855  */
856 void
857 runq_remove(struct runq *rq, struct kse *ke)
858 {
859 	struct rqhead *rqh;
860 	int pri;
861 
862 	KASSERT(ke->ke_proc->p_sflag & PS_INMEM,
863 		("runq_remove: process swapped out"));
864 	pri = ke->ke_rqindex;
865 	rqh = &rq->rq_queues[pri];
866 	CTR5(KTR_RUNQ, "runq_remove: td=%p, ke=%p pri=%d %d rqh=%p",
867 	    ke->ke_thread, ke, ke->ke_thread->td_priority, pri, rqh);
868 	KASSERT(ke != NULL, ("runq_remove: no proc on busy queue"));
869 	TAILQ_REMOVE(rqh, ke, ke_procq);
870 	if (TAILQ_EMPTY(rqh)) {
871 		CTR0(KTR_RUNQ, "runq_remove: empty");
872 		runq_clrbit(rq, pri);
873 	}
874 }
875 
876 /****** functions that are temporarily here ***********/
877 #include <vm/uma.h>
878 #define RANGEOF(type, start, end) (offsetof(type, end) - offsetof(type, start))
879 extern struct mtx kse_zombie_lock;
880 
881 /*
882  *  Allocate scheduler specific per-process resources.
883  * The thread and ksegrp have already been linked in.
884  * In this case just set the default concurrency value.
885  *
886  * Called from:
887  *  proc_init() (UMA init method)
888  */
889 void
890 sched_newproc(struct proc *p, struct ksegrp *kg, struct thread *td)
891 {
892 
893 	/* This can go in sched_fork */
894 	sched_init_concurrency(kg);
895 }
896 
897 #define RANGEOF(type, start, end) (offsetof(type, end) - offsetof(type, start))
898 /*
899  * thread is being either created or recycled.
900  * Fix up the per-scheduler resources associated with it.
901  * Called from:
902  *  sched_fork_thread()
903  *  thread_dtor()  (*may go away)
904  *  thread_init()  (*may go away)
905  */
906 void
907 sched_newthread(struct thread *td)
908 {
909 	struct td_sched *ke;
910 
911 	ke = (struct td_sched *) (td + 1);
912 	bzero(ke, sizeof(*ke));
913 	td->td_sched     = ke;
914 	ke->ke_thread	= td;
915 	ke->ke_oncpu	= NOCPU;
916 	ke->ke_state	= KES_THREAD;
917 }
918 
919 /*
920  * Set up an initial concurrency of 1
921  * and set the given thread (if given) to be using that
922  * concurrency slot.
923  * May be used "offline"..before the ksegrp is attached to the world
924  * and thus wouldn't need schedlock in that case.
925  * Called from:
926  *  thr_create()
927  *  proc_init() (UMA) via sched_newproc()
928  */
929 void
930 sched_init_concurrency(struct ksegrp *kg)
931 {
932 
933 	CTR1(KTR_RUNQ,"kg %p init slots and concurrency to 1", kg);
934 	kg->kg_concurrency = 1;
935 	kg->kg_avail_opennings = 1;
936 }
937 
938 /*
939  * Change the concurrency of an existing ksegrp to N
940  * Called from:
941  *  kse_create()
942  *  kse_exit()
943  *  thread_exit()
944  *  thread_single()
945  */
946 void
947 sched_set_concurrency(struct ksegrp *kg, int concurrency)
948 {
949 
950 	CTR4(KTR_RUNQ,"kg %p set concurrency to %d, slots %d -> %d",
951 	    kg,
952 	    concurrency,
953 	    kg->kg_avail_opennings,
954 	    kg->kg_avail_opennings + (concurrency - kg->kg_concurrency));
955 	kg->kg_avail_opennings += (concurrency - kg->kg_concurrency);
956 	kg->kg_concurrency = concurrency;
957 }
958 
959 /*
960  * Called from thread_exit() for all exiting thread
961  *
962  * Not to be confused with sched_exit_thread()
963  * that is only called from thread_exit() for threads exiting
964  * without the rest of the process exiting because it is also called from
965  * sched_exit() and we wouldn't want to call it twice.
966  * XXX This can probably be fixed.
967  */
968 void
969 sched_thread_exit(struct thread *td)
970 {
971 
972 	SLOT_RELEASE(td->td_ksegrp);
973 	slot_fill(td->td_ksegrp);
974 }
975 
976 #endif /* KERN_SWITCH_INCLUDE */
977